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We propose an efficient methodology for comparing computational models of a perceptually discriminable quantity.  
Rather than comparing model responses to subjective responses on a set of pre-selected stimuli, the stimuli are 
computer-synthesized so as to optimally distinguish the models.  Specifically, given two computational models that take a 
stimulus as an input and predict a perceptually discriminable quantity, we first synthesize a pair of stimuli that 
maximize/minimize the response of one model while holding the other fixed.  We then repeat this procedure, but with the 
roles of the two models reversed.  Subjective testing on pairs of such synthesized stimuli provides a strong indication of 
the relative strengths and weaknesses of the two models. Specifically, the model whose extremal stimulus pairs are 
easier for subjects to discriminate is the better model. Moreover, careful study of the synthesized stimuli may suggest 
potential ways to improve a model or to combine aspects of multiple models. We demonstrate the methodology for two 
example perceptual quantities: contrast and image quality. 
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 Introduction 
Given two computational models for a perceptually 

discriminable quantity, how can we determine which is 
better?  A direct method is to compare model predictions 
with subjective evaluations over a large number of pre-
selected examples from the stimulus space, choosing the 
model that best accounts for the subjective data. 
However, in practice, collecting subjective data is often a 
time-consuming and expensive endeavor. More 
importantly, when the stimulus space is of high 
dimensionality, it is impossible to make enough subjective 
measurements to adequately cover the space, a problem 
commonly known as the “curse of dimensionality”. For 
example, if the stimulus space is the space of all possible 
visual images represented using pixels on a two-
dimensional lattice, then the dimensionality of the 
stimulus space is the same as the number of pixels in the 
image.  A subjective test that uses thousands of sample 
images would typically be considered an extensive 
experiment, but no matter how these sample images are 
selected, they will be extremely sparsely distributed in the 
stimulus space.  Examining only a single sample from 
each orthant of an N-dimensional space would require a 
total of 2N samples, an unimaginably large number for 

stimulus spaces with dimensionality on the order of 
thousands to millions.  

Here we propose an alternative approach for model 
comparison that we call MAximum Differentiation 
(MAD) competition. The method aims to accelerate the 
model comparison process, by using a computer to select 
a small set of stimuli that have the greatest potential to 
discriminate between the models. Previously, methods 
have been developed for efficient stimulus selection in 
estimating model parameters from psychophysical or 
physiological data (e.g., Watson & Pelli, 1983; Kontsevich 
& Tyler, 1999; Paninski, 2005).  Statistical texture models 
have been assessed using “synthesis-by-analysis”, in which 
the model is used to randomly create a texture with 
statistics matching a reference texture, and a human 
subject then judges the similarity of the two textures (e.g., 
Faugeras & Pratt, 1980; Gagalowicz, 1981; Heeger & 
Bergen 1995; Zhu et al., 1998; Portilla & Simoncelli, 
2000).  A similar concept has also been used in the 
context of perceptual image quality assessment for 
qualitatively demonstrating performance (Teo & Heeger, 
1994; Wang & Bovik, 2002; Wang et al., 2004) and 
calibrating parameter settings (Wang et al., 2003). 
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Here we develop a stimulus synthesis methodology 
for accelerating the comparison of perceptual models. 
More specifically, given two computational models that 
take a stimulus as an input and predict a perceptually 
discriminable quantity, we first synthesize a pair of stimuli 
that maximize/minimize the response of one model while 
holding the other fixed.  We then repeat this procedure, 
but with the roles of the two models reversed. Subjective 
testing on pairs of such synthesized stimuli can then 
determine which model is better (i.e. the model whose 
extremal stimulus pairs are easier for subjects to 
discriminate). Although this does not fully validate the 
better model, it can falsify the other one. Furthermore, 
careful study of the synthesized stimuli may suggest 
potential ways to improve a model or to combine aspects 
of multiple models. We demonstrate the methodology 
with two examples: a comparison of models for contrast, 
and a comparison of models for perceptual image quality.  

Method 

Problem formulation and general 
methods 

The general problem may be formulated as follows.  
We assume a stimulus space S, and a perceptually 
discriminable quantity q(s), defined for all elements s in S.  
We also assume a subjective assessment environment, in 
which a human subject can compare the perceptual 
quantity q(s) for any stimulus s with the value for another 

stimulus s’.  The goal is to compare two computational 
models, M1 and M2 (each of them takes any stimulus s in 
S as the input and gives a prediction of q(s) ), to 
determine which provides a better approximation of q 
based on a limited number of subjective tests. 

A conventional methodology for selecting the best of 
two models involves direct comparison of model 
responses with human two-alternative-forced-choice 
(2AFC) responses on a set of stimuli, as illustrated in Fig. 
1.  Specifically, for each pair of stimuli, the subject is 
asked which stimulus is perceived to have a larger value of 
perceptual quantity q.  Average subjective responses are 
then compared with model responses, and the model 
(say) that predicts a higher percentage of responses 
correctly is declared the winner. 

As an alternative, our proposed MAD competition 
methodology is illustrated in Fig. 2.  Starting from each of 
a set of base stimuli, we synthesize stimuli that have 
maximal/minimal values of one model, while holding the 
value of the other model constant. This is a constrained 
optimization problem, and depending on the details of 
the two models, the solution might be obtained in closed 
form, or through numerical optimization (e.g., for models 
that are continuous in the stimulus space, a gradient 
ascent/descent method may be employed, which is 
described later). The resulting stimuli may then be 
compared by human subjects. If the stimuli are easily 
differentiated in terms of quantity q, then they constitute 
strong evidence against the model that was held constant.  
The same test may be performed for stimuli generated 
with the roles of the two models reversed, so as to 
generate counterexamples for the other model. 
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Figure 1. Direct method for model selection. 
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Figure 2. MAD competition method for model selection. 

 

A toy example 
As a simple illustration of the difference between the 

direct and the MAD competition-based 2AFC methods, 
we compare two models for the perceived contrast of a 
test square on a constant-luminance background. An 
example stimulus is shown in Fig. 3(a).  A square-shaped 
foreground with uniform luminance L2 is placed at the 
center of a background of uniform luminance L1. The 
perceptual quantity q[L1, L2] is the perceived contrast 
between the foreground and the background. These 
stimuli live in a two-dimensional parameter space, 
specified by the pair [L1, L2]. This allows us to depict the 
problem and solution graphically. Suppose that the 
maximal and minimal luminance values allowed in the 
experiment are Lmax and Lmin, respectively. Also assume 
that the foreground luminance is always higher than the 
background, i.e., L2 > L1. Then the entire stimulus space 
can be depicted as a triangular region in a two-
dimensional coordinate system defined by L1 and L2, as 
shown in Fig. 3(b). 

We use MAD to compare two simple models for the 
perceived contrast q. The first model states that the 
perceived contrast is determined by the difference 
between the foreground and the background luminance, 
i.e., M1 = 12 . In the second model, the perceived 
contrast is determined by the ratio between the 
luminance difference and the background luminance, i.e., 
M2 = . 

LL −

/) LL− 112
To apply the direct 2AFC method, a large number of 

stimulus pairs in the stimulus space need to be selected. 
These specific stimuli may be chosen deterministically, for 
example, using evenly spaced samples in either linear or 
logarithmic scale in the stimulus space, as exemplified by 
Fig. 4(a). They may also be chosen randomly to 
adequately cover the stimulus space, as shown in Fig. 4(b). 

In either case, it is typically preferred to show them in 
random order to the subjects. For each pair of stimuli, 
subjects are asked to report which stimulus has a higher 
contrast. The results are then compared with the model 
predictions to see which model can best account for the 
subjective data. 

(L

The MAD competition method is explained in Figs. 5 
and 6. Before applying the MAD competition procedures, 
it is helpful to visualize the level sets (or equal-value 
contours) of the models being evaluated in the stimulus 
space. Specifically, in this contrast perception example, 
the level sets of Models M1 and M2 are always straight 
lines, which are plotted in Figs. 5(a) and Fig. 5(b), 
respectively. Clearly, the level sets obtained by the two 
models intersect, which implies the existence of conflicts 
between the models.  

Fig. 6 illustrates the stimulus synthesis procedure in 
the MAD competition method. It starts by randomly 
selecting an initial point in the stimulus space, e.g. 

.  A pair of stimuli with matching M1 but 
extremal values of  M2 are given by 

],[ 21
ii LLA =

)](,[ 12minmin
ii LLLLB −+=  (1) 

and 

]),([ max12max LLLLC ii −−= , (2) 

respectively, and the second pair of stimuli with matching 
M2 but the extremal M1 values are 

D =
LmaxL1
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respectively. The stimulus pairs (B, C) and (D, E) are 
subject to visual inspection using a 2AFC method, i.e., 
the subjects are asked to pick one stimulus from each pair 
that appears to have higher contrast. This procedure is 
repeated with different initial points A. 

Finally, an overall decision about the winner is made 
based on an analysis of all 2AFC tests. For example, if M2 
is a better model than M1, then the perceived contrast 
between the (D, E) pairs should be harder to distinguish 

than the (B, C) pairs. In other words, in the 2AFC test, 
the percentage of choosing either D or E should be closer 
to 50%, whereas the percentage of choosing either B or C 
should be closer to 0% or 100%. In some cases, there 
may not be a clear winner. For example, if the perceived 
contrasts between B and C and between D and E are both 
highly distinguishable, then neither model would provide 
a good prediction of the visual perception of contrast. In 
other words, the stimuli generated to extremize one 
model serve to falsify the other (although their relative 
degrees of failure may still be different and measurable 
with MAD competition). 
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Figure 3. Illustration of the stimulus and the stimulus space of the contrast perception experiment. 
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Figure 4. Stimulus selection in direct testing methods. 
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Figure 5. Contrast perception models described in the stimulus space. 
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Figure 6. Stimulus selection in MAD competition method. 

 

Application to Image Quality 
Assessment Models 

The previous example demonstrates the differences 
between MAD competition and a more conventional 
model selection approach. However, this example does 
not provide a compelling justification for the use of 
MAD, since the stimulus space is only two-dimensional, 
and thus could have been explored effectively by uniform 
or random sampling. For models that operate on high-
dimensional stimuli (e.g., the pixels of digitized 
photographic images), a direct examination of samples 
that cover the space becomes impossible, and the 
advantage of MAD competition is significant. In this 

section, we demonstrate this in the context of perceptual 
image quality. 

Image quality models 
Image quality models aim to predict human 

perception of image quality (Pappas et al. 2005, Wang & 
Bovik, 2006).  They may be classified into full-reference 
(where an original “perfect-quality” image is available as a 
reference), reduced-reference (where only partial 
information about the original image is available) and no-
reference methods (where no information about the 
original image is available).  For our purposes here, we use 
MAD competition to compare two full-reference image 
quality models. The first is the mean squared error 
(MSE), which is the standard metric used throughout the 
image processing literature. The second is the recently 
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proposed structural similarity index (SSIM) (Wang et al., 
2004). Definitions of both models are provided in 
Appendix A. The gradients of MSE and SSIM with 
respect to the image can be computed explicitly (see 
Appendix B).  

In previous studies, both the MSE and the SSIM 
models have been tested using “standard” model 
evaluation techniques. The testing results have been 
reported for the LIVE image database 
(http://live.ece.utexas.edu research/quality), a publicly 
available subject-rated image quality database with a 
relatively large number of images corrupted with diverse 
types of distortions. The database contains 29 high-
resolution original natural images and 779 distorted 
versions of these images. The distortion types include 
JPEG compression, JPEG2000 compression, white 
Gaussian noise contamination, Gaussian blur, and 
transmission errors in JPEG2000 compressed bitstreams 
using a fast-fading Rayleigh channel model. Subjects were 
asked to provide their perception of quality on a 
continuous linear scale and each image was rated by 20-25 
subjects. The raw scores for each subject were converted 
into Z-scores. The mean opinion score and the standard 
deviation between subjective scores were computed for 
each image. The video quality experts group 
(www.vqeg.org) has suggested several evaluation criteria to 
assess the performance of objective image quality models. 
These criteria include linear correlation coefficient after 
non-linear regression, linear correlation coefficient after 
variance-weighted non-linear regression, rank-order 
correlation coefficient, and outlier ratio. Details about the 
evaluation procedure can be found at (VQEG, 2000). It 
has been reported in (Wang et al. 2004) that the SSIM 
index significantly outperforms the MSE for the LIVE 
database, based on these criteria. However, as mentioned 
earlier, it may not be appropriate to draw strong 
conclusions from these tests, because the space of images 
is so vast that even a database containing thousands or 
millions of images will not be sufficient to adequately 
cover it. Specifically, the LIVE database is limited in both 
the number of full-quality reference images, and in the 
number and level of distortion types. 

MAD competition 
Unlike the contrast perception example of the 

previous section, the SSIM model is too complex for us to 
solve for the MAD stimulus pairs analytically. But it is 
differentiable, and thus allows an alternative approach 
based on iterative numerical optimization, as illustrated 
in Fig. 7. First, an initial distorted image is generated by 
adding a random vector in the image space to the 
reference image. Now consider a level set of M1 (i.e., set of 
all images having the same value of M1) as well as a level 
set of M2, each containing the initial image. Starting from 
the initial image, we iteratively move along the M1 level 

set in the direction in which M2 is maximally 
increasing/decreasing. The iteration continues until a 
maximum/minimum M2 image is reached. Fig. 7 also 
demonstrates the reverse procedure for finding the 
maximum/minimum M1 images along the M2 level set.   
The maximally increasing/decreasing directions may be 
computed from the gradients of the two image quality 
metrics, as described in Appendix C. This gradient 
descent/ascent procedure does not guarantee that we will 
reach the global minimum/maximum on the level set 
(i.e., we may get "stuck" in a local minimum). As such, a 
negative result (i.e., the two images are indiscriminable) 
may not be meaningful. Nevertheless, a positive result 
may be interpreted without caveat. 

Figure 8 shows an example of this image synthesis 
process, where the dynamic range of the reference image 
is [0, 255] and the initial image A was created by adding 
independent white Gaussian noise with MSE = 1024. 
Visual inspection of the images indicates that both 
models fail to capture some aspects of perceptual image 
quality. In particular, images B and C have the same MSE 
with respect to the reference original image (top-left). But 
image B has very high quality, while image C poorly 
represents many important structures in the original 
image. Thus, MSE is clearly failing to provide a consistent 
metric for image quality. On the other hand, image D 
and image E have the same SSIM values. Although both 
images have very noticeable artifacts, the distortions in 
image E are concentrated in local regions but extremely 
noticeable, leading to subjectively lower overall quality 
than image D. Computer animations of MAD 
competition between MSE and SSIM can be found at 
http://www.ece.uwaterloo.ca/~z70wang/research/mad/. 
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Figure 7. MAD stimulus synthesis in the image space. 
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Figure 8. Synthesized images for MAD competition between MSE and SSIM. 

 

 

2AFC experiments 
Although the images of Fig. 8 indicate that both of 

the competing models fail, they fail in different ways, and 
to different extents.  It is also clear that the degree of 
failure depends on the initial distortion level. When the 
initial noise level is very small, all four synthesized images 
are visually indistinguishable from the original image. As 
the initial noise level increases, failures should become 
increasingly noticeable. These observations motivate us to 
measure how rapidly the perceived distortion increases as 
a function of the initial distortion level.  

For each reference image, we create the initial 
distorted images by adding white Gaussian noise, where 
the noise variance  determines the initial distortion 
level. Specifically, we let  for l = 0, 1, 2, ..., 9, 
respectively. For each noise level, we generate four test 
images (minimum/maximum MSE with same SSIM, and 
minimum/maximum SSIM with same MSE) using the 
iterative constrained gradient ascent/descent procedure 
described in Appendix C. Sample synthesized images are 
shown in Fig. 9. 

2
lσ

l
l 22 =σ

We used these synthetic images as stimuli in a 2AFC 
experiment. Subjects were shown pairs of images along 
with the original image, and were asked to pick the one 
from each pair that had higher perceptual quality. 
Subjects were allowed to free view the images without 
fixation control, and no time limit was imposed on the 
decision. There are all together 10 reference images, each 
distorted at 10 initial distortion levels, resulting in 200 

pairs of synthesized images. These image pairs are shown 
to the subjects in random order and each pair was shown 
twice for every subject. Five subjects were involved in the 
experiments. One of them was an author and the other 
subjects were not aware of the purpose of this study. 

The experimental results for each of the five subjects 
are shown in Fig. 10.  Responses are seen to be in general 
agreement at low distortion levels and for the fixed MSE 
images at high distortion levels.  However, the subjects 
responded quite differently to the fixed SSIM images at 
high distortion levels. This is reflected in the average 
discrimination levels and the error bars of the combined 
subject data, shown in Fig. 11, which is fitted with a 
Weibull function. At low levels of distortion, all subjects 
show chance performance for both the SSIM and MSE 
images. But the fixed MSE images are seen to be much 
more discriminable than the fixed SSIM images at mid to 
high levels of distortion. Based on these observations, one 
may conclude that the SSIM is a better model than the 
MSE in this MAD competition test, especially when the 
image distortion level is high. 

Another interesting observation in Fig. 11 is that the 
fixed-SSIM images exhibit substantially more response 
variability (large error bars) across subjects at high 
distortion levels. To have a better understanding of this 
phenomenon, Fig. 12 shows four pairs of sample images 
used in the experiment, two from low initial distortion 
levels (MSE = 4) and the other two from high initial 
distortion levels (MSE = 128). At low initial distortion 
levels, the best/worst SSIM and the best/worst MSE 
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images are visually indistinguishable, resulting in 50% 
discriminability in 2AFC experiment, as indicated by Fig. 
11. At high initial distortion level, the best SSIM image 
has clearly better quality than the worst SSIM image, 

consistent with reports of all subjects (Fig. 11). On the 
other hand, subjects have very different opinions about 
the relative quality of the best and worst MSE images, as 
reflected in the large error bars. 
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Figure 9. Sythesized images for 2AFC MAD competition experiment. 

 

Discussion 
We have described a systematic approach, the MAD 

competition method, for the comparison of 
computational models for perceptually discriminable 
quantities.  Much of the scientific endeavor is based on 
experiments that are carefully designed to distinguish 
between or falsify hypotheses or models. MAD 
competition provides a means of accelerating this process 
for a particular type of models, through the use of 
computer-optimized stimuli. This is particularly useful in 
cases where the stimulus space is large, and/or the models 
are complex, so that designing such stimuli by hand 
becomes nearly impossible. Many methodologies have 
been developed for automating the selection of stimuli 
from a low-dimensional parametric family based on the 
history of responses in an experiment (e.g., Watson & 
Pelli, 1983; Kontsevich & Tyler, 1999). More recently, 
methods have been developed for online modification of 
stimulus ensembles based on previous responses 
(Machens et. al., 2005; Paninski 2005). Our method 
differs in that it is not response-dependent, and it is not 
limited to a low-dimensional space, but it relies on 
explicit specification of two computational models that 
are to be compared.  MAD also provides an intuitive and 
effective method to discover the relative weaknesses of 
competing models, and can potentially suggest a means of 
combining the advantages of multiple models.  

It is important to mention some of the limitations of 
the MAD competition method. First, as with all 
experimental tests of scientific theories, MAD 
competition cannot prove a model to be correct: it only 
offers an efficient means of selecting stimuli that are likely 
to falsify it. As such, it should be viewed as 
complementary to, rather than a replacement for, the 
conventional direct method for model evaluation, which 
typically aims to explore a much larger portion of the 
stimulus space. Second, depending on the specific 
discriminable quantity and the competing models, the 
computational complexity of generating the stimuli can 
be quite significant, possibly prohibitive. The constrained 
gradient ascent/descent algorithms described in 
Appendix C assume that both competing models are 
differentiable and that their gradients may be efficiently 
computed (these assumptions hold for the models used in 
our current experiments). Third, if the search space of the 
best MAD stimulus is not concave/convex, then the 
constraint gradient ascent/descent procedure may 
converge to local maxima/minima. More advanced search 
strategies may be used to partially overcome this problem, 
but they typically are more computationally costly, and 
still do not offer guarantees of global optimality. 
Nevertheless, the locally optimal MAD stimuli may be 
sufficient to distinguish the two competing models. 
Specifically, if the generated stimuli are discriminable, 
then they will still serve to falsify the model that sees 
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them as equivalent. Fourth, MAD-generated stimuli may 
be highly unnatural, and one might conclude from this 
that the application scope of one or both models should 
be restricted. Finally, there might be cases where the 
extremal stimuli of each model succeed in falsifying the 
other model. In such cases, we may not be able to reach a 
conclusion that one model is better than the other. 
However, such double-failure results in MAD 
competition are still valuable because they can reveal the 

weaknesses of both models and may suggest potential 
improvements. 

Although we have demonstrated the MAD 
competition method for two specific perceptual 
quantities—contrast and image quality—the general 
methodology should be applicable to a much wider 
variety of examples, including higher-level cognitive 
quantities (e.g., object similarity, aeshetics, emotional 
responses), and to other types of measurement (e.g., 
single-cell electrode recordings or fMRI). 

 

1 2 4 8 16 32 64 128 256 512

25

50

75

100 Fixed MSE
Fixed SSIM

distortion level (initial MSE)

%
 c

or
re

ct

distortion level (initial MSE)

1 2 4 8 16 32 64 128 256 512

25

50

75

100 Fixed MSE
Fixed SSIM

%
 c

or
re

ct

distortion level (initial MSE)

1 2 4 8 16 32 64 128 256 512

25

50

75

100 Fixed MSE
Fixed SSIM

%
 c

or
re

ct

distortion level (initial MSE)

1 2 4 8 16 32 64 128 256 512

25

50

75

100 Fixed MSE
Fixed SSIM

%
 c

or
re

ct

distortion level (initial MSE)

1 2 4 8 16 32 64 128 256 512

25

50

75

100 Fixed MSE
Fixed SSIM

%
 c

or
re

ct

 

Figure 10. 2AFC results for each of the five subjects (ZW, CR, AS, TS, DH) involved in the experiments. 
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Figure 11. 2AFC results for all subjects fitted with Weibull functions. 
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Figure 12. Sample images at low (top) and high (bottom) initial distortion levels. At initial distortion level (MSE = 4), the best/worst SSIM 
and the best/worst MSE images are visually indistinguishable, resulting in 50% (chance) discriminability, as shown in Fig. 11. At high 
initial distortion level (MSE = 128), the best SSIM image has clearly better quality than the worst SSIM image (with the same MSE), 
thus high percentage value was obtained in 2AFC experiment (Fig. 11). On the other hand, subjects have very different opinions about 
the relative quality of the best and worst MSE images (with the same SSIM), as reflected by the large error bars in Fig. 11. 

 

 
 

Appendix A: Definitions of Image 
Quality Models 

Two image quality models, mean square error and the 
structural similarity index, are used in our experiment. 

Mean Squared Error (MSE) 
For two given images X and Y (here an image is 

represented as a column vector, where each entry is the 
gray scale value of one pixel), the MSE between them can 
be written as 

)()(1),( YXYXYX −−= T

IN
E   , (A1) 

where NI is the number of pixels in the image. 

Structural Similarity Index (SSIM) 
The SSIM index (Wang et al., 2004) is usually 

computed for local image patches, and these values are 
then combined to produce a quality measure for the 
whole image. Let x and y be column vector 
representations of two image patches (e.g., 8×8 windows) 
extracted from the same spatial location from images X 
and Y, respectively. Let xμ ,  and 2

xσ xyσ  represent the 
sample mean x, the sample variance 
of x, and the sample covariance of x and y, respectively: 

of the components of 
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where NP is the number of pixels in the local image patch 
and 1 is a vector with all entries equaling 1. The SSIM 
index between x and y is defined as 
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where C1 and C2 are small constants given by C1 
and C2  = (K2R)2, respectively. Here, R is the dynamic 

 = (K1R)2 

range of the pixel values (e.g., R = 255 for 8 bits/pixel 
gray scale images), and K1 << 1 and K2 << 1 are two scalar 
constants (K1 = 0.01 and K2 = 0.03 in the current 
implementation of SSIM). It can be easily shown that the 
SSIM index achieves its maximum value of 1 if and only 
if the two image patches x and y being compared are 
exactly the same. 

The SSIM index is computed using a sliding window 
approach. The window moves pixel-by-pixel across the 
whole image space. At each step, the SSIM index is 
calculated within the local window. This will result in an 
SSIM index map (or a quality map) over the image space. 
To avoid “blocking artifacts” in the SSIM index map, a 
smooth windowing approach can be used for local 
statistics (Wang et al. 2004). However, for simplicity, we 
use an 8×8 square window in this paper. Finally, the 
SSIM index map is combined using a weighted average to 
yield an overall SSIM index of the whole image: 
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where xi and yi are the i-th sampling sliding windows in 
images X and Y, respectively, is the weight 

ling me d

)( iiW y,x  

 is gene
given to the i-th sampling window, and NS is the total 
number of sampling windows. NS rally smaller than 
the number of image pixels NI to avoid the sampling 
window exceed the boundaries of the image. The original 
implementations of the SSIM measure corresponds to the 
case of uniform pooling, where 1),( ≡yxW . In (Wang 
& Shang, 2006), it has been shown that a local 
information content-weighted poo tho  can lead to 
consistent improvement for the image quality prediction 
of the LIVE database, where the weighting function is 
defined as 
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Appendix B: Gradient 
Calculation of Image Quality 
Models 

In order to apply the constrained gr
ascent/descen

adient 
t algorithm (details described in Appendix 

C), 

For MSE, it can be easily shown that 

we need to calculate the gradients of the image quality 
models with respect to the image. Here the gradients are 
represented as column vectors that have the same 
dimension as the images. 

Gradient of MSE 
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Gradient of SSIM 
For SSIM, taking the derivative of Eq. (A4) with 

respect to Y, we have 
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where 

 (A8) 
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Thus, the gradient calculation of an entire image is 
converted into weighted summations of the lo
measurements. For a local SSIM measure as of Eq. (A3), 
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Then it can be shown that 
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where 1 denotes a column vector with all entries e
1. For the case that , we have 
v

Therefore, 

1P BBN

qualing 
1),( ≡yxW

 in Eqs. (A8) and (A9). 0),( ≡∇ yxY W
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In the case of local information content-weighted average 
as of Eq. (A5), we have 

2
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Thus,  can be calculated by combining Eqs. 
(A3),  (A10) and 12). 

yxY  . (A12) 

),( YXYS∇
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 (A7), (A8), (A9),  (A

Appendix C: Constrained 
Gradient Ascent/Descent for 
Image Synthesis 

Here we describe the iterative constrained gr
ascent/descent algorithm we implemented to syn
images for MAD competition. 

adient 
thesize 

Figure 13 illustrates a single step during the 
iterations, where the goal is to optimize (find maxima and 
minima) M2 while constrained on the M1 level set. We 
represent images as column vectors, in which each entry 
represents the gray-scale value of one pixel. Denote the 
reference image X and the synthesized image at the n-th 

iteration Yn (with Y0 representing the initial image). We 
compute the gradient of the two image quality models 
(see Appendix B), evaluated at Yn: 

n
Mn YYY YXG =∇= |),(1,1

v
 (A13) 

and 

n
Mn YYY YXG =∇= |),(2,2

v
. (A14) 

We 
projecting 

define a modified gradient direction, Gn, by 
out the component of G2,n, that lies in the 

direction of G1,n: 

n
n

T
n

n
T

n
nn ,1

,1,1

,1,2
,2 G

GG
GG

GG −= . (A15) 

A new image is computed by moving in the direction of 
this vector: 

nnn GYY λ+=′ . (A16) 

1Finally, the gradient of M  is evaluated at Yn′ , and an 
appropriate amount of this vector is added in order to 
guarantee that the new image has the correct value of M1: 

nnn ,11 GYY ′+′=+ ν  (A17) 

such that 

),( 01 YX),( 11 YX MM n =+  (A18) 

For the case of MSE, the selection of ν  is 
ard, but in general it might require a one-

dimensional (line) search. 
straightforw

Yn

Yn+1

X

M1 level set

M  (X,Y)2Y
Yn'M1 level set

 
Figure 13. Illustration of the n-th iteration of the gradient 
ascent/descent search procedure for optimizing M2 while 
constraining on the M1 level set. 

 
During the iterations, the parameter λ  is used to 

control the speed of convergence and ν  must be adjusted 
dynamically so that the resulting vector does not deviate 

om the level set of M1.  The iteration continues until 
the image satisfies certain convergence condition, e.g., 
fr
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mea
o

n squared change in the synthesized image in two 
consecutive iterations is less than s me threshold. If 
Metric M2 is differentiable, then this procedure will 
converge to a local maximum/minimum of M2. In 
general, however, we have no guaranteed means of 
finding the global maximum/minimum (note that the 
dimension of the search space is equal to the number of 
pixels in the image), unless the image quality model 
satisfies certain properties (e.g., convexity or concavity). In 
practice, there may be some additional constraints that 
need to be imposed during the iterations. For example, 
for 8bits/pixel gray-scale images, we may need to limit the 
pixel values to lie between 0 and 255. 
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