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Fixational eye movements enhance the
precision of visual information transmitted
by the primate retina

Eric G. Wu 1 , Nora Brackbill 2, Colleen Rhoades 3, Alexandra Kling4,5,6,
Alex R. Gogliettino6,7, Nishal P. Shah 1,4, Alexander Sher 8, Alan M. Litke 8,
Eero P. Simoncelli 9,10,11 & E. J. Chichilnisky 4,5,6

Fixational eye movements alter the number and timing of spikes transmitted
from the retina to the brain, but whether these changes enhance or degrade
the retinal signal is unclear. To quantify this, we developed a Bayesianmethod
for reconstructing natural images from the recorded spikes of hundreds of
retinal ganglion cells (RGCs) in the macaque retina (male), combining a like-
lihood model for RGC light responses with the natural image prior implicitly
embedded in an artificial neural network optimized for denoising. Themethod
matched or surpassed the performance of previous reconstruction algo-
rithms, and provides an interpretable framework for characterizing the retinal
signal. Reconstructions were improved with artificial stimulus jitter that
emulated fixational eye movements, even when the eye movement trajectory
was assumed to be unknown and had to be inferred from retinal spikes.
Reconstructionswere degradedby small artificial perturbations of spike times,
revealingmoreprecise temporal encoding than suggestedbyprevious studies.
Finally, reconstructions were substantially degraded when derived from a
model that ignored cell-to-cell interactions, indicating the importance of
stimulus-evoked correlations. Thus, fixational eye movements enhance the
precision of the retinal representation.

Vision begins with the retina, which transforms dynamic visual images
into electrical signals, processes these signals, and transmits them to
the brain in the spiking activity of retinal ganglion cells (RGCs). This
encoding process has been studied for nearly a century, with con-
temporary models capturing the details of RGC responses with a high
degree of precision. But these models do not directly reveal how
effectively the visual scene is conveyed by RGCs particularly under
stimulus conditions that the visual systemevolved to analyze: naturally

occurring patterns of light, with dynamic global image shifts arising
from eye movements.

To probe the retinal code under these conditions, we develop and
apply amethod for reconstructing natural images andmovies from the
spiking activity of complete populations of RGCs recorded in the pri-
mate retina, in response to continuously changing visual images.
Rather than using a regression formalism to optimize a decoding
model that maps recorded RGC spikes to images1–3, we use a Bayesian
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formalism4—combining a likelihood model that accounts for the RGC
spikes with a separate prior model that captures the statistical struc-
ture of natural images. Specifically, images are reconstructed by
numerical optimization of the posterior density, arising from the
product of (1) an image likelihood obtained from an encoding model
fitted to RGC data that captures the stochastic responses of RGCs to
visual stimuli5, and (2) a natural image prior implicit in an artificial
neural network pre-trained on a natural image database to perform
denoising6. This approach confers unique advantages for the analysis
and interpretation of the retinal signals. We demonstrate that the
method achieves state-of-the-art reconstruction performance, and
then use it to quantify the importance of fixational eye movements,
spike timing precision, and cell-to-cell correlations in the retinal code
for natural visual stimuli.

Results
To characterize the visual signals evoked by natural images, we
recorded light responses of RGCs in isolated peripheral macaque
retina with a large-scale multi-electrode array7. This method captured
the activity of nearly complete populations of several hundredRGCsof
the four numerically dominant types (ON midget, OFF midget, ON
parasol, OFF parasol), which comprise roughly 70% of RGC axons
projecting to the brain8. Spatiotemporal white noise stimuli were used
to identify cells and map their receptive fields9,10.

Bayesian reconstruction of flashed images
We first examined the reconstruction of images presented in brief
flashes to the retina. Although the dynamics of the flashed stimulus
differ markedly from the natural visual experience, the simplicity of
the stimulus enabled the evaluation of the image reconstruction
approach and comparison to previous methods. Thousands of grays-
cale photographic images from the ImageNet database11,12 were pre-
sented for a duration of 100ms with consecutive trials separated by
400ms of the uniform gray screen (Fig. 1a, also see the “Methods”
section).

Flashed natural images were reconstructed from evoked RGC
activity using a Bayesian approximate maximum a posteriori (MAP)
algorithm (see ref. 13). The posterior density (probability of an image
given observed spikes) is the product of two separately defined and
estimated components: (1) a likelihood model of the natural image
stimulus y evoking themeasured spiking response s, p(s∣y), computed
using a probabilistic encoding model of RGC spiking in response to
natural image stimuli; (2) a prior model of natural images, p(y),
obtained implicitly from aGaussian-denoising neural network (Fig. 1c).
The likelihood was computed from an encoding model that summed
the effects of the visual input, spike history, and spike trains of nearby
neurons (to capture spike train temporal structure and cell-to-cell
correlations) and then transformed the output with an instantaneous
sigmoidal nonlinearity to provide a firing probability for a Bernoulli
spike generator (Fig. 1b). This model generalizes the commonly used
linear–nonlinear-Poisson (LNP) cascade model, replacing Poisson
spiking with Bernoulli spiking (equivalent at fine time scales), and is a
specific case of a generalized linear model (GLM), incorporating
recursive feedback and coupling filters5. We refer to this as the
linear–nonlinear-Bernoulli with recurrent coupling (LNBRC) model.
Model parameters (stimulus, feedback, and coupling filters, and an
additive constant) were jointly fitted to recorded RGC data by max-
imizing the likelihood of themodel parameters given the stimulus and
the observed spikes, augmented with regularization terms to induce
sparsity in the filter weights (see the “Methods” section). Separately, an
implicit image prior was obtained by training a denoising convolu-
tional neural network (dCNN) to remove additive Gaussian noise from
a large collection of natural images6. Such priors underlie the “diffu-
sion models”14 that represent the current state-of-the-art in machine
learning for image synthesis15,16 and inference17–19.

With these two components, the reconstruction procedure max-
imized the posterior by alternating between an encoding likelihood
optimization step (solved with unconstrained convex minimization)
and a prior optimization step (solved with a single forward pass of the
denoiser6,20) (Fig. 1d, e, see the “Methods” section), yielding an esti-
mate of the most probable image given the RGC spikes and natural
image statistics.

The performance of the MAP reconstruction algorithm was
characterized qualitatively with visual image comparison and quanti-
tatively with MS-SSIM21, a commonly used measure of perceptual
image quality. Example reconstructions are shown in Fig. 1f. Recon-
struction performance with this MAP procedure was qualitatively and
quantitatively more accurate than that obtained using linear
reconstruction1,3,4 (meanMS-SSIMof0.685,0.652, 0.660, and0.652 for
LNBRC-dCNN MAP reconstructions in the four experimental prepara-
tions tested, compared to 0.624, 0.616, 0.578, and 0.575 for linear
reconstruction in the same preparations). Performance was compar-
able to state-of-the-art neural networks trained to nonlinearly recover
the high spatial frequency components of images2 (mean MS-SSIM of
0.689, 0.683, 0.651, and 0.653, in the same preparations). In addition
to reconstruction quality, the MAP approach provided greater inter-
pretability by separating the likelihood and prior components of
estimation, and broader usability with limited retinal data (the retinal
encoding model contained ~1.5 million parameters, in comparison
with ~240 million parameters for the benchmark neural network
model2).

To examine the importance of the encoding and prior models,
MAP reconstruction performance with the full model (labeled LNBRC-
dCNN)was compared to that achievedwith a simpler spectral Gaussian
imageprior (LNBRC-1F) orwith a likelihood corresponding to a simpler
LNP encodingmodel (LNP-dCNN). Images reconstructed using the full
approach had sharper and more detailed image structure (edges,
contours, textures) than those reconstructed using the 1/F prior, and
contained more fine spatial detail than those reconstructed using the
LNP encoding model (Fig. 1f). Quantitatively, reconstructions pro-
duced using LNBRC-dCNN exhibited greater similarity to the original
image than those produced with the simpler 1/F prior (mean MS-SSIM
of 0.612, 0.573, 0.577, and 0.565 for LNBRC-1F in each of four experi-
mental preparations, all p-values < 1 × 10−10, LNBRC-dCNN> LNBRC-1F,
Wilcoxon signed rank test, N = 1500, N = 1750, N = 750, and N = 750,
respectively) or the simpler LNP encoding model (mean MS-SSIM of
0.635, 0.613, 0.597, and 0.603 using LNP-dCNN in the same prepara-
tions, all p-values < 1 × 10−10, LNBRC-dCNN> LNP-dCNN, Wilcoxon
signed rank test,N = 1500,N = 1750,N = 750, andN = 750, respectively).
Thus, both the dCNN image prior and the LNBRC encoding model
contribute substantially to the quality of natural image reconstruction.

Bayesian reconstruction of images displayed with fixational eye
movements
Fixational (ocular) drift, the small but incessant eye movements that
occur when fixating a visual target, is a fundamental component of
primate vision. Recent studies have demonstrated that these eye
movements enhance fine pattern vision and visual acuity22–26, and have
hypothesized that these effects could result from sampling the image
at many spatial phases relative to the lattice of RGC receptive
fields24,25,27, and/or frommodulating high frequency spatial details into
the temporal domain22,23. However, psychophysical studies25,28–30 sug-
gest that the visual systemmay not have precise knowledge of the eye
position (but see ref. 31), opening the possibility that positional
uncertainty could instead degrade the retinal signal32 (but see ref. 33).
Although simulation studies27,34–36 have explored the possibility of
using the retinal signal alone to compensate for fixational eye move-
ments, it remains uncertain whether unknown eye jitter enhances or
degrades the retinal representation itself. Here, we directly char-
acterized the effects of fixational drift eye movements by
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reconstructing images from the experimentally recorded responses of
RGCs to jittered natural images.

RGC activity was measured in response to movies consisting of
images from the ImageNet database11,12, displayed with randomly jit-
tered spatial offsets in each frame to emulate fixational drift eye

movements. Images were displayed for 500ms, with each 8.33ms
frame spatially shifted relative to the previous frame according to a
discretized sample from a 2D Gaussian distribution to approximate a
Brownianmotion with a diffusion constant of 10μm2/frame (Fig. 2ab).
This design approximates drift eye movements as a 2D Brownian

Fig. 1 | Reconstruction of flashed natural images from RGC spikes. a Example of
macaque retinal data. Receptive fieldmosaics for themajor RGC types (ONparasol,
OFF parasol, ON midget, OFF midget). Natural images are flashed for 100ms, and
spikes recorded from all 691 cells over a 150ms interval (gray region) were used for
LNBRC model fitting and reconstruction. b LNBRC encoding model. Model cell
responses are computed from the spatio-temporally filtered visual stimulus, com-
bined with filtered spike trains from the cell and neighboring cells. These filtered
spiking inputs capture both spike train temporal structure and cell-to-cell corre-
lations. c Bayesian reconstruction. The likelihood computed using the LNBRC
encoding model is combined with a separately trained natural image prior to
producing a posterior density for the stimuli given observed spike trains. d Half-
quadratic variable splitting algorithm for approximate MAP optimization. The
method alternates between optimizing the likelihood (a convex minimization
problem, solved using gradient descent), and optimizing the prior probability (by
applying an artificial neural network pre-trained to perform Gaussian denoising on

natural images). eVisualization of the optimization path for a highly simplified two-
dimensional toy problem (red lines are likelihood steps, blue lines are prior steps).
The contours indicate level sets of theposterior, with themodeof posterior (purple
star), likelihood (red dot), and prior (blue x). The step size progressively decreases,
corresponding to increasing values of schedule hyperparameter ρ. f Example
reconstructions comparing LNBRC-dCNNwithbenchmarks and alternativemodels.
Columns: Simulated noiseless reconstruction, a reconstruction of the stimulus
from linear projections onto the LNBRC filters (see also the “Methods” section);
Linear reconstruction, a simple benchmark; ANN, direct artificial neural network
reconstruction2; LNBRC-dCNN, our Bayesian method; LNBRC-1F, Bayesian method
with the dCNN image prior with a simpler 1/F Gaussian image prior; and LNP-dCNN,
replacing the LNBRC likelihood with a simpler LNP likelihood. The original stimuli
were taken from the ImageNet dataset11 and are not displayed due to copyright
restrictions. The complete comparisons are available at https://github.com/wueric/
wu-nature-comms-2024.
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Fig. 2 | Reconstruction of jittered natural images from RGC spikes. a Example
reconstructed image from simulated noiseless RGC responses, with an example
fixational drift eye movement trajectory overlaid (red). The original stimulus is
from the ImageNet dataset11 and is not displayed due to copyright restrictions.
b Example ON parasol cell receptive field mosaic (left) and ONmidget cell mosaic
(right), with drift trajectory (red). The simulated eye movements were typically
comparable to the size of amidgetRGC receptive field. cTop: comparison of spikes
recorded from an ON parasol RGC over repeated presentations of the same sti-
mulus (black ticks) to simulated responses of the fitted LNBRC model (red ticks).
Bottom: average spike rates over time corresponding to the above rasters.
d Schematic of joint-LNBRC-dCNN reconstruction. The algorithm alternates
between an image estimation update step (left), in which the stimulus is recon-
structed using the LNBRCmodel and denoiser CNN image prior to maximizing the
expected log-posterior over a variational distribution for eye movements, and an
eye movement update step (right), in which the variational distribution for eye
movements is updated given the reconstructed image. e Example reconstructions,
using LNBRC encoding model and dCNN prior. Columns: Simulated noiseless
reconstruction, a reconstruction of the stimulus from linear projections onto the

LNBRC filters (see the “Methods” section); Known-LNBRC-dCNN, MAP recon-
struction with known eye movements; Zero-LNBRC-dCNN, MAP reconstruction
with the (incorrect) assumption of zero eye movements; and Joint-LNBRC-dCNN,
joint estimation of image and eyemovements. The original stimuli were taken from
the ImageNet dataset11 and are not displayed due to copyright restrictions. The
complete comparisons are available at https://github.com/wueric/wu-nature-
comms-2024. f Left: Performance of joint-LNBRC-dCNN vs. zero-LNBRC-dCNN.
Reconstruction quality using joint-LNBRC-dCNN exceeded that of zero-LNBRC-
dCNN for nearly every image. Right: performance of joint-LNBRC-dCNN vs. known-
LNBRC-dCNN. Known-LNBRC-dCNN algorithm slightly outperformed joint-LNBRC-
dCNN. g Relative reconstruction quality for the joint estimation procedure joint-
LNBRC-dCNN, normalized for each image to zero-LNBRC-dCNN (solid line) and
known-LNBRC-dCNN (dashed line). The boxes mark the median and the inter-
quartile range (IQR), while the whiskers extend to 1.5 times the IQR. Outliers are
marked with a +. For all three preparations, the relative reconstruction quality for
joint-LNBRC-dCNN was typically near 1 (mean: 0.976, 1.02, and 0.793), the perfor-
mance with known eye movements.
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motion23,27,34,35 with diffusion constant in the range expected in
humans23,37 and macaques [Z.M. Hafed and R.J. Krauzlis, personal
communication, June 2008] (see the “Discussion” section).

The LNBRCmodel was fitted to RGC responses to these stimuli by
maximizing likelihood. Model fit quality was assessed by comparing
the model-simulated spikes with recorded data (Fig. 2c), and by
computing the fraction of response variance explained by the model.
Although some small systematic deviations from the data were
observed (Fig. 2c), in general, the LNBRC model effectively captured
responses to natural stimuli with fixational eye movements (Fig. S1).

The fitted LNBRC was combined with the dCNN natural image
prior to perform the simultaneous estimation of the stimulus image
and eye position using a modified approximate MAP procedure. To
avoid computationally expensive marginalization over the eye move-
ment trajectories, an expectation-maximization (EM) algorithm27 was
used to alternate between reconstructing the intermediate image that
maximized the expected log posterior over an estimated distribution
of eye movement trajectories and using that intermediate image to
update the eyemovement distribution (Fig. 2d, also see the “Methods”
section and Supplementary Information).

The effectiveness of this procedure (labeled joint-LNBRC-dCNN) in
compensating for unknown eye movements was evaluated by com-
paring reconstruction quality to the case in which eye movements were
known exactly (known-LNBRC-dCNN), and the case in which eye
movements were incorrectly assumed to be zero (zero-LNBRC-dCNN).
Reconstruction quality for joint-LNBRC-dCNN exceeded that of zero-
LNBRC-dCNN (mean MS-SSIM of 0.677, 0.652, and 0.638 for each pre-
paration for joint-LNBRC-dCNN, in comparison with 0.642, 0.617, and
0.615 for zero-LNBRC-dCNN for the same preparations) and approa-
ched that of known-LNBRC-dCNN (mean MS-SSIM of 0.685, 0.656, and
0.646 for the same preparations). Notably, this was the case for nearly
every image evaluated, for every preparation (Fig. 2f, g). Qualitative
comparisons (Fig. 2e) revealed that the joint solution recovered sub-
stantially more image structure and fine spatial detail than the one that
ignored eye movements, and produced reconstructions that were
similar in content and quality to those produced with known eye
movements. These results demonstrate that compensation for fixa-
tional drift eye movements is critical for recovering fine spatial detail in
the visual scene and that the RGC spikes alone are sufficient to perform
this compensation without direct access to eye position information.

Fixational eye movements enhance the retinal visual signal
To test whether fixational drift eye movements improve or degrade
retinal coding of natural images, reconstruction quality was examined
as a function of realized drift eye movement magnitude, quantified as
the standard deviation of the random displacement occurring during
each trial. In all three preparations, when simultaneously estimating
both the image and eye positions, the mean reconstructed image
quality increased with increasing magnitude of eye movements over
nearly the entire naturalistic range tested (Fig. 3a, solid). The samewas
true when reconstructing with known eye positions (Fig. 3a, dashed),
demonstrating that the improvement was due to an improved retinal
signal. Validationwith the LPIPS perceptual distancemeasure38 yielded
similar results (Fig. S4). Thus, fixational drift eye movements enhance,
rather than degrade, the retinal representation.

Interestingly, the enhancement occurred even though the fixa-
tional drift was small: the drift magnitudes tested were comparable to
the size and spacing of midget cell receptive fields in these recordings
(Fig. 3; see the “Discussion” section). Specifically, the standard devia-
tion of the randomdisplacement in the largest drift trajectories tested
was ~30μm (Fig. 3), and the peak excursion of these large drift tra-
jectories ranged from 31.1 to 73.8μm (5th and 95th percentiles). By
comparison, the median midget RGC receptive field radii were 36.4,
40.7, and 30.7μm for the blue, red, and green preparations, respec-
tively (Fig. 3), and midget cell spacing is approximately twice the

receptive field radius39. Thus, although the larger drift trajectories
moved image features from onemidget cell receptive field to another,
more frequently, the imagedisplacementswere smaller,with unknown
implications for the corresponding foveal image reconstruction pro-
blem (see the section “Discussion”). Note that the typical spacing of
cone photoreceptors at the eccentricities of these recordings
(~14μm)40 was small compared to the image displacements.

The benefits of fixational drift could, in principle, arise from an
overall increase in spike rates, because RGCs are responsive to inten-
sity changes over time, which increase in the presence of drift. Indeed,
the mean number of spikes increased with increasing eye movement
magnitude: in the three preparations, themean spike rate increased by
3.1%, 2.4%, and 2.1% for each 10μm increase in eyemovements random
displacement standarddeviation, with Pearson correlation coefficients
of 0.97, 0.98, and 0.76, respectively. Thus, at least some of the
improvement in reconstructed image quality may be attributable to
increased RGC firing.

Another possibility is that image reconstruction is enhanced by a
more accurate estimation of the eye movement trajectory with larger
eyemovements. This did not appear to be the case: the accuracyof eye
trajectory reconstruction declined with increasing magnitude of drift,
albeit much more slowly than for the model that assumed zero
movement (Fig. 3b). Thus, the improved image reconstruction with
increasing magnitude of eye movements was attributable to a more
faithful encoding of the stimulus in RGC spikes rather than a more
precise implicit signal about eye position.

The potentially distinct impacts of fixational drift on each of the
parasol andmidget RGC signals were examined by reconstructing one
population at a time. Though midget RGCs have smaller receptive
fields and are associated with fine pattern vision, their slower stimulus
temporal integration could cause greater positional uncertainty in the
presence of drift eye movements, potentially degrading the quality of
the representation compared to that of the parasol RGCs. However,
this was not the case. Midget-only reconstructions had systematically
higher quality than parasol-only reconstructions and contained
greater fine spatial detail (Fig. 3c, also Fig. S5), demonstrating that
midget cells encoded a greater fraction of the stimulus than parasol
cells. Reconstruction quality improved with increasing realized drift
magnitude for both the parasol-only andmidget-only reconstructions.
While the error in estimated eye position increased muchmore slowly
for each population than if eye movements were ignored (Fig. 3d),
showing that both cell groups were informative of the eye movement
trajectory, the position error was substantially smaller in the midget-
only reconstructions, suggesting that midget RGCs were largely
responsible for encoding fine eye movements.

Fixational eye movements evoke more precisely timed spikes
Previous work in the turtle retina has revealed greater temporal preci-
sion of RGC spikes in the presence of simulated fixational eye move-
ments than in a still image41. To test whether this precision could
enhance natural image reconstruction, the observed RGC spikes were
randomly perturbed in time by intervals drawn from Gaussian dis-
tributions with increasing standard deviation (1, 2, 5, 10, 20, and 40ms),
and reconstructions were computed with the perturbed spikes. To
ensure optimal reconstruction with the perturbed spikes, the LNBRC
models used for estimating likelihood were refitted to perturbed data.
Spike time perturbation had two effects on the retinal signal. First, it
disrupted the spike train temporal structure, resulting in reduced
strength of the fitted LNBRC feedback filter (Fig. S9). Second, because
the spike times of each cell were shifted independently, it spread out
the spiking synchrony between neighboring cells in time, resulting in
reduced peak amplitudes of the fitted LNBRC coupling filters (Fig-
ure S8). For the flashed stimuli, reconstruction quality declined gradu-
ally for spike time perturbations up to about 10 ms, and then declined
more sharply for larger perturbations, indicating that spike time
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structure finer than 10 ms was relatively unimportant (Fig. 4a). How-
ever, for stimuli with simulated fixational drift, reconstruction quality
deteriorated more rapidly as a function of spike time perturbation, and
was affectedmore than the flashed reconstructions by perturbations on
the order of 5ms (see the “Discussion” section). This was true regardless
of whether eye movements were jointly estimated (Fig. 4b, solid lines)
or known a priori (Fig. 4b, dashed lines). Repeating the analysis with the
LPIPS perceptual distance measure yielded similar results (Fig. S6).
Thus, eye movements encode the spatial structure of natural images
into the fine temporal structure of spikes, and exploiting this aspect of
retinal encoding enhances image reconstructions.

Correlated firing between RGCs contributes to reconstructed
image quality
Although previous work5,42 has demonstrated that correlated firing of
RGCs affects the transmitted information for simple stimuli, the

importance of such correlations for naturalistic stimuli is less
certain43–45 as are the distinct roles of stimulus-dependent (signal) and
stimulus-independent (noise) correlations. To better understand the
role of correlations in naturalistic visual signaling by the retina, two
analyses were performed. First, image reconstruction was performed
with a readout that ignored all correlations. Second, images were
reconstructed from synthetic data created by shuffling the recorded
responses of each cell across repeated presentations of the same sti-
mulus. These analyses are presented below in turn.

To probe the role of correlations in reconstructions, LNBR
("uncoupled”) encoding models were fitted to the experimental data,
and the resulting natural image reconstructions were compared to the
results obtained with the full LNBRC ("coupled”) model, similar to a
previous analysis performed with white noise stimuli5. The uncoupled
models lacked the ability to represent correlated firing between RGCs
beyond linearfiltering of the shared visual stimulus andwerefitted and

Fig. 3 | Effects of fixational drift magnitude on reconstruction quality. a Image
reconstruction performance for three preparations (delineated with different col-
ors) as a function of themagnitude of eyemovements simulated during the stimulus
presentation, for joint-LNBRC-dCNN (solid line), known-LNBRC-dCNN (dashed line),
and zero-LNBRC-dCNN (dotted line). The magnitude of drift eye movements was
quantified as the standard deviation in the eye position occurring during each trial.
The error bars in every panel correspond to the standard error of mean recon-
struction quality. In all preparations, reconstruction quality for joint-LNBRC-dCNN
and known-LNBRC-dCNN increasedwith eye position jitter, up to (but not including)
the largest eye movements evaluated. Reconstructions for zero-LNBRC-dCNN were
less accurate than both known-LNBRC-dCNN and joint-LNBRC-dCNN and further
decreased with increasing eye movements. b Eye position estimation error as a
function of the magnitude of movement, for the same experimental preparations.

When eye movements were ignored (zero-LNBRC-dCNN, dotted line), the error in
estimated eye position increased linearly, as expected with a 2D Brownian motion.
When eye movements were jointly estimated (joint-LNBRC-dCNN; solid lines), the
error increased, but more gradually. c Parasol-only (solid line) and midget-only
(dashed line) joint-LNBRC-dCNN image reconstruction performance as a function of
the magnitude of movement, for the same experimental preparations. In all pre-
parations, reconstruction quality increased with increasing magnitudes of fixational
drift for both parasol-only and midget-only reconstructions. Midget-only recon-
structions had systematically better quality than parasol-only reconstructions in all
preparations. d Parasol-only (solid line) and midget-only (dashed line) eye position
estimation error, for the same experimental preparations. For both parasol-only and
midget-only reconstructions, the eye position estimation error increased more
slowly than if eye movements were ignored (dotted line).
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used to compute reconstructions in an identical manner to the cou-
pled models. For both the flashed and the fixational drift stimuli, the
reconstructions computed using the coupled models were sig-
nificantly more accurate than those computed using the uncoupled
models. For the flashed stimuli (Fig. 5a), themeanMS-SSIMdifferences
between coupled and uncoupled reconstructions were 0.023, 0.024,
0.037, and 0.023, (all p-values < 1 × 10−10, coupled > uncoupled, Wil-
coxon signed rank test, N = 1500, N = 1750, N = 750, and N = 750,
respectively), and for the fixational drift stimuli (Fig. 5b) the differ-
ences were 0.019, 0.010, and 0.039 (all p-values < 1 × 10−10, coupled >
uncoupled, Wilcoxon signed rank test, N = 1992 for each). Thus, for
naturalistic stimuli, knowledge of correlated firing properties of RGCs
beyond that which could be explained by linear filtering of the shared
stimulus was necessary to effectively decode image content.

The impact of correlated firing on natural image reconstruction
could not be attributed to noise correlations alone, in contrast to what
was seen in prior work using white noise stimuli5. While the cross-
correlograms simulated with the coupled LNBRC model (Fig. 5e, red)
accurately matched both real data (black) and data shuffled across
repeats to remove noise correlations while preserving the average
properties of each cell (blue), the cross-correlograms simulated with
the uncoupled LNBR model (green) often differed markedly from
both. This indicates that the coupled model better represented signal
correlations in RGC firing than the uncoupled model, an unexpected
finding with implications for retinal modeling (see the “Discussion”
section). The coupled model also explained a systematically greater
fraction of firing variation than the uncoupled model (Fig. 5f).

To probe whether noise correlations contributed significantly to
the retinal signal, reconstructions were compared with the recorded
responses of eachcell shuffled across repeated stimulus presentations.
Using the LNBRC fitted to the unshuffled data (i.e. with full knowledge
of noise correlations), reconstructions were obtained for both the real
(unshuffled) repeats aswell as the shuffleddata. For theflashed stimuli,
the reconstructions computed fromunshuffled spikesweremarginally
more accurate than those computed from the shuffled spikes, for all

preparations tested, with mean difference values of 7.4 × 10−3,
6.6 × 10−3, 5.1 × 10−3, and 3.4 × 10−3 (all p-values < 1 × 10−10, data >
shuffled, Wilcoxon signed rank test, N = 150 for all) respectively. For
the fixational drift stimuli, the effect was similar: the difference was
significant for two of the three preparations tested, with mean values
5.9 × 10−5, 9.5 × 10−4, and 7.6 × 10−3 (p-values 0.45, 0.017, and <1 × 10−10,
data > shuffled, Wilcoxon signed rank test, N = 149 for all). While sta-
tistically significant, the effect was substantially smaller than that of
removing the coupling filters, suggesting that the contributions of
noise correlations to the retinal representation of natural stimuli were
modest. Analysis using the LPIPS perceptual distancemeasure yielded
similar results (Fig. S7). Furthermore, a comparison of the raw and
shuffled repeat cross-correlograms (black and blue lines in Fig. 5e for
data and shuffled, respectively) and cross-correlogram peak height
(Fig. 5h) showed that noise correlationswere substantially smaller than
signal correlations. These results demonstrate that noise correlations
contributed substantially less than signal correlations to retinal
representations of naturalistic scenes, a striking difference compared
to reconstruction performed previously using white noise stimuli5 (see
the “Discussion” section).

Discussion
We have presented a Bayesian method to invert the retinal code,
reconstructing visual images from the measured spiking responses of
populations of RGCs, and used these reconstructions to understand
the effect of fixational drift on the retinal signal. The reconstruction
process is not intended as a model of how the brain processes visual
images46, but as a tool for making explicit the content of the retinal
signal in the form of an image, providing insight into the sensory
content that is available in neural activity and the way this content is
represented4.

These analyses relied on both the performance and interpret-
ability of the reconstruction method, leveraging both the sophistica-
tion of and separation between the likelihood and prior models. The
likelihood, obtained from an LNBRC encoding model, effectively
captured RGC responses to naturalistic stimuli with modular compo-
nents that represented stimulus dependency, spike history depen-
dence, and spike time correlations. Although it is not matched to the
details of biological circuitry or cellular biophysics47,48, it is convex in
its parameters, and thus is reliably fitted to spiking data and is com-
putationally feasible for use in MAP image reconstruction. Separately,
natural image structure was captured using the prior implicit in a
neural network trained to denoise images. Such implicit priors, related
to the “score-based generativemodels”or “diffusionmodels” that have
recently emerged in the machine learning community, offer unprece-
dented power for capturing imagepropertieswhile requiring relatively
modest amounts of training data15–17. Most importantly, the likelihood
and prior components may be combined to support a Bayesian for-
mulation, which offers enhanced interpretability because the two
components can be independently altered to evaluate their contribu-
tions to the retinal representation.

Image reconstruction revealed that the retinal signal alone is
sufficient for accurately decoding visual stimuli in the presence of
unknown fixational eye movements, consistent with previous
theories26,34,35,49 and psychophysical studies25,28,30,50. Though previous
computational investigations27,34,35 have explored this possibility in
simulation with simplified stimuli, the present work tested the idea
empirically with physiologically recorded RGC spikes and naturalistic
stimuli. Of course, our findings do not exclude the possibility of
additional extra-retinal signals that could help to compensate for
fixational eye movements, as has been reported previously31. Indeed,
the small gap in quality between images reconstructed by the joint
algorithm and those reconstructed with full knowledge of the eye
position suggests the potential benefits of incorporating extra-retinal
signals.

Fig. 4 | Effects of spike timing precision on reconstruction quality.
a Reconstruction performance for flashed images as a function of spike timing
perturbation in four experimental preparations (colors). The x-axis is plotted on a
log scale, with a broken axis to facilitate comparison with temporally unperturbed
data. Error bars in all panels correspond to the standard error. Performance at each
level of temporal perturbationwas evaluated using N = 1500,N = 1750,N = 750, and
N = 750 images for the blue, black, green, and yellow preparations, respectively.
Reconstruction degraded modestly up to spike time perturbations of ~10ms.
bReconstructionperformance for the fixational drift stimulus. Blue and green lines
correspond to their color-matched preparations in (a). The dashed and faded lines
correspond to estimationwith knowneyemovement trajectories and the solid lines
to joint estimation of the image and eye trajectory. Performance at each level of
temporal perturbation was evaluated using N = 1992 images for each experimental
preparation. Regardless of whether the eye movement trajectories were known or
jointly estimated, performance declined smoothly starting at a temporal jitter
of ~2–5ms.
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Increased fixational drift systematically improved reconstruction
quality. This provides additional evidence in support of the theory that
fixational drift serves a useful function in visual processing, modulat-
ing high-frequency spatial detail into the time domain22,23,33,51 and/or
enabling super-resolution positional sampling25,27. Furthermore,

because this held even when the eye movements were unknown
a priori, it demonstrates that fixational drift specifically improves the
fidelity of the retinal representation of natural images.

Because the present work analyzes recordings performed in the
peripheral retina, the findings may not be directly applicable to foveal

Fig. 5 | Effects of coupling. a Differences in reconstruction quality between the
coupled model (LNBRC) and uncoupled model (LNBR) for flashed natural images.
Mean differences for four preparations: 0.023, 0.024, 0.037, and 0.023 (p-values
3.7 × 10−184, 1.2 × 10−211, 8.6 × 10−122, and 8.5 × 10−111, respectively, Wilcoxon one-sided
ranked sign test). For panels (a-d), the boxmarks the median and the inter-quartile
range (IQR), while the whiskers extend to 1.5 times the IQR. Outliers are marked
with a +. b Same as (a), for reconstruction with fixational drift using the joint
approach. Mean differences for three preparations: 0.019, 0.010, and 0.039
(p-values 3.2 × 10−218, 4.2 × 10−62, and 2.5 × 10−307, respectively). The blue and green
boxes correspond to the same experimental preparations as the blue and green
boxes in (a). c Differences in reconstruction quality between the unshuffled and
shuffled trials for flashed image reconstructions, using LNBRCs fitted to unshuffled
data. Mean differences: 7.4 × 10−3, 6.6 × 10−3, 5.1 × 10−3, and 3.4 × 10−3 (p-values
4.5 × 10−23, 5.6 × 10−12, 3.1 × 10−20, and 3.4 × 10−12, respectively), substantially smaller
than those in (a). (d) Same as (c), for reconstruction with fixational drift using the

joint approach. Mean differences (left-to-right): 5.9 × 10−5, 9.5 × 10−4, and 7.6 × 10−3

(p-values 0.45, 0.017, and 9.1 × 10−16), substantially smaller than those in (b).
e Example homotypic (same cell type) nearest-neighbor spike train cross correlo-
grams. Panels e–h are computed using the blue experimental preparation in panels
(a–d) using repeat presentations of jittered natural image stimuli. Cross-
correlograms for the data are shown in black, and repeat-shuffled data in red.
Simulated cross-correlograms for the LNBRC (coupled) models and for the LNBR
(uncoupled) models are shown in red and green, respectively. f Fraction of PSTH
variance explained by the coupled and uncoupled models. g Cross-correlogram
peak height comparison between model simulations and data. While the LNBRCs
sometimes overestimated the correlations in the data, the LNBRs systematically
underestimated them. h Cross-correlogram peak height comparison between
repeat data and shuffled repeat data, for the same preparation as (f, g), with the
jittered stimulus. Except for the OFF parasol cells, peak heights were similar, indi-
cating that noise correlations were only weakly present.
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vision. Foveal RGCs are denser and have smaller receptive fields than
peripheral RGCs, and the density of cone photoreceptors is more than
an order of magnitude higher in the fovea than in the periphery. As a
result, fixational drift eye movements sweep the visual scene across
15–20 RGC receptive fields in the fovea40,52, in comparison to the 1–2
RGC receptive fields in the peripheral retina, and also across many
more cones. The computational challenges of reconstructing the
visual scene accurately fromRGC responsesmay thereforediffer in the
fovea and periphery, with foveal reconstructions incorporating input
signals from many more RGCs. A direct test of the implications of the
present work for central vision will require high-quality recordings of
RGC populations in the fovea, which are beyond the reach of current
experimental techniques. However, the computational methodology
described here offers a path to exploring the effects of drift eye
movements in the central retina when such recordings become
feasible.

The impact of fixational drift on the fidelity of the retinal repre-
sentationmay be affected by aspects of the visual stimulus design. For
simplicity, drift eye movements were simulated using 2D Brownian
motion, ignoring the effects of persistence and self-avoidance53,54

observed in biological eye movement drift trajectories. These simpli-
fications are unlikely to significantly affect the overall findings, as the
joint reconstruction algorithm makes few assumptions about the
structure of drift eye movements. As the trajectories generated by
Brownian motion are more random than physiological drift trajec-
tories reflecting these properties, the inclusion of additional con-
straints associated with these properties of eye movements would be
expected to improve reconstructed image quality. In addition, our
stimuli simulated saccades by abruptly switching between different
images. This crude approximation55 potentially evokes a stronger
transient RGC response than real saccades would. Because the tran-
sient response carries substantial image information, our conditions
may underestimate the impact of drift eye movements on recon-
structed image quality.

Precisely timed spikeswere shown to play an important role in the
retinal representation of natural images with fixational drift. Though
RGCs can spike with temporal precision on the order of 1ms56–59,
previous studies have shown that integration times on the order of
10ms provide the highest-fidelity readout of steady visual motion
from RGCs60,61. Consistent with these studies, and with previous fla-
shed natural image reconstruction2,3, the present findings showed that
flashed image reconstruction was robust to spike train temporal per-
turbations up to 10ms. However, in the presence of fixational drift,
finer temporal precision (2–5ms) was required for optimal recon-
struction. This is consistent with work suggesting that the spike train
temporal structure induced by fixational eye movements encodes
high-frequency spatial detail22,41,62 and motion41,63.

As in previouswork on the reconstruction ofwhite noise stimuli5,42,
correlatedRGCfiring contributed significantly to reconstructingnatural
images with simulated fixational drift (but see ref. 44). Surprisingly,
however, in the present work, the effect was primarily attributable to
stimulus-driven correlations rather than the noise correlations that
dominated the results in the prior work. The weak role of noise corre-
lations in the present data matched the results obtained by recon-
structing flashed natural images using more limited approaches2,3 and
results from decoding dynamically varying artificial movies64. The
observed importance of signal correlations may also explain the
observation that the LNBR (uncoupled model) provides a limited
explanation of natural visual signals in individual RGCs65.

Futurework could extend the Bayesian reconstruction framework
to characterize the function of spatio-temporal nonlinearities in the
retinal representation of naturalistic stimuli. Though recent work with
subunit66–68 and neural network69 encoding models has demonstrated
substantial improvements in accounting for RGC spiking, the roles of
the spatio-temporal nonlinearities contained in these models remain

unclear. Combining such encoding models with improved image
priors to draw reconstruction samples from the posterior17,70,71 could
further reveal the interplay between retinal coding and natural image
statistics.

Methods
Multi-electrode array recordings
Preparation and recording methods are described in detail
elsewhere3,7,60,72. In brief, eyes were enucleated from terminally anes-
thetized macaque monkeys used by other laboratories, in accordance
with Institutional Animal Care and Use Committee requirements. All
animals were handled according to approved institutional animal care
and use committee (IACUC) protocols (#28860) of Stanford Uni-
versity. The protocol was approved by the Administrative Panel on
Laboratory Animal Care of Stanford University (Assurance Number:
A3213-01). Segments of peripheral (7–17mm eccentricity, 6–12mm
temporal equivalent eccentricity, or 29–56°60) RPE-attached retina
~3mm in diameter were cut from the eye in dim light, and placed RGC
side downon amulti-electrode array (MEA). A 512-channelMEA system
with 60μm pitch between electrodes and a 2 × 1mm rectangular
recording areawas used to perform the recordings7. This systemband-
passed and digitized the raw recorded voltage traces at 20 kHz. The
preparations were perfused with Ames’ solution (30–34 °C, pH 7.4)
bubbled with 95% O2 and 5% CO2 throughout the recordings. In total,
retinas from five animals were used (ages 12, 15, 12.5, 15–20, and 18
years, all male).

Spike sorting was performed with YASS73. RGCs of the four
numerically dominant types in macaque (ON parasol, OFF parasol, ON
midget, OFF midget) were identified manually based on receptive
fields and autocorrelation functions characterized with a spatio-
temporal white noise stimulus according to previously described
procedures10 and werematched to spike-sorted units from the natural
scenes recordings by matching electrical images (voltage templates).
Only identified RGCs of the four major cell types were used in the
analysis. The four preparations used for the flashed reconstructions
contained 691, 592, 704, and 677 total cells, and the three preparations
used for the jitter eye movements reconstructions contained 715, 604,
and 775 total cells.

Visual stimuli
Visual stimuli were presented on a 120Hz, gamma-corrected CRT
monitor (Sony Trinitron Multiscan E100) that was optically reduced
and projected onto the retina. The 120Hz refresh rate used in these
experiments was sufficient to exceed the temporal resolution of the
parasol cells. All experiments occurred at low photopic light levels
(2000, 1800, and 800 isomerizations per second for the L, M, and S
cones, respectively, at 50% illumination; see refs. 72,74). The visual
stimulus covered an area of 3.5 × 1.75mm, extending well beyond the
recording area of the MEA.

A 30-min spatio-temporal white noise stimulus was used to
identify RGCs of the major cell types and to characterize the locations
of their receptive fields75. The stimulus consisted of a grid of pixels
(either 44 or 88μm in size), whose intensities were drawn indepen-
dently and randomly from a binary distribution. The stimulus was
refreshed at either 30 or 60Hz.

Flashed natural images from the ImageNet database11,12 were
presented to the retina according to ref. 3. Images were converted to
grayscale, cropped to 256× 160 resolution, and padded with gray
borders. The stimulus extended beyond the boundaries of retinal
preparation and fully covered all receptive fields. Each pixel in the
image measured ~11 × 11μmwhen projected on the retina. Each image
was displayed for 100ms (12 frames at 120Hz), and sequential images
were separated by a 400ms uniform gray screen.

The natural movies with simulated fixational eye movements
consisted of ImageNet images presented for 500ms each (60 frames at

Article https://doi.org/10.1038/s41467-024-52304-7

Nature Communications |         (2024) 15:7964 9

www.nature.com/naturecommunications


120Hz), with no gray screen separation. For each image, eye move-
ments were simulated by shifting the image during each frame transi-
tion according to a discretized 2D Brownian motion with a diffusion
constant of 10μm2/frame, consistent with estimates of fixational eye
movements in both human23,37 and non-human primates [Z.M. Hafed
and R.J. Krauzlis, personal communication, June 2008]. Simulated eye
movements were drawn independently of the image. The movies were
presented in sequence, with no gray screen between movies.

The receptive fields of the recorded RGCs covered only a central
region of the stimulus field, leaving a perimeter region for which no
cells were recorded. To evaluate image quality only over regions of the
stimulus corresponding to recorded cells, a valid region was con-
structed, consisting of the convex hull of the receptive fields of the full
RGC population. Only pixels in this valid region were used to compute
image quality.

Fitting LNBRC models of RGC spiking
The linear-nonlinear-Bernoulli with recursive coupling (LNBRC) is a
modified formof the GLMmodel developed in ref. 5. It generalizes the
classical linear-nonlinear-Poisson (LNP) spiking model by incorporat-
ing recursive feedback (spike history) and neighboring cell coupling
filters to capture spike train temporal structure and cell-to-cell corre-
lations (Fig. 1b). For RGC i, the LNBRChas the following parameters: (1)
mi, the linear spatio-temporal stimulus filter; (2) fi[t], the recursive
feedback filter; (3) cðjÞi ½t�, the coupling filters to neighboring RGCs
indexed by j, where neighboring cells were included if their receptive
field centers fell within twice themedian nearest neighbor distance for
parasol cells and 2.5 times the median nearest neighbor distance for
midget cells; and (4) bi, an additive bias. Let v[t] denote a temporal
window of the visual stimulus movie up to and including time t, ∗ a
time-domain convolution, si the spike train of cell i, and Ni the set of
cells coupled to cell i. The instantaneous spiking probability for cell i is
computed from the generator signal, gi[t]:

gi½t�=mT
i ðv½t � 1�Þ+ ðsi*f iÞ½t � 1�+

X
j2Ni

ðsj*cðjÞi Þ½t � 1�+ bi ð1Þ

Temporal filters in the LNBRCs were strictly causal so that the
firing probability at time t depended only on the visual stimulus and
observed spikes occurring strictly before time t. Time was discretized
in 1ms bins, corresponding approximately to the duration of the
refractory period of a neuron. Since at most one spike could occur in
each time bin, a Bernoulli random process was used to model spiking,
with a sigmoidal nonlinearity of the form ex/(1 + ex) mapping the gen-
erator signal to an instantaneous firing probability, resulting in the
encoding negative log-likelihood

�logpðsjvÞ=
X
t

½logð1 + expfgi½t�gÞ � si½t�gi½t��, ð2Þ

which is jointly convex in themodel parameters. The stimulusfilterwas
assumed to be space-time separable (rank 1), and the spatial
component was cropped to a rectangular region surrounding the
cell’s receptive field and represented in terms of a 2D cubic spline
basis76. The feedback, coupling, and temporal components of the
stimulus filter were each parameterized as linear combinations of low-
rank 1D raised cosine basis functions5.

The models were fitted to recorded RGC spikes by maximizing the
parameter likelihood and were regularized with an L1 penalty to induce
sparsity on the spatial component of the stimulus filter and an L2,1
group-sparsity penalty on the cosine basis weights of the coupling fil-
ters to eliminate unnecessary cell-to-cell coupling. Because of the
assumed space–time separability of the stimulusfilter, the LNBRCswere
fitted using coordinate descent, alternating between solving a convex
minimization problem for the stimulus spatial filter, feedback filter,

coupling filters, and bias, and solving a convex minimization problem
for the stimulus time course filter, feedback filter, coupling filters, and
bias. All optimization problems were solved using FISTA77, an acceler-
ated proximal gradient method, using the formulation for the L2,1-reg-
ularized problem presented in ref. 78. Optimal values for the weights
controlling the strength of the L1 and L2,1 regularizers were found using
a grid search to minimize the average test negative log-likelihood over
four randomly chosen cells of each cell type. Within each preparation,
every RGC of a given type used the same hyperparameters.

The LNBRCs were fitted separately for each cell and required
about 180 s of compute timeper cell for the static stimulusmodels and
500 s of compute time per cell for the eye movements models on a
single NVIDIA V100GPU with 32GB of VRAM.

LNBRC simulated spike train generation
Simulated spike trains for evaluating model fit quality (Fig. S1) were
generated from the LNBRC by computing the value of the generator
signal from the stimulus and using simulated Bernoulli random vari-
ables to model random spike generation. The recursive feedback
contribution to the generator signal was initialized using real observed
spike trains, and subsequent generated spike trains were fed back into
the model to compute the feedback contribution for future spikes.
Because the firing probability computed with the coupled LNBRC was
conditional not only on the visual stimulus and simulated cell spiking
history but also on the spike trains of nearby coupled RGCs, real spike
trains from the experimental data were used to compute the coupling
contribution to the generator signal.

PSTH computation
The peri-stimulus time histogram (PSTH) was computed using RGC
responses to repeated presentations of the same visual stimulus by
counting the observed spikes within 1ms time bins, smoothing with a
Gaussian kernel with a standard deviation of 2ms, and then computing
the mean over all repeated presentations of the stimulus.

Fitting benchmark LNP encoding models
Benchmark linear-nonlinear-Poisson (LNP) encoding models were fit-
ted in a similar manner to the LNBRC models. The same spatial basis
sets used for the LNBRCs were used for the LNP models. Spikes were
counted in 8.33ms time bins (one bin per stimulus frame). LNPmodels
were parameterized by a spatio-temporal stimulus filtermi, and a bias
bi, resulting in a generator signal of the form gi½t�=mT

i ðv½t�Þ+ bi. An
exponential nonlinearity was assumed, resulting in an encoding
negative log-likelihood with form

� logpðsjvÞ=
X
t

½exp gi½t� � gi½t�si½t�� ð3Þ

which is convex in the LNP model parameters. LNP spatio-temporal
filters were assumed to be space-time separable. An L1 penalty was
used to induce sparsity in the spatial component of the stimulus filter,
and the corresponding weight for that penalty was chosen by
performing a grid searchwith encoding likelihood on the test partition
as the objective. Models for each cell were fitted using FISTA77.

Reconstruction of flashed images with denoising CNN prior
An iterative Plug-and-Play algorithm6,20,79 was used to perform MAP
reconstruction of flashed static natural images. Rather than solve the
MAP problemdirectly, the algorithmused proximal variable splitting to
divide the MAP objective argminyf� logpðsjyÞ � λ logpðyÞg into an

encoding sub-problem xðk + 1Þ = argminx � logpðsjxÞ+ ρðkÞ

2 jx� zðkÞj22
n o

and a prior sub-problem zðk + 1Þ = argminz �λ logpðzÞ+� ρðkÞ

2 jz�
xðk + 1Þj22g and iteratively alternated between the two. The encoding sub-
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problem was solved using unconstrained convex minimization. The
prior sub-problem has the form of a MAP estimation problem for ima-
ges contaminatedwith additiveGaussian noise. As such, its solutionwas
approximated using a single forward pass of a convolutional neural
network (CNN) pretrained for mean-square-error denoising with spe-
cified noise variance λ/ρ(k). Ten iterations of alternating optimization
were used. ρ(k) was increased per iteration on a log-spaced schedule6,
and hyperparameters λ, ρ(1), and ρ(10) were found by performing a grid
search on an 80-image subset of the test partition with reconstruction
MS-SSIMas the objective. A detailed description of the algorithmcanbe
found in ref. 13.

The denoising CNN implicitly representing the natural image prior
was implemented using the DRUNet architecture from ref. 6. This CNN
had three input channels, consisting of a noisy image, the specifiednoise
variance level, and a binary mask corresponding to the region of the
image covered by the recorded RGCs. The CNN was trained using mean
square error loss to remove i.i.d. additive Gaussian noise at a variety of
noise variance levels from images belonging to the ImageNet database12.

Exact MAP reconstruction with 1/F Gaussian prior
Using the 1/F Gaussian prior, the MAP objective had the form

argminy � logpðsjyÞ+ λ
X
k

jakðyÞj2=f 2k
( )

ð4Þ

where ak(y) is the amplitude of the Fourier coefficient at frequency fk.
Because both the 1/F prior term and the encoding negative log-
likelihood are smooth and convex in the image, theMAP problem is an
unconstrained convex minimization problem and, hence, was solved
with gradient descent. The optimal value of the prior weight λ
was found with a grid search with reconstruction MS-SSIM as the
objective.

Approximate MAP reconstruction with known eye movements
with denoising CNN prior
In the case that the eye movements w are known a priori, the MAP
objective can be simplified into the form

ŷ= argmax
y

logpðsjy,wÞ+ λ logpðyÞ+ logpðwÞ� �
ð5Þ

= argmaxy logpðsjyÞ+ λ logpðyÞ� �
ð6Þ

which can be solved using the Plug-and-Play algorithm described
above for the flashed case. Hyperparameters were found with a grid
search with MS-SSIM as the objective.

Joint estimation of image and unknown eye movements with
denoising CNN prior
The expectation-maximization (EM) algorithm was used to perform
MAP estimation for joint estimation of images and eye movements.
Letting w denote the eye movement trajectory over all timesteps, the
exact MAP problem with unknown eye movements has form

argmax
y

fλ logpðyÞ+ log
X
w

pðsjy,wÞpðwÞg ð7Þ

which cannot be directly solved because the marginalization over all
possible eyemovement trajectoriesw is intractable. MAP-EM offers an
iterative approach for estimating the image y, and consists of
alternating steps of (1) finding the image that maximizes the sum of
the evidence lower bound and natural image log prior

yðiÞ = argmax
y

λ logpðyÞ+Ew∼qðwjyði�1Þ ,sÞ½logpðsjy,wÞ�
n o

ð8Þ

over some variational distribution of the eye positions q(w∣y(i−1), s); and
(2) using the resulting estimate of the image y(i) to update the varia-
tional distribution. For computational tractability, we assumed q had
form q / pðsjw, yÞr0ðw0Þ

QT
i= 1riðwijwi�1Þ, where r could be an arbi-

trarily chosen distribution. q was represented approximately using a
weighted particle filter with N = 10 particles. The particle filter was
updated once for each frame transition (every 8.33ms) using a
sequential importance resampling procedure80. Specifically, at frame t,
the trajectory represented by each particle was updated by sampling a
new eye position from the 2D Gaussian transition probability dis-
tribution p(wt∣wt−1), and then reweighting each particle using the
multiplicative weight pðsjwðtÞ ,yðtÞÞ

pðsjwðt�1Þ ,yðt�1Þ Þ computed using the encoding like-
lihood model. Mathematical details for the resampling particle filter,
including justification for the weight update rule, are provided in
the Supplementary Information.

An initial guess for the image y(0) was reconstructed by assuming a
fixed eye position at the origin and performing ten alternating itera-
tions of the algorithm used for the flashed reconstructions. At each
intermediate timestep i, updated estimates of the image y(i) were
computed by performing a single encoding optimization step

xðiÞ = argminx �Ew∼ qðwjyði�1Þ ,sÞ½logpðsjx,wÞ�+ ρðiÞ

2 jx� yði�1Þj22
n o

using

unconstrained convex minimization, followed by a single prior opti-

mization step yðiÞ = argminz �λ logpðzÞ+ ρðiÞ

2 jz� xðiÞj22
n o

using a single

forward pass of the Gaussian denoiser. To speed computation, images
were updated once for every five display frame transitions. Testing on
a subset of data indicated that this did not negatively affect recon-
struction quality.

Reconstructions from simulated noiseless linear RGCs
Noiseless linear RGC outputs s were simulated as linear projections
of the image y. This was expressed mathematically as s =MTy,
where the linear projection filters M are the normalized spatial
components of the stimulus filters from the experimentally fitted
LNBRC models. M has a rank equal to the number of RGCs. The
simulated noiseless linear RGC responses represent an upper bound
on the fidelity of the visual signal achieved by the retina, as they
ignore both noise in retinal processing and ON/OFF polarity in RGC
responses.

Images were reconstructed from simulated noiseless RGC
responses using an iterative approximate MAP algorithm, similar to
that used for the flashed image reconstructions from recorded data.
Because the simulated RGC outputs are noiseless, the likelihood term
in the MAP reconstruction objective was converted to a linear equality
constraint s =MTy, resulting in the constrained non-convex minimiza-
tion problem

ŷ= arg min
y;MTy= s

f�λ logpðyÞg: ð9Þ

The proximal variable splitting algorithm6 used to reconstruct
flashed images from recorded spike trains was adapted to perform the
noiseless reconstructions. Specifically, this algorithm iteratively alter-
nated between solving a constrained encoding sub-problem

xðk + 1Þ = argminx;MTx = sfρ
ðkÞ

2 jx� zðkÞj22g and an unconstrained prior sub-

problem zðk + 1Þ = argminz �λ logpðzÞ+ ρðkÞ

2 jz� xðk + 1Þj22
n o

. The encod-

ing sub-problem is convex quadratic minimization with a linear
equality constraint, and was solved in closed form as

xðk + 1Þ = zðkÞ �MðMTMÞ�1ðMTzðkÞ � sÞ. The prior sub-problem was
solved using a single forward pass of the Gaussian denoiser. Similar to
the reconstructions of flashed images from recorded data, ten itera-
tions of alternating optimization were used. ρ(k) was increased per
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iteration on a log-spaced schedule6, and hyperparameters λ, ρ(1), and
ρ(10) were found by performing a grid search on an 80-image subset of
the test partition with reconstruction MS-SSIM as the objective.

Reconstruction quality evaluation
Reconstruction quality was evaluated using Multi-scale Structural
Similarity (MS-SSIM)21, a widely used metric for perceptual similarity.
MS-SSIM was calculated over the valid region of the image (described
above), ignoring non-informative regions of the stimulus for which no
RGCs were recorded. For the jittered reconstructions, the absolute
position of the reconstructed image was arbitrary (having been jointly
estimated from many jittered input samples), and MS-SSIM was com-
puted for a range of pixel-wise shifts of the reconstructed image, and
the best value overall shifts were used.

The results in the paper were also confirmed using the learned
perceptual image patch similarity (LPIPS)38, a more recentmeasure of
perceptual distance computed using pre-trained neural network
classifiers. LPIPS has different working principles than MS-SSIM and
has been shown to align with human perceptual judgements. Only
pixels within the valid region (described above) were used to
compute LPIPS.

Cross-validation data rotation for eye movement analysis
Five-fold data rotation was used tomaximize the number of stimulus
images available for determining the effect of jitter eye movements
on reconstructed image quality. Five different sets of LNBRCs were
fitted, each corresponding to distinct and non-overlapping tests and
held-out partitions, such that test-quality reconstructions could be
produced for nearly every stimulus image presentation in the
recorded dataset.

Cell-type-specific reconstruction analysis
The cell-type-specific analysis was performed by reconstructing the
jittered eye movements stimulus using joint-LNBRC-dCNN. For sim-
plicity, the LNBRC models used for this analysis only modeled homo-
typic correlations, differing from the models used elsewhere in the
work. Five-fold data rotation was used for this analysis.

Spike time perturbation analysis
The spike time perturbation analysis tested the temporal precision of
the retinal code by shifting recorded spike times by random amounts
drawn from a zero-mean Gaussian, with standard deviations of 1, 2, 5,
10, 20, and 40ms. To ensure optimal reconstruction at each level of
perturbation, the LNBRCswere refitted to each condition. Imageswere
reconstructed using the time-perturbed data and the time-perturbed
LNBRCs using the algorithms described above. Optimal hyperpara-
meters were found separately for each time perturbation condition by
performing grid searches.

Uncoupled (LNBR) model correlations analysis
The LNBR (uncoupled) model removes the neighboring cell coupling
filters of the LNBRC model, thus losing the ability to represent corre-
lated firing between nearby RGCs, apart from that induced by stimulus
correlations. The LNBR is parameterized by a linear spatio-temporal
stimulus filter, a recursive feedback filter, and a bias. Using the same
notation as in the fully coupled case, the generator signal for cell i in
the uncoupled model is written as

gi½t�=mT
i ðv½t � 1�Þ+ ðsi*f iÞ½t � 1�+ bi: ð10Þ

The LNBRs were fitted with the same 1ms time bins, sigmoidal
nonlinearity, and Bernoulli random spiking model as the LNBRCs.
Space-time separability of the stimulus filters was assumed, and
the same alternating optimization procedure for fitting was used as in
the LNBRC case. An L1 penalty was used to regularize the spatial

component of the stimulus filters, and the optimal value of the cor-
responding hyperparameter was found using a grid search.

Image reconstructionwith LNBRswasdone in an identicalmanner
as with the LNBRCs. Reconstruction hyperparameters were found
using a grid search.

Noise correlations shuffled repeats analysis
Noise correlations between RGCs were characterized using respon-
ses to repeated presentations of the same stimulus. Shuffled
responses were constructed by randomly reordering recorded spike
trains for each cell across the repeated trials, eliminating noise cor-
relations while preserving single-cell spiking statistics and stimulus-
induced correlations. Images were reconstructed for both the real
(unshuffled) trials as well as the shuffled trials using LNBRCs fitted to
the unshuffled data, using the reconstruction algorithms described
above. The change in reconstructed image quality due to shuffling
was then computed by taking themean reconstruction quality across
repeats of the same stimulus, and then subtracting the values com-
puted for the shuffled repeats from the values computed for the data
repeats.

Cross-correlogram computation
Cross-correlograms between cells were computed using repeat sti-
mulus presentations by constructing histograms for the differences
in spike times of the cells (with 1ms bins), and taking the mean over
all presentations of the same stimulus. Because the stimulus onset
and offset frame transitions in the flashed stimuli and transitions
between distinct images for the jittered eye movements stimuli
induced simultaneous firing of all cells independent of connectivity
and shared input structure, a shift predictor correction to the cross-
correlograms was applied81. This was done by shifting the spike
times for the second cell such that the spike trains for that cell cor-
responded to the response to a different stimulus image, con-
structing the histogram for the differences in spike times for the
cells, and then subtracting said histogram from the original raw
cross-correlogram. This removed the component of the cross-
correlogram that could be predicted by the trial structure alone,
independent of either the spatial content of the stimulus or of noise
correlations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. A limited dataset containing
spike-sorted spike trains and visual stimuli sufficient for generating the
example reconstruction images in the figures has been deposited in a
Figshare repository (https://doi.org/10.6084/m9.figshare.23929941).
The raw voltage traces are not available due to their large size (>5 TB),
the complexity of the data processing pipeline, and ongoing use of the
data for unpublished research. Source data are provided with
this paper.

Code availability
The complete source code for demonstrating reconstruction
is available on GitHub at https://github.com/wueric/wu-nature-
comms-2024. The source code and fitted models are also available
in a Figshare repository (https://doi.org/10.6084/m9.figshare.
23929941).
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