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1 Introduction 
Digital image signals are typically represented as two-dimensional (2D) arrays of 

discrete signal samples. If we rearrange the signal samples into a one-dimensional 

(1D) vector, then every image becomes a single point in a high-dimensional image 

space, whose dimension equals the number of samples in the image signal. It has 

been pointed out that the cluster of natural image signals occupies an extremely 

tiny portion of such an image space [1, 2]. During its long evolution and 

development processes, the human visual system (HVS) has been extensively 

exposed to the natural visual environment, and a variety of evidence has shown 

that the HVS is highly adapted to extract useful information from natural scenes 

[3]. An image-quality metric, which aims to predict the quality evaluation 

behaviour of the HVS, would also need to be “adapted” to the properties of 

natural image signals. 

One distinct feature that makes natural image signals different from a 

“typical” image randomly picked from the image space is that they are highly 

structured – the signal samples exhibit strong dependencies amongst themselves. 

These dependencies carry important information about the structures of objects in 

the visual scene. An image-quality metric that ignores such dependencies may fail 

to provide effective predictions of image quality. We will use the Minkowski error 

metric as an example. In the spatial domain, the Minkowski metric between a 

reference image x (assumed to have perfect quality) and a distorted image y is 

defined as 
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where xi and yi are the i-th samples in images x and y, respectively, N is the 

number of image samples, and p refers to the degree of power and varies in the 

range of ),1[ ∞∈p . In Fig. 1, we show two distorted images generated from the 

same original image. The first distorted image was obtained by adding a constant 
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number to all signal samples, and the second was generated using the same 

method except that the signs of the constant are randomly chosen to be positive or 

negative. It can be easily shown that the Minkowski metrics between the original 

image and both of the distorted images are exactly the same, no matter what 

power p is used. However, the visual quality of the two distorted images is 

drastically different. Another example is shown in Fig. 2, where image B was 

generated by adding independent white Gaussian noise to the original texture 

image A. In image C, the signal sample values remained the same as in image A, 

but the spatial ordering of the samples has been changed (through a sorting 

procedure). Image D was obtained from image B, by following the same 

reordering procedure used to create image C. Again, the Minkowski metrics 

between images A and B and images C and D are exactly the same, no matter 

what power p is chosen. However, image D appears to be significantly noisier than 

image B. 

There are different ways to explain the apparent failure of the Minkowski 

metric in the above examples. One way is to use a set of psychophysical features of 

human vision (see the discussions about ‘’Contrast Sensitivity Function” and 

“Contrast Masking” in Chapter 8.2). Here, we provide a more direct explanation 

based on the mathematical properties of the Minkowski metric. Notice that an 

implicit assumption of the Minkowski metric is that all signal samples are 

independent. As a result, the ordering of the signal samples has no effect on the 

overall distortion measurement. This is in sharp contrast to the fact that natural 

image signals are highly structured; indeed, the ordering and pattern of the signal 

samples carry most of the visual information in the image. Consequently, a 

“correct” image-quality measure would need to be able to capture the structural 

information or sense the structural changes in the image signals. 
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FIGURE  1 Failure of the Minkowski metric for image quality prediction. A: original 

image; B distorted image by adding a positive constant; C distorted image by adding the 

same constant, but with random sign. Images B and C have the same Minkowski metric 

with respect to image A, but drastically different visual quality. 

 

Figure 3 shows one potential solution to overcome this. The idea is to apply 

an image transform prior to the Minkowski metric, so that the signal samples in 

the transform domain become independent (or at least decorrelated). An 

additional requirement of the transform T is that it must be lossless or “visually” 

lossless, in the sense that all the important visual information is preserved after 

the transform (presumably, there should exist an inverse transform that can 

reconstruct the image signals in the spatial domain). Since such a transform can 

decouple the dependencies between image signal samples without losing 
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important visual information, one may say that the “structure” of the image signal 

is well captured by the transform domain representation. 
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FIGURE  2 Failure of the Minkowski metric for image quality prediction. A: original 

texture image; B distorted image by adding independent white Gaussian noise; C 

reordering of the pixels in image A (by sorting pixel intensity values); D reordering of the 

pixels in image B, by following the same reordering used to create image C. The 

Minkowski metrics between images A and B and images C and D are the same, but 

image D appears much noisier than image B. 

 

The framework shown in Fig. 3 presents interesting an analogy to the 

framework of perceptual image quality metrics presented in Chapter 8.2, in which, 

if all the processing stages before “error pooling” are combined into a single image 

transform, then the two frameworks can be made identical. Interestingly, the 

framework presented there originates from a substantially different motivation – 

simulating the computational aspects of the early stages of the HVS (see Chapter 



Handbook of Image and Video Processing 6 

4.1).  Such an analogy is sensible from the viewpoint of computational 

neuroscience. In that context, it has been conjectured decades ago that the role of 

early biological sensory systems is to remove redundancies in the sensory input, 

resulting in a set of neural responses that are statistically independent, known as 

the “efficient coding” principle [3, 4]. 
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FIGURE  3 An image transform prior to an Minkowski metric may potentially reduce 

the dependencies between signal samples, thus improve an image quality metric. 

 

The question that follows is then: can the image transforms (prior to the 

Minkowski error pooling stage) based on the current understanding of the HVS 

effectively decouple the dependencies between the input signal samples? Note 

that most recent models of early vision are based on multi-scale, bandpass and 

oriented linear transforms. These transforms, loosely referred to as “wavelet 

transforms,” can reduce the correlations between signal samples as compared to 

spatial domain representations. However, empirical studies have shown that 

strong dependencies still exist between the intra- and interchannel wavelet 

transform coefficients of natural images (see Chapter 4.7). In fact, state-of-the-art 

wavelet image compression techniques achieve their success by exploiting these 

strong dependencies (see Chapter 5.4). In order to further reduce such signal 

dependencies, nonlinear operations must be applied. In fact, it has been shown 

that adding certain nonlinear gain control processes after the front end of linear 

wavelet transforms can significantly reduce signal dependencies [5-8]. The 

parameters of these gain control models may be tuned using psychophysical 

experimental data to account for visual masking effects [5, 6] (see Chapter 8.2 for a 
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description of visual masking). They may also be optimized to maximize the 

statistical dependencies between the wavelet coefficients obtained from a set of 

training natural images [7, 8]. Recent models have also been developed to jointly 

optimize statistical and perceptual dependencies [9, 10]. It remains to be seen the 

degree to which these models can improve the performance of current image 

quality assessment systems. 

This chapter focuses on a different approach to image quality assessment: 

structural similarity-based methods [11]. Instead of attempting to develop an ideal 

transform that can fully decouple signal dependencies as suggested in Fig. 3, these 

methods replace the Minkowski error metric with different measurements that are 

adapted to the structures of the reference image signal. In the next section, we 

formulate structural similarity index algorithms and describe the intuition behind 

their design. We demonstrate how these algorithms are applied to image quality 

assessment in Section 3. In Section 4, we discuss an efficient approach to test the 

performance of image quality measures. This approach effectively reveals the 

perceptual implications of the structural similarity approach. Finally, concluding 

remarks are given in Section 5. 

 

2 The Structural Similarity Index 
The most fundamental principle underlying structural approaches to image 

quality assessment is that the HVS is highly adapted to extract structural 

information from the visual scene, and therefore a measurement of structural 

similarity (or distortion) should provide a good approximation to perceptual 

image quality. Depending on how structural information and structural distortion are 

defined, there may be different ways to develop image quality assessment 

algorithms. The structural similarity (SSIM) index is a specific implementation 

from the perspective of image formation. 
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To understand the intuition of the SSIM index method, let us again examine 

the image space described in the last section. In Fig. 4, a reference image (original 

“Einstein” image) is represented as a vector in the image space. Any image 

distortion can be interpreted as adding a distortion vector to the central reference 

image vector. In particular, the distortion vectors with the same length define an 

equal-mean squared error (MSE) hypersphere in the image space. However, as 

shown in Fig. 4, images that reside on the same hypersphere may have 

dramatically different visual quality. This implies that the length of a distortion 

vector does not suffice as a useful image quality measure, and that the directions 

of these vectors have more important perceptual meanings. Some insights can be 

found from the perspective of image formation. Recall that the luminance of the 

surface of an object being observed is the product of the illumination and the 

reflectance, but the structures of the objects in the scene are independent of the 

illumination. Consequently, we wish to separate the influence of illumination from 

the remaining information that represents object structures. Intuitively, the major 

impact of illumination change in the image is the variation of the average local 

luminance and contrast, and such variation should not have a strong effect on 

perceived image quality. This is confirmed by Fig. 4, where the images with only 

luminance or contrast changes have much better quality than the other images 

with severe “structural” distortions. 

Figure 5 illustrates how luminance and contrast changes can be separated 

from structural distortions in the image space. Luminance changes can be 

characterized by moving along the direction defined by Nxxx === �21 , which is 

perpendicular to the hyperplane of 0
1

=� =

N

i ix . Contrast changes are defined by 

the direction x−x . In the image space, the two vectors that determine luminance 

and contrast changes span a 2D subspace (a plane), which is adapted to the 

reference image vector x. For example, in Fig. 4, the plane determined by the 

reference image A contains not only the reference image itself, but also images B 
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and C. The remaining image distortion corresponds to rotating such a plane by a 

certain angle, which we interpret as the structural change in Fig. 5. 
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FIGURE  4 An image can be represented as a vector in the image space, whose 

dimension equals the number of pixels in the image. Images with the same mean squared 

error (MSE) with respect to the original image constitute a hypersphere in the image 

space, but images reside on the same hypersphere have dramatically different visual 

quality. A: original image; B mean shifted image, MSE = 144; C contrast stretched image, 

MSE = 144; D blurred image, MSE = 144; E JPEG compressed image, MSE = 142. 
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FIGURE  5 Separation of luminance, contrast and structural changes from a reference 

image x in the image space. This is an illustration in three-dimensional space. In practice, 

the number of dimensions is equal to the number of image pixels. 

 

A system diagram of the SSIM index algorithm is shown in Fig. 6. First, the 

luminance of each signal is estimated as the mean intensity: 
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The luminance comparison function l(x, y) is then a function of xµ  and yµ : 

),(),( yxll µµ=yx .      (2) 

Second, we remove the mean intensity from the signal. The resulting signal xµ−x  

corresponds to the projection of vector x onto the hyperplane of 0
1

=� =

N

i ix , as 

illustrated in Fig. 5. We use the standard deviation as an estimate of the signal 

contrast. An unbiased estimate in discrete form is given by 
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The contrast comparison c(x, y) is then the comparison of xσ  and yσ : 

),(),( yxcc µµ=yx .      (4) 

Third, the signal is normalized (divided) by its own standard deviation, so that the 

two signals being compared have unit standard deviation. The structure 

comparison s(x, y) is conducted on these normalized signals: 
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Finally, the three components are combined to yield an overall similarity measure: 

)),(),,(),,((),( yxyxyxyx sclfS =  .    (6) 

An important point is that the three components are relatively independent, which 

is physically sensible because the change of luminance and/or contrast has little 

impact on the structures of the objects in the scene. 
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FIGURE  6 Diagram of image similarity measurement system. (Adapted from [11].) 

 

To complete the definition of the similarity measure in Eq. (6), we need to 

define the three functions l(x, y), c(x, y) and s(x, y), as well as the combination 

function f(·). In addition, we also would like the similarity measure to satisfy the 

following conditions: 
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1. Symmetry: S(x, y) = S(y, x). When quantifying the similarity between two 

signals, exchanging the order of the input signals should not affect the 

resulting measurement. 

2. Boundedness: S(x, y) � 1. An upper bound can serve as an indication of how 

close the two signals are to being perfectly identical. Notice that signal-to-

noise ratio type of measurements is typically unbounded. 

3. Unique maximum: S(x, y) = 1 if and only if x = y. The perfect score is achieved 

only when the signals being compared are identical. In other words, the 

similarity measure should quantify any variations that may exist between the 

input signals. 

 

The luminance comparison is defined as 

1
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where the constant C1 is included to avoid instability when 22
yx µµ +  is very close to 

zero. One good choice is 
2

11 )( LKC = ,       (8) 

where L is the dynamic range of the pixel values (255 for 8-bit grayscale images), 

and K1 « 1 is a small constant. Similar considerations also apply to contrast 

comparison and structure comparison as described later. Equation (7) is easily 

seen to obey the three properties listed above. 

Equation (7) is also connected with Weber's law, which has been widely used 

to model light adaptation (also called luminance masking) in the HVS (see chapter 

8.2). According to Weber's law, the magnitude of a just-noticeable luminance 

change �I is approximately proportional to the background luminance I for a wide 

range of luminance values. In other words, the HVS is sensitive to the relative 

rather than the absolute luminance change. Letting R represent the ratio of the 
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luminance of the distorted signal relative to the reference signal, then we can write 

xy Rµµ = . Substituting this into Eq. (7) gives 

2
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=yx  .     (9) 

If we assume C1 is small enough (relative to 2
xµ ) to be ignored, then l(x, y) is a 

function only of R instead of xyI µµ −=∆ . In this sense, it is qualitatively 

consistent with Weber's law. In addition, it provides a quantitative measurement 

for the cases when the luminance change is higher than the visibility threshold, 

which is out of the application scope of Weber's law. 

The contrast comparison function takes a similar form: 
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where C2 is a non-negative constant 
2

22 )( LKC =        (11) 

and K2 satisfies K2 « 1. This definition again satisfies the three properties listed 

above. An important feature of this function is that with the same amount of 

xy σσσ −=∆ , this measure is less sensitive to the case of high base contrast xσ  

than low base contrast. This is related to the contrast masking feature of the HVS 

(see Chapter 8.2). 

Structure comparison is conducted after luminance subtraction and contrast 

normalization. Geometrically, we can associate the structures of the two images 

with the direction of the two unit vectors xx σµ /)( −x  and yy σµ /)( −x , each lying 

in the hyperplane 0
1

=� =

N

i ix  as illustrated in Fig. 5. The angle between the two 

vectors provides a simple and effective measure to quantify structural similarity. 

In particular, the correlation coefficient between x and y corresponds to the cosine 

of the angle. Thus, we define the structure comparison function as: 



Handbook of Image and Video Processing 14 

3

32
),(

C

C
s

yx

xy

+
+

=
σσ

σ
yx  .      (12) 

As in the luminance and contrast measures, we introduce a small constant in both 

denominator and numerator. xyσ  can be estimated as: 
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Notice that s(x, y) can take on negative values. As will be shown in later examples, 

the negative structural similarity values correspond to the cases that the local 

image structures are inverted. 

Finally, we combine the three comparisons of Eqs. (7), (10) and (12). The 

result is a class of image similarity measures which we collectively Structural 

SIMilarity (SSIM) Indices between signals x and y: 
γβα )],([)],([)],([),SSIM( yxyxyxyx scl ⋅⋅=    (14) 

where 0>α , 0>β  and 0>γ  are parameters used to adjust the relative 

importance of the three components. It is easy to verify that this definition satisfies 

the three conditions given above. In what follows, we set 1=== γβα  and 

2/23 CC = . This results in a specific SSIM index [11]: 
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The difference between the SSIM indices and previous error metrics 

proposed for image quality assessment may be better understood geometrically in 

a vector space of signal components as in Fig. 7. Here, the signal components can 

be either image pixel intensities or other extracted features such as transformed 

linear coefficients. Figure 7 shows equal-distortion contours drawn around three 

different example reference vectors, each of which could, for example, represent 

the local content of one reference image. For the purpose of illustration, we show 

only a 2D space, but in general the dimensionality should match that of the signal 

components being compared. Each contour represents a set of test signals with 
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equal distortion relative to the respective reference signal. Figure 7A shows the 

result for a simple Minkowski metric. Each contour has the same size and shape (a 

circle here, as we are assuming p = 2). That is, perceptual distance corresponds to 

Euclidean distance. Figure 7B shows a Minkowski metric in which different signal 

components are weighted differently. This could be, for example, weighting 

according to the contrast sensitivity function, as is common in many quality 

assessment models. Here the contours are ellipses, but still are all the same size. 

More advanced quality measurement models may incorporate contrast masking 

behaviors, which has the effect of rescaling the equal-distortion contours 

according to the signal magnitude, as shown in Fig. 7C. This may be viewed as a 

simple type of adaptive distortion measure: it depends not just on the difference 

between the signals, but also on the signals themselves. Figure 7D shows a 

combination of contrast masking (magnitude weighting) followed by component 

weighting. 

The SSIM index gives a different picture. In the hyperplane of 0
1

=� =

N

i ix , the 

SSIM index compare the vectors )( xµ−x  and )( yµ−x  with two independent 

quantities: the vector lengths, and their angles. Thus, the contours will be aligned 

with the axes of a polar coordinate system. Figures 7E and F show two examples 

of this, computed with different exponents (for β  and γ ). Again, this may be 

viewed as an adaptive distortion measure, but unlike the other models being 

compared, both the size and the shape of the contours are adapted to the 

underlying signal. 
 

 

 

 

 

 

 



Handbook of Image and Video Processing 16 

 

i

j

O
i

j

O
i

j

O

i

j

O
i

j

O

A B C

D E

i

j

O

F  
 

FIGURE  7 Equal-distortion contours in the image space for different quality 

measurement systems. A: Minkowski error measurement systems (assuming p = 2 in the 

illustration); B component-weighted Minkowski error measurement systems; C 

magnitude-weighted Minkowski error measurement systems; D magnitude- and 

component-weighted Minkowski error measurement systems; E structural similarity 

index (SSIM) measurement system (with more emphasis on structural comparison); F 

SSIM measurement system (with more emphasis on contrast comparison). Each image is 

represented as a vector, whose entries are image components. This is an illustration in 

two-dimensional space. In practice, the number of dimensions is equal to the number of 

image components used for comparison (e.g, the number of pixels or transform 

coefficients). (From [11].) 
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3 Image Quality Assessment Using a Structural Similarity 

Index 
The SSIM indices measure the structural similarity between two image signals. If 

one of the image signals is regarded as of perfect quality, then the SSIM index can 

be viewed as an indication of the quality of the other image signal being 

compared. When applying the SSIM index approach to large-size images, it is 

useful to compute it locally rather than globally. The reason is manifold. First, 

statistical features of images are usually spatially nonstationary.  Second, image 

distortions, which may or may not depend on the local image statistics, may also 

vary across space. Third, due to the non-uniform retinal sampling feature of the 

HVS (see Chapters 4.1), at typical viewing distances, only a local area in the image 

can be perceived with high resolution by the human observer at one time instance. 

Finally, localized quality measurement can provide a spatially varying quality 

map of the image, which delivers more information about the quality degradation 

of the image. Such a quality map can be used in different ways. It can be employed 

to indicate the quality variations across the image.  It can also be used to control 

image quality for space-variant image processing systems, e.g., region-of-interest 

image coding and foveated image processing [12]. 

In early instantiations of the SSIM index approach [13, 14], the local statistics 

xµ , xσ  and xyσ  [Eqs. (1), (3) and (13)], are computed within a local 8×8-square 

window. The window moves pixel-by-pixel from the top-left corner to the bottom-

right corner of the image. At each step, the local statistics and SSIM index are 

calculated within the local window. One problem with this method is that the 

resulting SSIM index map often exhibits undesirable “blocking” artifacts as 

exemplified by Fig. 8C. Such kind of “artifacts” are not desirable because it is 

created from the choice of the quality measurement method (local square 

window), but not from image distortions. In [11], a circular-symmetric Gaussian 
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weighting function },2,1|{ Niwi �==w  with unit sum ( 1
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estimates of local statistics, xµ , xσ  and xyσ , are then modified accordingly: 
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With such a smoothed windowing approach, the quality maps exhibit a locally 

isotropic property as demonstrated in Fig. 8D. 

 

DC

BA

 
FIGURE  8 The effect of local window shape on structural similarity index (SSIM) 

index map. A: original image; B impulsive noise contaminated image; C SSIM index map 

using square windowing approach; D SSIM index map using smoothed windowing 

approach. In both SSIM index maps, brighter indicates better quality. 
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Figure 9 shows the SSIM index maps of a set of sample images with different 

types of distortions. The absolute error map for each distorted image is also 

included for comparison. The SSIM index and absolute error maps have been 

adjusted, so that brighter always indicates better quality in terms of the given 

quality/distortion measure. It can be seen that the distorted images exhibit 

variable quality across space. For example, in image B, the noise over the face 

region appears to be much more significant than that in the texture regions. 

However, the absolute error map (D) is completely independent of the underlying 

image structures. By contrast, the SSIM index map (C) gives perceptually 

consistent prediction. In image F, the bit allocation scheme of low bit-rate 

JPEG2000 compression leads to smooth representations of detailed image 

structures. For example, the texture information of the roof of the building as well 

as the trees is lost. This is very well indicated by the SSIM index map (G), but 

cannot be predicted from the absolute error map (H). Some different types of 

distortions are caused by low bit-rate JPEG compression. In image J, the major 

distortions we observe are the blocking effect in the sky and the artifacts around 

the outer boundaries of the building. Again, the absolute error map (L) fails to 

provide useful prediction, and the SSIM index map (K) successfully predicts 

image-quality variations across space. From these sample images, we see that an 

image-quality measure as simple as the SSIM index can adapt to various kinds of 

image distortions and provide perceptually consistent quality predictions. 

The final step of an image-quality measurement system is to combine the 

quality map into one single quality score for the whole image. A convenient way 

is to use a weighted summation. Let X and Y be the two images being compared, 

and SSIM(xj, yj) be the local SSIM index evaluated at the j-th local sample [i.e., 

SIM(xj, yj) for all j’s constitutes a SSIM index map as demonstrated in Fig. 9], then 

the SSIM index between X and Y is defined as: 
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A B C D

E F G H

I J K L   
FIGURE  9 Sample distorted images and their quality/distortion maps (images are 

cropped to 160×160 for visibility); (A, E, I) original images; B Gaussian noise 

contaminated image; F JPEG2000 compressed image; J JPEG compressed images; (C, G, 

K) structural similarity index (SSIM) index maps of the distorted images, where 

brightness indicates the magnitude of the local SSIM index (squared for visibility); (D, H, 

L): absolute error maps of the distorted images, where darkness indicates the absolute 

value of the local pixel difference. Note that in all quality/distortion maps (C, D, G, H, K 

and L), brighter indicates better quality in terms of the underlying quality/distortion 

measure. 
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where NS is the number of samples in the quality map, and Wj(xj, yj) is the weight 

given to the j-th sample. If all the samples in the quality map are equally 

weighted, then Wj(xj, yj) � 1. This results in the mean SSIM (MSSIM) measure 

employed in [11].  

There are two cases in which nonuniform weighting is desirable. First, 

depending on the application, some prior knowledge about the importance of 

different regions in the image is available, and such an importance map can be 

converted into a weighting function. For example, object-based region-of-interest 

image processing systems often segment the objects in the scene and give different 

objects different importance. In a foveated image-processing system [12], the 

weighting function can be determined according to the foveation feature of the 

HVS (i.e., the visual resolution decreases gradually as a function of the distance 

from the fixation point). Note that the weighting function here is determined only 

by the spatial location j, but independent of the local image content xj and yj. In the 

second case, the image content also plays a role. It has been observed that different 

image textures attract human fixations with varying degrees, and therefore 

different weights can be assigned. In [15], a variance-weighted weighting function 

is used, where 

2
22),( CW yx ++= σσyx .     (20) 

It was observed that this weighting function is useful to balance the extreme case 

that severe high-variance distortions concentrate at some small areas in the image. 
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4 Validating Image Quality Measures 
Validation is an important step towards successful development of practical image 

quality measurement systems. The most standard form of validation is to compare 

objective quality measures with ratings by human subjects on an extensive 

database of images. Typically, the total number of images in a database of 

reasonable size is in the order of hundreds. Gathering reliable data in such a large-

scale subjective experiment is a very expensive task. To hold down the number of 

subjective comparisons, the form of image distortions is usually highly restricted. 

Therefore, despite the substantial time involved in collecting psychophysical data 

in these experiments, there is no guarantee that the test results on these restricted 

databases provide a sufficient test for a “general-purpose” image quality 

assessment algorithm. 

In [15], an alternative approach was formulated to evaluate the relative 

strength and weaknesses of image-quality measures with a much smaller number 

of subjective comparisons. The key idea is to conduct subject test on synthesized 

images that best differentiate two candidate image-quality measures. These 

synthesized images are obtained by a searching procedure in the image space, 

rather than collecting a large number of images with known types of distortions. 

In previous work, the idea of synthesizing images for subjective testing has been 

employed by the “synthesis-by-analysis” methods of assessing statistical texture 

models, in which the model is used to generate a texture with statistics matching 

an original texture, and a human subject then judges the similarity of the two 

textures [16-20]. In the context of image quality assessment, a similar concept has 

also been used for qualitatively demonstrating the performance [5, 11, 13] and 

calibrating parameter settings [21]. These synthesis methods provide a very 

powerful and efficient means to reveal the strength and weaknesses of a model. 

They also provide the added benefit that the resulting images may suggest 

improvements of the model. 
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Figure 10 shows the framework of the image synthesis-based system for 

performance comparison of two image-quality measures, which are denoted as M1 

and M2, respectively. For each reference image and a given initial distortion level l, 

the system generates two pairs of synthesized image stimuli. First, the reference 

image is altered according to the given initial distortion level l (e.g., white noise of 

a specified variance, 2
lσ , is added) to generate an initial distorted image. Second, 

the quality of the initial image is calculated using the two given measures M1 and 

M2, respectively. Third, the system searches for the best-/worst-quality images in 

terms of M2 while constraining the value of M1 to remain fixed. The result is a pair 

of images that have the same M1 value, but potentially very different M2 values. 

This procedure is also applied with the roles of the two metrics reversed, to 

generate the best-/worst-quality images in terms of M1 while constraining the 

value of M2 to be fixed. Finally, subjects compare the quality of the resulting two 

synthesized image pairs. 
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FIGURE  10 Diagram of image synthesis-based system for performance comparison of 

two image quality measures M1 and M2. (Adapted from [15].) 
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Figure 11 gives a more straightforward illustration of the method in the 

image space, in which the initial image is a common point of a level set of M1 and a 

level set of M2. As demonstrated in Fig. 11A, the goal of the image synthesis 

system is to start from the initial image, and move (perhaps iteratively) along the 

direction of increasing/decreasing the M2 measure while constrained on the M1 

level set. Figure 11B demonstrates the reverse procedure for searching the 

best/worst M1 images along the M2 level set. 

Depending on the specific formulation and complexity of the quality 

measures being compared, there may be various methods of finding the best-

/worst-quality image in terms of one of the measures while constraining the other 

to be fixed. Figure 12 illustrates a single step of a constrained iterative gradient 

ascent/descent algorithm for optimization of M2. Here, we denote the reference 

image X and the distorted image at the n-th iteration Yn (with Y0 representing the 

initial distorted image). We compute the gradient of the two quality measures, 

evaluated at Yn: 

n
MYn YYYXG =∇= |),(1,1

�
 

n
MYn YYYXG =∇= |),(2,2

�
. (21) 

We define a modified gradient direction, Gn, by projecting out the component of 

G2,n that lies in the direction of G1,n: 

n
n

T
n

n
T

n
nn ,1

,1,1

,1,2
,2 G

GG

GG
GG −= .     (22) 

A new distorted image is computed by moving in the direction of this vector: 

nnn GYY λ+=′ .      (23) 

Finally, the gradient of M1 is evaluated at nY′ , and an appropriate amount of this 

vector is added in order to guarantee that the new image has the correct value of 

M1: 

nnn ,11 GYY ′+′=+ ν      s.t.     ),(),( 0111 YXYX MM n =+ . (24) 
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FIGURE  11 Illustration of the image synthesis approach in the image space. A: 

searching the best/worst M2 image on M1 level set; B searching the best/worst M1 image 

on M2 level set. This illustration is in two-dimensional space. In practice, the dimension 

equals the number of image pixels. (Adapted from [15].) 

 

For the case of MSE, the selection of ν  is straightforward, but in general it might 

require a 1D (line) search. During the iterations, the parameter λ  is used to control 

the speed of convergence and ν  must be adjusted dynamically so that the 

resulting vector does not deviate from the level set of M1. The iteration continues 

until it satisfies certain convergence condition (e.g., mean squared change in the 
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distorted image in two consecutive iterations is less than some threshold). If 

Metric M2 is differentiable, then this procedure will converge to a local 

maximum/minimum of M2. In general, however, to find the global 

maximum/minimum is difficult (note that the dimension of the search space is 

equal to the number of pixels in the image), unless the quality measure satisfies 

certain properties (e.g., convexity or concavity). 

Yn
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X

M1 level set

M1 level set

M  (X,Y)2Y
Yn'

M1 level set

M1 level set

 
FIGURE  12 Illustration of the n-th iteration of the gradient ascent/descent search 

procedure for optimizing M2 while constraining on the M1 level set. This illustration is in 

two-dimensional space. In practice, the dimension equals the number of image pixels. 

(From [15].) 

 

In Figs. 13 and 14, we demonstrate comparison of MSE against SSIM using 

the image synthesis-based approach. Note that the gradient-based searching 

approach described above requires calculating the gradients of both image quality 

measures with respect to the image during each iteration. Fortunately, both MSE 

and SSIM measures are simple enough, such that their gradients can be computed 

explicitly [15]. Figure 13 shows the synthesized images for performance 

comparison of MSE and SSIM, where the initial image is obtained by adding white 

Gaussian noise ( 2
lσ =1024) and variance-weighted pooling as of Eq. (20) is used for 

the SSIM measure. These synthesized images immediately reveal the perceptual 
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implications of both quality measures. In particular, MSE is blind in distinguishing 

between structural distortions (D) (in fact, many local image structures in image D 

are inverted, resulting in negative SSIM values) and luminance/contrast changes 

(C), but perceptually, image C has much better quality than image D. On the other 

hand, although the best/worst MSE images for fixed SSIM (images E and F) 

exhibit very different types of image distortions, the best MSE image E does not 

appear to be obviously better than the worst MSE image F. Similar comparisons 

remain consistently across a wide variety of image types, as is demonstrated in 

Fig. 14. Thus, we conclude that SSIM performs much better than MSE in this test. 
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FIGURE  13 Demonstration of image stimulus synthesis for performance comparison of 

mean squared error and structural similarity index. 
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FIGURE  14 Synthesized image stimuli for performance comparison of mean squared 

error and structural similarity index. (Adapted from [15].) 
 

5 Concluding Remarks 
This chapter introduces the basic ideas and algorithms of structural 

approaches for image quality assessment. We have attempted to describe the 

concepts, the SSIM index algorithm, as well as the image synthesis-based 

performance evaluation algorithm in the image space. We demonstrate that image 

distortions along different directions in the image space have different perceptual 

meanings. The structural approaches attempt to separate the directions associated 

with structural distortions from those with non-structured distortions. This 

separation gives a new coordinate system in the image space. The new coordinate 
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system is not fixed as in traditional image decomposition frameworks (e.g., 

Fourier and wavelet types of transforms), but adapted to the underlying image 

structures. 

In terms of the construction of image quality assessment systems, most 

traditional HVS-based methods are based on a bottom-up philosophy, which 

attempts to simulate the functions of the relevant components in the HVS and 

combine them together, in the hope that the combined system can predict the 

behavior of the overall HVS. The effectiveness of these methods depends on how 

much the HVS is understood and how accurately the simulation can be 

implemented. By contrast, the structural approaches are based on a top-down 

philosophy, which starts from the very top level  simulating the hypothesized 

functionality of the overall HVS. A top-down approach may lead to significantly 

simplified algorithm, but relies on the goodness of the underlying hypothesis. In 

particular, the basic assumption made by the structural approaches is that the 

HVS is highly adapted to extract structural information from the visual scene, and 

therefore structural distortion measure should give good prediction of perceived 

image quality. Current experiments have demonstrated very promising results. 

Although the structural approaches are based on a substantially different 

design principle, we view them as complementary to, rather than opposed to, the 

traditional HVS-based methods. Notice that the traditional approaches often 

involve linear signal decompositions (e.g., the wavelet transforms), followed by 

local nonlinear normalization processes. These normalized transform coefficients 

may be considered as specific representations of the image structures. In this 

sense, the errors measured in normalized transform coefficients implicitly suggest 

the structural changes between the image signals being compared. On the other 

hand, the adaptive coordinate system (as demonstrated in Figs. 5 and 7) used by 

the SSIM approach may also be converted into an image transform, and then the 

SSIM index may become equivalent to an error metric after the transform. Thus, 
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the same framework of Fig. 3 is followed, only the image transform is adapted to 

local image structures. Interestingly, some divisive-normalization based masking 

models exhibit similar input-dependent behavior [9, 10], although precise 

alignment as in Figs. 7E and F is not observed. Although it is not clear at this 

moment, we believe it is possible that the two types of approaches may eventually 

converge into similar solutions. 

The paradigm of structural image quality assessment is still at a preliminary 

stage. The current approaches can be extended in many directions. Direct 

extensions include video quality assessment [22], colour image quality assessment 

[23] and multi-scale image quality assessment [21]. Robustness to local image 

translation, scaling and rotation is another important issue to be studied because 

these transformations usually do not cause significant changes in perceived image 

structure (and quality). Furthermore, the SSIM index approach is quite 

encouraging not only because of its good image quality prediction accuracy, but 

also its simple formulation and low computational complexity. The simplicity 

makes it much more tractable than traditional methods in optimization tasks (e.g., 

its derivative with respect to the image can be explicitly computed [15]). 

Consequently, the SSIM index, and other structurally-oriented image quality 

assessment algorithms have great potential to be used in the future development 

of perceptually-optimized image processing, coding and communication systems. 

 

References 
[1] D. J. Field, “Relations between the statistics of natural images and the 

response properties of cortical cells,” Journal of Optical Society of America, vol. 

4, no. 12, pp. 2379-2394, 1987. 

[2] D. L. Ruderman, “The statistics of natural images,” Network: Computation in 

Neural Systems, vol. 5, pp. 517-548, 1996. 



Chapter 8.3: Structural Approaches to Image Quality Assessment 31 

[3] E. P. Simoncelli and B. Olshausen, “Natural image statistics and neural 

representation,” Annual Review of Neuroscience, vol. 24, pp. 1193-1216, 2001. 

[4] H. B. Barlow, “Possible principles underlying the transformation of sensory 

messages,” in Sensory Communication, W. A. Rosenblith, ed., pp. 217-234, MIT 

Press, Cambridge, MA, 1961. 

[5] P. C. Teo and D. J. Heeger, "Perceptual image distortion," in Proc. SPIE, vol. 

2179, pp. 127-141, SPIE Press, Bellingham, WA, 1994. 

[6] J. M. Foley and G. M. Boynton, “A new model of human luminance pattern 

vision mechanisms: Analysis of the effects of pattern orientation, spatial 

phase, and temporal frequency,” in Computational Vision Based on 

Neurobiology, T. A. Lawton, ed., Proc. SPIE, vol. 2054, SPIE Press, Bellingham, 

WA, 1994. 

[7] O. Schwartz and E. P. Simoncelli, “Natural signal statistics and sensory gain 

control,” Nature: Neuroscience, vol. 4, pp. 819–825, Aug. 2001. 

[8] M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, “Natural image statistics 

and divisive normalization: Modeling nonlinearity and adaptation in cortical 

neurons,” in Probabilistic Models of the Brain: Perception and Neural Function, R. 

Rao, B. Olshausen, and M. Lewicki, eds., MIT Press, Cambridge, MA, 2002. 

[9] J. Malo, R. Navarro, I. Epifanio, F. Ferri, and J. M. Artigas, “Non-linear 

invertible representation for joint statistical and perceptual feature 

decorrelation,” Lecture Notes on Computer Science, vol. 1876, pp. 658–667, 2000. 

[10] I. Epifanio, J. Gutiérrez, and J. Malo, “Linear transform for simultaneous 

diagonalization of covariance and perceptual metric matrix in image coding,” 

Pattern Recognition, vol. 36, pp. 1799–1811, Aug. 2003. 

[11] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality 

assessment: From error visibility to structural similarity,” IEEE Transactions 

on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.  



Handbook of Image and Video Processing 32 

[12] Z. Wang and A. C. Bovik, “Embedded foveation image coding,” IEEE 

Transactions on Image Processing, vol. 10, no. 10, pp. 1397-1410, Oct. 2001. 

[13] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal 

Processing Letters, vol. 9, no. 3, pp. 81-84, March 2002.  

[14] Z. Wang, A. C. Bovik and L. Lu, “Why is image quality assessment so 

difficult?” Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Proc., vol. 4, pp. 

3313-3316, May 2002. 

[15] Z. Wang and E. P. Simoncelli, “Stimulus synthesis for efficient evaluation and 

refinement of perceptual image quality metrics,” Human Vision and Electronic 

Imaging IX, Proc. SPIE, vol. 5292, San Jose, Jan. 2004. 

[16] O. D. Faugeras and W. K. Pratt, “Decorrelation methods of texture feature 

extraction,” IEEE Pat. Anal. Mach. Intell. 2(4), pp. 323–332, 1980. 

[17] A. Gagalowicz, “A new method for texture fields synthesis: Some 

applications to the study of human vision,” IEEE Pat. Anal. Mach. Intell. 3(5), 

pp. 520–533, 1981. 

[18] D. Heeger and J. Bergen, “Pyramid-based texture analysis/synthesis,” in 

Proc. ACM SIGGRAPH, pp. 229–238, Association for Computing Machinery, 

August 1995. 

[19] S. Zhu and D. Mumford, “Prior learning and Gibbs reaction-diffusion,” IEEE 

Pat. Anal. Mach. Intell. 19(11), 1997. 

[20] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint 

statistics of complex wavelet coefficients,” Int’l Journal of Computer Vision 40, 

pp. 49–71, December 2000. 

[21] Z. Wang, E. P. Simoncelli and A. C. Bovik, “Multi-scale structural similarity 

for image quality assessment,” 37th IEEE Asilomar Conference on Signals, 

Systems and Computers, Pacific Grove, Nov. 2003. 

[22] Z. Wang, L. Lu and A. C. Bovik, “Video quality assessment based on 

structural distortion measurement,” Signal Processing: Image Communication, 



Chapter 8.3: Structural Approaches to Image Quality Assessment 33 

special issue on “Objective video quality metrics”, vol. 19, no. 2, pp. 121-132, 

Feb. 2004. 

[23] A. Toet and M. P. Lucassen, “A new universal colour image fidelity metric,” 

Displays, vol. 24, no. 4-5, pp. 197-207, Dec. 2003. 


