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Humans are able to detect blurring of visual images, but the mechanism
by which they do so is not clear. A traditional view is that a blurred
image looks “unnatural” because of the reduction in energy (either glob-
ally or locally) at high frequencies. In this paper, we propose that the
disruption of local phase can provide an alternative explanation for blur
perception. We show that precisely localized features such as step edges
result in strong local phase coherence structures across scale and space in
the complex wavelet transform domain, and blurring causes loss of such
phase coherence. We propose a technique for coarse-to-fine phase pre-
diction of wavelet coefficients, and observe that (1) such predictions are
highly effective in natural images, (2) phase coherence increases with the
strength of image features, and (3) blurring disrupts the phase coherence
relationship in images. We thus lay the groundwork for a new theory of
perceptual blur estimation, as well as a variety of algorithms for restora-
tion and manipulation of photographic images.

1 Introduction

Blur is one of the most common forms of image distortion. It can arise from a variety
of sources, such as atmospheric scatter, lens defocus, optical aberrations of the lens, and
spatial and temporal sensor integration. Human observers are bothered by blur, and our
visual systems are quite good at reporting whether an image appears blurred (or sharpened)
[1,2]. However, the mechanism by which this is accomplished is not well understood.

Clearly, detection of blur requires some model of what constitutes an unblurred image. In
recent years, there has been a surge of interest in the modelling of natural images, both for
purposes of improving the performance of image processing and computer vision systems,
and also for furthering our understanding of biological visual systems. Early statistical
models were almost exclusively based on a description of global Fourier power spectra.
Specifically, image spectra are found to follow a power law [3–5]. This model leads to
an obvious method of detecting and compensating for blur. Specifically, blurring usually
reduces the energy of high frequency components, and thus the power spectrum of a blurry
image should fall faster than a typical natural image. The standard formulation of the
“deblurring” problem, due to Wiener [6], aims to restore those high frequency components
to their original amplitude. But this proposal is problematic, since individual images show
significant variability in their Fourier amplitudes, both in their shape and in the rate at which



they fall [1]. In particular, simply reducing the number of sharp features (e.g., edges) in
an image can lead to a steeper falloff in global amplitude spectrum, even though the image
will still appear sharp [7]. Nevertheless, the visual system seems to be able to compensate
for this when estimating blur [1,2,7].

Over the past two decades, researchers from many communities have converged on a view
that images are better represented using bases of multi-scale bandpass oriented filters.
These representations, loosely referred to as “wavelets”, are effective at decoupling the
high-order statistical features of natural images. In addition, they provide the most basic
model for neurons in the primary visual cortex of mammals, which are presumably adapted
to efficiently represent the visually relevant features of images. Many recent statistical im-
age models in the wavelet domain are based on the amplitudes of the coefficients, and the
relationship between the amplitudes of coefficients in local neighborhoods or across differ-
ent scales [e.g. 8]. In both human and computer vision, the amplitudes of complex wavelets
have been widely used as a mechanism for localizing/representing features [e.g. 9–13]. It
has also been shown that the relative wavelet amplitude as a function of scale can be used
to explain a number of subjective experiments on the perception of blur [7].

In this paper, we propose the disruption of local phase as an alternative and effective mea-
sure for the detection of blur. This seems counterintuitive, because when an image is
blurred through convolution with a symmetric linear filter, the phase information in the
(global) Fourier transform domain does not change at all. But we show that this is not true
for local phase information.

In previous work, Fourier phase has been found to carry important information about image
structures and features [14] and higher-order Fourier statistics have been used to examine
the phase structure in natural images [15]. It has been pointed out that at the points of
isolated even and odd symmetric features such as lines and step edges, thearrival phases
of all Fourier harmonics are identical [11,16].Phase congruency[11,17] provides a quan-
titative measure for the agreement of such phase alignment pattern. It has also been shown
that maximum phase congruency feature detection is equivalent to maximum local energy
model [18]. Local phase has been used in a number of machine vision and image process-
ing applications, such as estimation of image motion [19] and disparity [20], description
of image textures [21], and recognition of persons using iris patterns [22]. However, the
behaviors of local phase at different scales in the vicinity of image features, and the means
by which blur affects such behaviors have not been deeply investigated.

2 Local Phase Coherence of Isolated Features

Wavelet transforms provide a convenient framework for localized representation of signals
simultaneously in space and frequency. The wavelets are dilated/contracted and translated
versions of a “mother wavelet”w(x). In this paper, we consider symmetric (linear phase)
wavelets whose mother wavelets may be written as a modulation of a low-pass filter:

w(x) = g(x) ejωcx , (1)

whereωc is the center frequency of the modulated band-pass filter, andg(x) is a slowly
varying and symmetric function. The family of wavelets derived from the mother wavelet
are then
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wheres ∈ R+ is the scale factor, andp ∈ R is the translation factor. Considering the fact
thatg(−x) = g(x), the wavelet transform of a given real signalf(x) can be written as
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Now assume that the signalf(x) being analyzed is localized near the positionx0, and we
rewrite it into a functionf0(x) that satisfiesf(x) = f0(x − x0). Using the convolution
theorem and the shifting and scaling properties of the Fourier transform, we can write
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whereF (ω), F0(ω) andG(ω) are the Fourier transforms off(x), f0(x) andg(x), respec-
tively.

We now examine how the phase ofF (s, p) evolves across spacep and scales. From Eq.
(4), we see that the phase ofF (s, p) highly depends on the nature ofF0(ω). If F0(ω) is
scale-invariant, meaning that

F0

(ω

s

)
= K(s)F0(ω) , (5)

whereK(s) is a real function of onlys, but independent ofω, then from Eq. (4) and Eq.
(5) we obtain
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Since bothK(s) ands are real, we can write the phase as:

Φ(F (s, p)) = Φ(F (1, x0 +
p− x0

s
)) . (7)

This equation suggests a strong phase coherence relationship across scale and space. An
illustration is shown in Fig. 1(a), where it can be seen that equal-phase contours in the(s, p)
plane form straight lines defined by

x0 +
p− x0

s
= C , (8)

whereC can be any real constant. Further, all these straight lines converge exactly at the
location of the featurex0. More generally, the phase at any given scale may be computed
from the phase at any other scale by simply rescaling the position axis.

This phase coherence relationship relies on the scale-invariance property of Eq. (5) of the
signal. Analytically, the only type of continuous spectrum signal that satisfies Eq. (5)
follows a power law:

F0(ω) = K0 ωP . (9)
In the spatial domain, the functionsf0(x) that satisfy this scale-invariance condition in-
clude the step functionf0(x) = K(u(x)− 1

2 ) (whereK is a constant andF0(ω) = K/jω)
and its derivatives, such as the delta functionf0(x) = Kδ(x) (whereK is a constant and
F0(ω) = K). Notice that both functions off0(x) are precisely localized in space.

Figure 1(b) shows that this precisely convergent phase behavior is disrupted by blurring.
Specifically, if we convolve a sharp feature (e.g., an step edge) with a low-pass filter, the
resulting signal will no longer satisfy the scale-invariant property of Eq. (5) and the phase
coherence relationship of Eq. (7). Thus, a measure of phase coherence can be used to detect
blur. Note that the phase congruency relationship [11, 17], which expresses the alignment
of phase at the location of a feature, corresponds to the center (vertical) contour of Fig. 1,
which remains intact after blurring. Thus, phase congruency measures [11, 17] provide no
information about blur.
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Fig. 1: Local phase coherence of precisely localized (scale-invariant) features, and the
disruption of this coherence in the presence of blur. (a) precisely localized features. (b)
blurred features.

3 Phase Prediction in Natural Images

In this section, we show that if the local image features are precisely localized (such as the
delta and the step functions), then in the discrete wavelet transform domain, the phase of
nearby fine-scale coefficients can be well predicted from their coarser-scale parent coeffi-
cients. We then examine these phase predictions in both sharp and blurred natural images.

3.1 Coarse-to-fine Phase Prediction

From Eq. (3), it is straightforward to prove that forf0(x) = Kδ(x),

Φ(F (1, p)) = −ωc (p− x0) + n1π , (10)

wheren1 is an integer whose value depends on the value range ofωc (p− x0) and the sign
of Kg(p− x0). Using the phase coherence relation of Eq. (7), we have

Φ(F (s, p)) = −ωc (p− x0)
s

+ n1π . (11)

It can also be shown that for a step functionf0(x) = K[u(x) − 1
2 ], wheng(x) is slowly

varying andp is located near the feature locationx0,

Φ(F (s, p)) ≈ ωc (p− x0)
s

− π

2
+ n2π . (12)

Similarly, n2 is an integer.

The discrete wavelet transform corresponds to a discrete sampling of the continuous
wavelet transformF (s, p). A typical sampling grid is illustrated in Fig. 2(a), where be-
tween every two adjacent scales, the scale factors doubles and the spatial sampling rate
is halved. Now we consider three consecutive scales and group the neighboring coeffi-
cients{a, b1, b2, c1, c2, c3, c4} as shown in Fig. 2(a), then it can be shown that the phases
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Fig. 2: Discrete wavelet transform sampling grid in the continuous wavelet transform do-
main. (a) 1-D sampling; (b) 2-D sampling.

of the finest scale coefficients{c1, c2, c3, c4} can be well predicted from the coarser scale
coefficients{a, b1, b2}, provided the local phase satisfies the phase coherence relationship.
Specifically, the estimated phaseΦ̂ for {c1, c2, c3, c4} can be expressed as
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We can develop a similar technique for the two dimensional case. As shown in Fig. 2(b),
the phase prediction expression from the coarser scale coefficients{a, b11, b12, b21, b22} to
the group of finest scale coefficients{cij} is as follows:

Φ̂({cij}) = Φ
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3.2 Image Statistics

We decompose the images using the “steerable pyramid” [23], a multi-scale wavelet de-
composition whose basis functions are spatially localized, oriented, and roughly one octave
in bandwidth. A 3-scale 8-orientation pyramid is calculated for each image, resulting in 26
subbands (24 oriented, plus highpass and lowpass residuals). Using Eq. (14), the phase
of each coefficient in the 8 oriented finest-scale subbands is predicted from the phases of
its coarser-scale parent and grandparent coefficients as illustrated in Fig. 2(b). We applied
such a phase prediction method to a dataset of 1000 high-resolution sharp images as well as
their blurred versions, and then examined the errors between the predicted and true phases
at the fine scale.

The summary histograms are shown in Fig. 3. In order to demonstrate how blurring affects
the phase prediction accuracy, in all these conditional histograms, the magnitude axis cor-
responds to the coefficient magnitudes of the original image, so that the same column in the
three histograms correspond to the same set of coefficients in spatial location. From Fig.
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Fig. 3: Local phase coherence statistics in sharp and blurred images. (a),(b),(c): example
natural, blurred and highly blurred images taken from the test image database of 1000
(512×512, 8bits/pixel, gray-scale) natural images with a wide variety of contents (humans,
animals, plants, landscapes, man-made objects, etc.). Images are cropped to 200×200 for
visibility; (d),(e),(f): conditional histograms of phase prediction error as a function of the
original coefficient magnitude for the three types of images. Each column of the histograms
is scaled individually, such that the largest value of each column is mapped to white; (g)
phase prediction error histogram of significant coefficients (magnitude greater than 20).

3, we observe that phase coherence is highly effective in natural images and the phase pre-
diction error decreases as the coefficient magnitude increases. Larger coefficients implies
stronger local phase coherence. Furthermore, as expected, the blurring process clearly re-
duces the phase prediction accuracy. We thus hypothesize that it is perhaps this disruption
of local phase coherence that the visual system senses as being “unnatural”.

4 Discussion

This paper proposes a new view of image blur based on the observation that blur induces
distortion of local phase, in addition to the widely noted loss of high-frequency energy.
We have shown that isolated precisely localized features create strong local phase coher-
ence, and that blurring disrupts this phase coherence. We have also developed a particular
measure of phase coherence based on coarse-to-fine phase prediction, and shown that this
measure can serve as an indication of blur in natural images. In the future, it remains to
be seen whether the visual systems detect blur by comparing the relative amplitude of lo-
calized filters at different scales [7], or alternatively, comparing the relative spread of local
phase across scale and space.

The coarse-to-fine phase prediction method was developed in order to facilitate examina-
tion of phase coherence in real images, but the computations involved bear some resem-
blance to the behaviors of neurons in the primary visual cortex (area V1) of mammals.
First, phase information is measured using pairs of localized bandpass filters in quadra-
ture, as are widely used to describe the receptive field properties of neurons in mammalian
primary visual cortex (area V1) [24]. Second, the responses of these filters must be ex-



ponentiated for comparison across different scales. Many recent models of V1 response
incorporate such exponentiation [25]. Finally, responses are seen to be normalized by the
magnitudes of neighboring filter responses. Similar “divisive normalization” mechanisms
have been successfully used to account for many nonlinear behaviors of neurons in both
visual and auditory neurons [26, 27]. Thus, it seems that mammalian visual systems are
equipped with the basic computational building blocks that can be used to process local
phase coherence.

The importance of local phase coherence in blur perception seems intuitively sensible from
the perspective of visual function. In particular, the accurate localization of image features
is critical to a variety of visual capabilities, including various forms of hyperacuity, stere-
opsis, and motion estimation. Since the localization of image features depends critically
on phase coherence, and blurring disrupts phase coherence, blur would seem to be a partic-
ularly disturbing artifact. This perhaps explains the subjective feeling of frustration when
confronted with a blurred image that cannot be corrected by visual accommodation.

For purposes of machine vision and image processing applications, we view the results of
this paper as an important step towards the incorporation of phase properties into statistical
models for images. We believe this is likely to lead to substantial improvements in a variety
of applications, such as deblurring or sharpening by phase restoration, denoising by phase
restoration, image compression, image quality assessment, and a variety of more creative
photographic applications, such as image blending or compositing, reduction of dynamic
range, or post-exposure adjustments of depth-of-field.

Furthermore, if we would like to detect the position of an isolated precisely localized fea-
ture from phase samples measured above a certain allowable scale, then infinite precision
can be achieved using the phase convergence property illustrated in Fig. 1(a), provided
the phase measurement is perfect. In other words, the detection precision is limited by
the accuracy of phase measurement, rather than the highest spatial sampling density. This
provides a workable mechanism of “seeing beyond the Nyquist limit” [28], which could ex-
plain a number of visual hyperacuity phenomena [29, 30], and may be used for the design
of super-precision signal detection devices.
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