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Abstract— We propose the concept of quality-aware image,
in which certain extracted features of the original (high-
quality) image are embedded into the image data as invisi-
ble hidden messages. When a distorted version of such an
image is received, users can decode the hidden messages and
use them to provide an objective measure of the quality of
the distorted image. To demonstrate the idea, we build a
practical quality-aware image encoding, decoding and qual-
ity analysis system1, which employs 1) a novel reduced-
reference image quality assessment algorithm based on a
statistical model of natural images, and 2) a previously de-
veloped quantization watermarking-based data hiding tech-
nique in the wavelet transform domain.
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I. Introduction

Digital images are subject to a variety of distortions
during compression, transmission, processing, and repro-
duction. In order to maintain, control and possibly en-
hance the quality of the image and video data being deliv-
ered, it is important for data management systems (e.g.,
network video servers) to be able to identify and quan-
tify quality degradations on the fly. Since most of the
image data will eventually be consumed by humans, the
most reliable means of assessing image quality is subjec-
tive evaluation. However, subjective testing is expensive
and time-consuming. On the other hand, most objective
image/video quality assessment methods proposed in the
literature [1]–[3] are not applicable in this scenario because
they are full-reference (FR) methods that require access to
the original images as references. Therefore, it is highly
desirable to develop quality assessment algorithms that do
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http://www.cns.nyu.edu/~lcv/qaware/.

not require full access to the reference images.
Unfortunately, no-reference (NR) or “blind” image qual-

ity assessment is an extremely difficult task. Most pro-
posed NR quality metrics are designed for one or a set of
predefined specific distortion types [4]–[10] that may not
be generalized for evaluating images degraded with other
types of distortions. Moreover, knowledge of the distor-
tions that arise between the original and corrupted images
is in general not available to image quality assessment sys-
tems. Thus, it is desirable to have a more general image
quality assessment system that is applicable to a wide va-
riety of distortions. However, to the best of our knowledge,
no such method has been proposed and extensively tested.

One interesting recent development in image/video qual-
ity assessment research is to design reduced-reference (RR)
methods for quality assessment [2], [3]. These methods do
not require full access to reference images, but only needs
partial information, in the form of a set of extracted fea-
tures. Conceptually, RR methods make the quality assess-
ment task easier than NR methods by paying the additional
cost of transmitting side information to the users. The
standard deployment of an RR method requires the side
information to be sent through an ancillary data channel
[3]. However, this restricts the application scope of the
method because an additional data channel may be incon-
venient or expensive to provide. An alternative solution
would be to send the side information in the same chan-
nel as the images being transmitted. For example, the
side information can be included as a component of the
image data structure (e.g., as part of the header of the im-
age format). However, this strategy would be difficult to
implement in existing large-scale, heterogeneous networks
such as the Internet, because it requires all the users in the
communication network to adopt a new image format, or
amend all the existing image formats to allow the side in-
formation to be included. Besides, lossy data transmission
and typical image format conversion may cause loss of the
original image headers.

In this paper, we propose the concept of quality-aware
image, in which extracted features of the reference image
are embedded as hidden messages. When a distorted ver-
sion of such an image is received, the users can decode the
hidden messages and use them to help evaluate the qual-
ity of the distorted image using an RR quality assessment
method. There are several advantages of this approach:

• It uses an RR method that makes the image quality
assessment task feasible (as compared to FR and
NR methods).

• It does not affect the conventional usage of the im-
age data because the data hiding process causes
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only invisible changes to the image.
• It does not require a separate data channel to trans-

mit the side information.
• It allows the image data to be stored, converted and

distributed using any existing or user-defined for-
mats without losing the functionality of “quality-
awareness”, provided the hidden messages are not
corrupted during lossy format conversion.

• It provides the users with a chance to partially “re-
pair” the received distorted images by making use
of the embedded features.

This study is largely inspired by [11], [12] and [13], where
a pseudo-random bit sequence or a watermark image is hid-
den inside the image being transmitted. The bit error rate
or the degradation of the watermark image measured at
the receiver side is then used as an indication of the quality
degradation of the host image signal. These methods are
perhaps the first attempts to use information hiding tech-
nologies for the estimation of image quality degradation.
Nevertheless, strictly speaking, these methods are not im-
age quality assessment methods because no extracted fea-
tures about either the reference or the distorted images are
actually used in the quality evaluation process. Instead, the
distortion processes that occur in the distortion channel are
gauged, in the hope that such estimated channel distortion
would correlate well with perceptual image degradation in-
curred during transmission through the channel. However,
such a connection is obscured by the nature (e.g., complex-
ity) of the image signals and the types of image distortions,
which have variable effects on perceived image quality. In
addition, these methods provide no clue about how the re-
ceived distorted images can be corrected.

Information hiding or digital watermarking has been an
active research area in the last decade. Traditionally, these
techniques have been designed for security-related appli-
cations such as copyright protection and data authenti-
cation. Recently, researchers have attempted to broaden
their application scope to non-security oriented applica-
tions [14], [15]. Quality-aware images mainly belong to the
second category (see Section V for discussions), and they
bring about new challenges in the selection and design of
information hiding techniques.

II. Quality-Aware Image

A. Framework

A system diagram of quality-aware image encoding, de-
coding and quality analysis system is shown in Fig. 1. A
feature extraction process is first applied to the original im-
age, which is assumed to have perfect quality. The quality-
aware image is obtained by embedding these features as in-
visible messages into the original image. The quality-aware
image may then pass through a “distortion process” before
it reaches the receiver side. Here the “distortion process”
is general in concept. It can be a distortion channel in an
image communication system, with possibly lossy compres-
sion, noise contamination and/or postprocessing involved.
It can also be any other processes that may alter the image.
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Fig. 1. Quality-aware image encoding, decoding and quality analysis
system.

At the receiver side, the hidden messages are first de-
coded from the distorted quality-aware image. In order for
correct decoding of the messages, the key for information
embedding and decoding is shared between the sender and
the receiver. Depending on the application environment,
there may be different ways to distribute the embedding
key. One simple solution is to attach the key to the de-
coder software and/or publish the key, so that it can be
easily obtained by all potential users of quality-aware im-
ages. Note that the key is independent of the image and
can be the same for all quality-aware images, so it does not
need to be transmitted with the image data. The decoded
messages are translated back to the features about the ref-
erence image. Next, another feature extraction procedure
corresponding to the one at the sender side is applied to
the distorted image. The resulting features are then com-
pared with those of the reference image to yield a quality
score for the distorted quality-aware image.

In order to improve robustness, error detection/correction
coding techniques may be applied before the information
embedding process. Nevertheless, the hidden messages
may still be decoded incorrectly when the distortions are
extremely severe. At the receiver side, the system must be
able to detect such situations (based on the error detection
and correction code) and report a failure message, instead
of a quality score.

B. Design Considerations

Designing an effective quality-aware image system is a
challenging task. On the one hand, in order to provide
effective quality prediction, the RR quality assessment sys-
tem desires to know as much information as possible about
the reference image. Therefore, the information hiding sys-
tem would need to embed a fairly large amount of informa-
tion. On the other hand, in order for the hidden messages
to be invisible and for these messages to survive a wide va-
riety and degree of distortions, the amount of information
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that can be embedded is limited. The RR quality assess-
ment system must observe this limit and carefully select a
set of features that can be encoded within the limit. These
features must be highly relevant to image quality degrada-
tions. They must also provide an efficient summary about
the reference image.

Another issue that may need to be considered is that
many data hiding techniques tend to change certain sta-
tistical features of the original image (e.g. [16], [17]). This
could potentially conflict with quality assessment systems
because these systems may rely on the way that these sta-
tistical features change as an indication of quality degra-
dation.

To summarize, a successful quality-aware image system
must provide a good trade-off between data hiding load,
embedding distortion, robustness, and the accuracy of im-
age quality prediction.

C. A Simple Example

Perhaps the simplest way to implement a quality-aware
image system is to embed a certain number of (perhaps
randomly selected) reference image pixels as hidden mes-
sages. For synchronization purpose, the positions of theses
pixels also need to be embedded. At the receiver side,
the decoded reference image pixels are compared with the
corresponding distorted image pixels, and certain distor-
tion/quality metric, such as mean squared error (MSE) and
peak signal-to-noise ratio (PSNR), are estimated.

Such a system, although simple, is quite weak in several
aspects. Firstly, it requires a high data hiding rate. For
example, for a 512× 512, 8 bits/pixel gray scale image, to
embed 1% of the image pixels (together with 2× 9 bits for
encoding each pixel position) requires a total of 68146 bits,
a heavy load for most robust information hiding systems.
Secondly, such a small number of pixels is unlikely to al-
low accurate estimation of the distortion metrics, unless the
distortion between the reference and distorted images is in-
dependently and identically distributed noise. The obvious
drawbacks of this simple example lead us to consider im-
age features that are more efficient in summarizing image
information and more effective in evaluating image quality.

III. Implementation

A. RR Quality Assessment

Here, we propose a new RR quality assessment method
based on statistics computed for natural images in the
wavelet transform domain. Wavelet transforms provide a
convenient framework for localized representation of signals
simultaneously in space and frequency. They have been
widely used to model the processing in the early stages of
biological visual systems and have also become the pre-
ferred form of representations for many image processing
and computer vision algorithms. In recent years, natural
image statistics have played an important role in the under-
standing of sensory neural behaviors of the human visual
system [18]. In the image processing literature, statisti-
cal prior models of natural images have been employed as

fundamental ingredients in a large number of image coding
and estimation algorithms (e.g., [19]–[21]). They have also
been used for image quality assessment purposes (e.g., [8]).

Figure 2 shows the histograms of the coefficients com-
puted from one of the wavelet subbands in a steerable pyra-
mid decomposition [22] (a type of redundant wavelet trans-
form that avoids aliasing in subbands). It has been pointed
out that the marginal distributions of such oriented band-
pass filter responses of natural images are highly kurtotic
(with sharp peaks at zero and much longer tails than Gaus-
sian density, as demonstrated in Fig. 2(a)) and have a num-
ber of important implications to sensory neural coding of
natural visual scene [23]. In [24], [25], it was demonstrated
that many natural looking texture images can be synthe-
sized by matching the histograms of the filter responses of a
set of well-selected bandpass filters. Psychophysical visual
sensitivity to histogram changes of wavelet-textures had
also been studied (e.g., [26], [27]). In Fig. 2, it can be seen
that the marginal distribution of the wavelet coefficients
changes in different ways for different types of image dis-
tortions. Such histogram changes in images contaminated
with white Gaussian noise have been observed previously
and used for image denoising [19], [20].

Let p(x) and q(x) denote the probability density func-
tions of the wavelet coefficients (assumed to be indepen-
dently and identically distributed) in the same subband of
two images, respectively. Let x = {x1, ..., xN} be a set of
N randomly and independently selected coefficients. The
log-likelihoods of x being drawn from p(x) and q(x) are

l(p) =
1
N

N∑
n=1

log p(xn) and l(q) =
1
N

N∑
n=1

log q(xn) ,

(1)
respectively. Now assume that p(x) is the true proba-
bility density distribution of the coefficients. Based on
the law of large numbers, when N is large, the difference
of the log-likelihoods (or equivalently, the log-likelihood-
ratio) between p(x) and q(x) asymptotically approaches
the Kullback-Leibler distance [28] (KLD) between p(x) and
q(x):

l(p)− l(q) −→ d(p‖q) =
∫

p(x) log
p(x)
q(x)

dx , (2)

In previous work, a number of authors have pointed out
the relationship between KLD and log-likelihood function
and used KLD to compare images, mainly for classification
and retrieval purposes [29]–[32]. KLD has also been used to
quantify the distributions of image pixel intensity values for
the evaluation of compressed image quality [33], [34]. Here,
we use KLD to quantify the difference between wavelet co-
efficient distributions of a perfect quality reference image
and a distorted image (denoted later on as p(x) and q(x),
respectively). To make an effective estimation, the coeffi-
cient histograms for both images must be available. The
latter can be easily computed from the received distorted
image. The difficulty is in obtaining the coefficient his-
togram of the reference image at the receiver side. Trans-
mitting all the histogram bins as hidden messages would



4 IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR

(a) (d)(c)(b)
-20 0 2010-3

10
-1

-20 0 20

10
-1

10
-3

-20 0 20

10
-1

10
-3

-20 0 20

10
-1

10
-3

Fig. 2. Comparisons of wavelet coefficient histograms (solid curves) calculated from the same horizontal subband in the steerable pyramid
decomposition [22]. (a) original (reference) “buildings” image (cropped for visibility); (b) JPEG2000 compressed image; (c) white
Gaussian noise contaminated image; (d) Gaussian blurred image. The histogram of the original image coefficients is well fitted by a
generalized Gaussian density model (dashed curves).

result in either a heavy data load (when the bin step size
is fine) or weaker statistical characterization (when the bin
step size is coarse).

One important discovery in the literature of natural im-
age statistics is that the marginal distribution of the co-
efficients in individual wavelet subbands can be well-fitted
with a 2-parameter generalized Gaussian density (GGD)
model [35]:

pm(x) =
β

2αΓ(1/β)
e−(|x|/α)β

, (3)

where Γ(a) =
∫∞
0

ta−1e−tdt (for a > 0) is the Gamma
function. One fitting example is shown in Fig. 2(a) as the
dashed line. This model provides a very efficient means
to summarize the coefficient histogram of the reference im-
age, so that only two model parameters {α, β} need to be
transmitted to the receiver as hidden messages. This model
has been used in previous work for image compression [21]
and texture image retrieval [32]. In addition to the fitting
parameters α and β, we also embed the prediction error as
a third parameter, which is defined as the KLD between
pm(x) and p(x):

d(pm‖p) =
∫

pm(x) log
pm(x)
p(x)

dx. (4)

In practice, this quantity has to be evaluated numerically
using histograms:

d(pm‖p) =
L∑

i=1

Pm(i) log
Pm(i)
P (i)

, (5)

where P (i) and Pm(i) are the normalized heights of the
i-th histogram bins, and L is the number of bins in the
histograms.

At the receiver side, we wish to compute an approxi-
mation to Eq. (2), the KLD between the histogram of the
original image, p(x), and that of the distorted image, q(x).
Since we do not have the original histogram, we replace the
expectation over p(x) with an expectation over the model
density, pm(x):

d̂(p‖q) =
∫

pm(x) log
p(x)
q(x)

dx (6)

= d(pm‖q)− d(pm‖p) (7)

The second term is simply the KLD between the origi-
nal histogram and the model (Eq. (4)), which is embedded
in the image by the encoder. The first term is the KLD
between pm(x) and q(x), the histogram of the distorted
image:

d(pm‖q) =
∫

pm(x) log
pm(x)
q(x)

dx. (8)

This is computed by the receiver from the histogram bins
of the distorted wavelet coefficients (analogous to Eq. (5)).
Note that, unlike the encoding side, we avoid fitting q(x)
with a GGD model, which may not be appropriate for the
distorted data.

Finally, the overall distortion between the distorted and
reference images is defined as:

D = log2(1 +
1

D0

K∑

k=1

|d̂k(pk‖qk)|) , (9)

where K is the number of subbands, pk and qk are the
probability density functions of the k-th subbands in the
reference and distorted images, respectively, d̂k is the esti-
mation of the KLD between pk and qk, and D0 is a constant
used to control the scale of the distortion measure.
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Fig. 3. Feature extraction system at the encoder side.

Figure 3 illustrates our implementation of the feature
extraction system at the encoder side. We first apply a
3-scale 4-orientation steerable pyramid transform [22] to
decompose the image into 12 oriented subbands (4 for each
scale) and the highpass and lowpass residuals, as demon-
strated in Fig. 4. For each subband, the histogram of the
coefficients is computed and then its feature parameters {α,
β, d(pm‖p)} are estimated using a gradient descent algo-
rithm to minimize the KLD between p(x) and pm(x). Six of
the 12 oriented subbands (as shown in Fig. 4) are selected
for feature extraction. The major criterion for selecting
these subbands is to reduce the data rate of RR features
while at the same time, maintain the quality prediction
performance. Specifically, in the Fourier domain, the adja-
cent steerable pyramid subbands (in both scale and orien-
tation) have significant overlaps, but there is essentially no
overlap between non-adjacent subbands. Therefore, the 6
subbands marked in Fig. 4 are selected to reduce the use
of redundant information. Furthermore, in our tests, se-
lecting the other 6 oriented subbands or all the 12 oriented
subbands gives similar overall performance of image quality
prediction. Finally, the extracted scalar features are quan-
tized to finite precision. Both β and d(pm‖p) are quantized
into 8-bit precision, and α is represented using 11-bit float-
ing point, with 8 bits for mantissa and 3 bits for exponent.
These quantization precision parameters were hand-picked
to represent the features in a limited number of bits while
maintaining a reasonable approximation of the features.
The final result is a total of (8 + 8 + 8 + 3)× 6 = 162 bits
that are embedded into the image.

B. Information Embedding

To embed the extracted features into the image, we
choose to use an existing dithered uniform scalar quan-
tization watermarking method in the wavelet transform
domain. This method is a simple case of the class
of quantization-index-modulation information embedding
techniques [36], which allow for “blind” decoding (decod-
ing does not require the access to the reference image) and
achieve a good tradeoff between data-hiding rate and ro-
bustness. The information embedding system is illustrated
in Fig. 5.

We first use a five-scale separable wavelet transform
(specifically, a quadrature mirror filter transform [37]) to
decompose the reference image into 16 subbands, includ-
ing the horizontal, vertical and diagonal subbands at each

steeerable
pyramid

decomposition

Fig. 4. Steerable pyramid decomposition [22] of image (highpass
residual band not shown). A set of selected subbands (marked
with dashed boxes) are used for GGD feature extraction.

scale, and a low frequency residual band. In order to embed
one bit of information m ∈ {0, 1} into a wavelet coefficient
c, the coefficient is altered according to the following rule:

cq = Q(c + d(m))− d(m) ≡ Qm(c) , (10)

where cq is the altered coefficient, Q(·) is a base quantiza-
tion operator with quantization step size ∆, and d(m) is a
dithering operator defined as

d(m) =
{ −∆/4, if m = 0

∆/4, if m = 1 . (11)

At the receiver side, a distorted coefficient cd is obtained
and used to estimate the embedded bit based on the mini-
mum distance criterion:

m̂(cd) = arg min
m∈{0,1}

‖cd −Qm(cd)‖ . (12)
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We embed the hidden messages into the horizontal, ver-
tical and diagonal subbands at the fifth scale (counted from
fine to coarse) of the wavelet decomposition. We choose to
use these low-frequency components because they usually
have high signal energy and are less likely to be signifi-
cantly altered during typical image processing operations.
Moreover, such a selection avoids conflict with the pro-
posed RR quality assessment method, which is based on
detecting the statistical changes of the wavelet coefficients
at the finer scales. To further improve robustness, two er-
ror detection/correction techniques are employed. First, a
16-bit cyclic redundancy check (CRC) code [38] is com-
puted and attached to the 162 information bits. Second,
the resulting 178 bits are further encoded using a binary
(15,5,7) BCH code [38], which can correct up to 3 bits of
errors out of every 15 bits. As a result, a total of 540 bits
are generated. The same number of wavelet coefficients are
randomly selected from the fifth scale of the wavelet trans-
form, and every bit is encoded into one coefficient using Eq.
(10). The positions of the coefficients are shared between
the sender and receiver as the embedding key.

At the receiver side, we first apply the same wavelet
transform to the received image. The embedded 540 bits
are then extracted from the corresponding wavelet coeffi-
cients using Eq. (12), and decoded with the BCH system.
The decoded 178 bits are split into the corresponding 162
information bits and 16 CRC bits. We then calculate a
new set of CRC bits using the decoded information bits
and compare them with the decoded CRC bits. If any of
the CRC bit is incorrect, the system reports a failure mes-
sage. Otherwise, the extracted 162 information bits are
converted back into scalar features about the reference im-

age and relayed to the quality assessment system. Finally,
a quality score of the distorted image is reported.

In several cases a failure message may be reported. It
could be that the received image is not a quality-aware im-
age (no side information has been embedded) or the embed-
ded information is desynchronized (e.g., by image editing).
It could also be that the image quality degradation is very
severe, such that the embedded information cannot be com-
pletely recovered. It is often useful to distinguish between
the two cases, because in the latter case, a failure message
can serve as an indication of low image quality. One way
to make such a distinction is to look at the percentage R
of correct CRC bits because statistically only in the latter
case, R may be significantly higher than 50%. Following
the general idea of [11]–[13], one can take an even further
step to use R as an important factor for the prediction of
image quality at very low quality range, although the accu-
racy may be complicated by the nature (e.g. complexity)
of the images being evaluated.

IV. Test

A. Performance of Quality Assessment

In order to evaluate and compare the performance of
image quality assessment algorithms, we built a large im-
age database (the LIVE image database, available online
[39]) and conducted an extensive subjective experiment to
assess the quality of the images in the database. The
database contains 29 high-resolution (typically 768×512)
original images altered with five types of distortions at
different distortion levels. The distorted images were di-
vided into seven datasets. Datasets 1 (87 images) and 2
(82 images) are JPEG2000 compressed images; Datasets 3
(87 images) and 4 (88 images) are JPEG compressed im-
ages; and Datasets 5, 6 and 7 (each containing 145 images)
are distorted with white Gaussian noise, Gaussian blur,
and transmission errors in the JPEG2000 bitstream using
a fast-fading Rayleigh channel model, respectively. Sub-
jects were asked to provide their perception of quality on a
continuous linear scale and each image was rated by 20-25
subjects. The raw scores for each subject were converted
into Z-scores and rescaled within each dataset to fill the
range from 1 to 100. Mean opinion score and the standard
deviation between subjective scores were then computed
for each image.

Three measures are computed to quantify the perfor-
mance of the proposed quality assessment method. First,
following the procedure given in the video quality experts
group (VQEG) Phase I FR-TV test [42], we use a logis-
tic function to provide a nonlinear mapping between the
objective and subjective scores:

f(s) =
a1 − a2

1 + exp(−(s− a3)/a4)
+ a2 , (13)

where s is the objective score and a1, a2, a3 and a4 are
the model parameters, which are found numerically using
a nonlinear regression process with MatLab optimization
toolbox. After the nonlinear mapping, the correlation co-
efficient between the predicted and true subjective scores
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TABLE I

Performance evaluation of image quality measures using the LIVE database [39]. JP2: JPEG2000 dataset; JPG: JPEG

dataset; Noise: white Gaussian noise dataset; Blur: Gaussian blur dataset; Error: transmission error dataset.

Dataset JP2 (1) JP2 (2) JPG (1) JPG (2) Noise Blur Error
number of images 87 82 87 88 145 145 145

method type Correlation Coefficient (prediction accuracy)
Proposed RR 0.9353 0.9490 0.8452 0.9695 0.8889 0.8872 0.9175
PSNR FR 0.9337 0.8948 0.9015 0.9136 0.9866 0.7742 0.8811

Sarnoff [40] FR 0.9706 0.9650 0.9589 0.9837 0.9631 0.9480 0.9144
MSSIM [41] FR 0.9676 0.9669 0.9647 0.9856 0.9706 0.9361 0.9439

Wang et al. [7] NR N/A N/A 0.9592 0.9808 N/A N/A N/A
Sheikh et al. [8] NR 0.9258 0.9064 N/A N/A N/A N/A N/A

method type Rank-Order Correlation Coefficient (prediction monotonicity)
Proposed RR 0.9298 0.9470 0.8332 0.8908 0.8639 0.9145 0.9162
PSNR FR 0.9231 0.8816 0.8907 0.8077 0.9855 0.7729 0.8785

Sarnoff [40] FR 0.9668 0.9565 0.9528 0.8904 0.9411 0.9381 0.9048
MSSIM [41] FR 0.9566 0.9677 0.9572 0.9441 0.9719 0.9425 0.9498

Wang et al. [7] NR N/A N/A 0.9507 0.8880 N/A N/A N/A
Sheikh et al. [8] NR 0.9192 0.8918 N/A N/A N/A N/A N/A

method type Outlier Ratio (prediction consistency)
Proposed RR 0.0690 0.0366 0.1839 0.0341 0.1793 0.1172 0.0621
PSNR FR 0.0805 0.0976 0.0920 0.1818 0.0000 0.2069 0.1517

Sarnoff [40] FR 0.0000 0.0366 0.0115 0.0000 0.0345 0.0276 0.0552
MSSIM [41] FR 0.0000 0.0000 0.0000 0.0114 0.0000 0.0414 0.0345

Wang et al. [7] NR N/A N/A 0.0230 0.0227 N/A N/A N/A
Sheikh et al. [8] NR 0.0575 0.0610 N/A N/A N/A N/A N/A

is calculated to evaluate prediction accuracy. Second, the
Spearman rank-order correlation coefficient is employed to
evaluate prediction monotonicity. Finally, to evaluate pre-
diction consistency, the outlier ratio is used, which is de-
fined as the percentage of predictions outside the range of
±2 standard deviations between subjective scores.

To the best of our knowledge, no other RR method has
been proposed that 1) aims for general-purpose image qual-
ity assessment (as opposed to distortion- or application-
specific), and 2) uses such small amount of information
about the reference image as compared to the proposed
method. Therefore, we compare the proposed method with
a set of general-purpose FR models as well as application-
specific NR models. These models include PSNR (FR),
Lubin’s Sarnoff model (FR) [40], [43], [44], the mean struc-
tural similarity index (MSSIM, FR) [41], the JPEG quality
index by Wang et al. (NR) [7], and the JPEG2000 quality
assessment method by Sheikh et al. (NR) [8]. Although
such comparison is unfair to one method or another in dif-
ferent aspects, it provides a useful indication about the
relative performance of the proposed method. The perfor-
mance evaluation results of all methods are summarized in
Table I. It can be seen that the proposed method performs
quite well for a wide range of distortion types. Specif-
ically, for 5 of the 7 datasets, it gives better prediction
accuracy (higher correlation coefficients), better prediction
monotonicity (higher Spearman rank-order correlation co-
efficients) and better prediction consistency (lower outlier
ratios) than PSNR, which is the most widely used FR im-
age quality metric in the image processing literature. In
comparison with the NR models, the proposed method is
inferior to Wang et al.’s method for the JPEG datasets
(JPEG compressed images have distinct blocking effect,
which is readily detected by an application-specific NR

method), and performs better than Sheikh et al.’s method
for the JPEG2000 datasets. Note that these application-
specific NR methods are not applicable to other types of
image distortions. A more complete test may include other
distortion types (including mixed distortions) as well as
validations across different distortion types, but the cur-
rent testing results lead us to believe that the proposed
method is a reasonable and useful choice for quality-aware
image systems. It needs to be emphasized that none of the
other methods being compared, or any other method we
are aware of, can be used in this scenario.

B. Robustness of Information Embedding

The information embedding system is tested with four
distortion types: JPEG2000 compression, JPEG compres-
sion, white Gaussian noise contamination, and Gaussian
blur. For convenience, we define the distortion levels as
compression bit rate (bits/pixel) for JPEG2000 compres-
sion, quality factor (which controls the quantization step of
discrete cosine transform coefficients) for JPEG compres-
sion, noise standard deviation for white noise contamina-
tion, and standard deviation of blurring filter for Gaussian
blur, respectively. The same 29 original images in the LIVE
database [39] are used for the test. We first generate 10
quality-aware images (each uses a different randomly gen-
erated embedding key) for each of the test images. For any
given distortion type and level, we distort the 290 quality-
aware images accordingly and check if the hidden messages
can be correctly decoded (by comparing the CRC bits, see
Section III-B).

Since the RR quality assessment system can provide use-
ful quality prediction only when the hidden messages are
fully recovered, we use correct decoding rate (defined as
the percentage of the images whose embedded messages
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Fig. 6. Robustness test of the information embedding system. The quality/distortion level is defined as (a) bit rate (bits/pixel) for JPEG2000
compressed images; (b) quality factor for JPEG compressed images; (c) noise standard deviation for white noise contaminated images;
and (d) standard deviation (pixels) of blurring filter for Gaussian blurred images.

are completely recovered) as the criterion for evaluating
the robustness of the system. The test results are shown in
Fig. 6, which covers the transition range (from 0 to 100%
correct decoding rate) of distortion levels for each distor-
tion type. It can be seen that the hidden messages can
be recovered with high probability up to severe distortion
levels (e.g., quality factor 20 for JPEG compression).

V. Conclusion

The major contributions of the paper include: 1) In-
troduction of the concept of quality-aware image, and dis-
cussion of its design considerations; 2) Implementation of
a practical quality-aware image encoding, decoding and
quality analysis system; 3) Development of a simple and
effective RR image quality assessment algorithm based on
a wavelet-domain statistical model of natural images; 4)
Expansion of the application scope of information hiding
technologies. Like other FR and RR approaches, the pro-
posed quality assessment method assumes the existence of
a perfect-quality reference image. This constrains the ap-
plication scope of the method. In the case that this as-
sumption does not hold, only an NR method can provide
useful quality evaluation of the images.

In the future, the research initiated in this paper can be
extended in several directions: The algorithm presented in
Section III is only a specific implementation of the general
framework of quality-aware image system (Fig. 1). The
current method can be improved in many ways. For ex-
ample, different RR image quality assessment algorithms
could be employed. The improved algorithms may in-
clude more statistical image features (e.g., joint statistics
of wavelet coefficients), which may lead to better quality
prediction accuracy. For another example, different infor-
mation hiding techniques could be used to enhance the
robustness to a broader range of distortion types. The
current method is sensitive to geometric transformations,
gain attack and perhaps some other types of malicious at-
tacks. The general concept of quality-aware images does
not exclude itself from being employed in security-related
applications. For example, in a pay-per-view scenario, an
image could be paid according to its quality degradation.
However, given the limited capability of the existing ro-

bust image watermarking techniques (including the one we
are currently using), we propose to use it mainly for non-
security oriented applications, in which nobody will benefit
from “removing” or “destroying” the embedded informa-
tion, and therefore, the images are less likely to encounter
malicious attacks (though the precise definition of mali-
cious attacks could vary for every specific application en-
vironment). This is different from security-related appli-
cations such as copyright protection, where robustness to
malicious attacks [45] is an essential issue.

The general approach may also be used beyond the scope
of image quality assessment. For example, suppose an im-
age is subject to a number of distortion stages. One can em-
bed the quality scores measured at the intermediate stages
into the image as additional hidden messages. The end re-
ceiver can then trace back to find the critical processing
stages that have caused significant quality degradations.
Inspired by the work of using data hiding techniques for
error concealment (e.g., [46], [47]), we can have another in-
teresting application of the embedded features, which we
refer to as “self-repairing images”. The idea is to “repair” a
distorted image by forcing some of its statistical properties
to match those of the original image. Similar idea has been
successfully used for texture synthesis (e.g., [24], [25], [48]).
Finally, the principle idea may be applied to other types of
signals to create quality-aware (and possibly self-repairing)
video, audio, and multimedia, etc.
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