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Humans are able to detect blurring of visual images, but the mechanism
by which they do so is not known. A traditional view is that a blurred
image looks “unnatural” because of the reduction in energy at high fre-
quencies. We argue that the disruption of local phase is a more important
factor for detecting blur. We first demonstrate that a sharp image with its
high frequency energy reduced but local phase preserved appears much
sharper than a blurred image with its high frequency energy corrected
but local phase uncorrected. We show that precisely localized features
such as step edges result in strong local phase coherence structures across
scale and space in the complex wavelet transform domain, and blurring
causes loss of such phase coherence. We propose a technique for coarse-
to-fine phase prediction of wavelet coefficients, and observe that (1) such
predictions are highly effective in natural images, (2) phase coherence
increases with the strength of image features, and (3) blurring disrupts
the phase coherence relationship in images. We thus lay the groundwork
for a new theory of perceptual blur estimation, as well as a variety of
algorithms for restoration and manipulation of photographic images.

1 Introduction

Blur is one of the most common forms of image distortion. It can arise from a variety
of sources, such as atmospheric scatter, lens defocus, optical aberrations of the lens, and
spatial and temporal sensor integration. Human observers are bothered by blur, and our
visual systems are quite good at reporting whether an image appears blurred (or sharpened)
[1,2]. However, the mechanism by which this is accomplished is not well understood.

Clearly, detection of blur requires some model of what constitutes an unblurred image. In
recent years, there has been a surge of interest in the modelling of natural images, both for
purposes of improving the performance of image processing and computer vision systems,
and also for furthering our understanding of biological visual systems. Early statistical
models were almost exclusively based on a description of global Fourier power spectra.
Specifically, image spectra are found to follow a power law (see [3] for a review). This
model leads to an obvious method of detecting and compensating for blur. Specifically,
blurring usually reduces the energy of high frequency components, and thus the power
spectrum of a blurry image should fall faster than a typical natural image. The standard
formulation of the “deblurring” problem, due to Wiener [4], aims to restore those high



frequency components to their original amplitude. But this proposal is problematic, since
individual images show significant variability in their Fourier amplitudes, both in their
shape and in the rate at which they fall [1]. In particular, simply reducing the number
of sharp features (e.g., edges) in an image can lead to a steeper falloff in global amplitude
spectrum, even though the image will still appear sharp [5]. Nevertheless, the visual system
seems to be able to compensate for this when estimating blur [1,2,5].

Over the past two decades, researchers from many communities have converged on a view
that images are better represented using bases of multi-scale bandpass oriented filters.
These representations, loosely referred to as “wavelets”, are effective at decoupling the
high-order statistical features of natural images. In addition, they provide the most basic
model for neurons in the primary visual cortex of mammals, which are presumably adapted
to efficiently represent the visually relevant features of images. Many recent statistical im-
age models in the wavelet domain are based on the amplitudes of the coefficients, and the
relationship between the amplitudes of coefficients in local neighborhoods or across differ-
ent scales [e.g. 6]. In both human and computer vision, the amplitudes of complex wavelets
have been widely used as a mechanism for localizing/representing features [e.g. 7–9]. A
number of authors propose wavelet amplitude models for blur perception [1,5].

In this paper, we argue that changes in wavelet amplitudes do not provide an adequate
measure of blur, and propose that disruptions of local phase are more important. This seems
counterintuitive, because when an image is blurred through convolution with a symmetric
linear filter, the phase information in the (global) Fourier transform domain does not change
at all. But we show that this is not true forlocal phase information.

In previous work, Fourier phase has been found to carry important information about image
structures and features [10]. It has been pointed out that at the points of isolated even and
odd symmetric features such as lines and step edges, thearrival phasesof all Fourier
harmonics are identical [8].Phase congruency[8, 11] provides a quantitative measure for
the agreement of such phase alignment pattern. It has also been shown that maximum phase
congruency feature detection is equivalent to maximum local energy model [12]. Local
phase has been used in a number of machine vision and image processing applications,
such as estimation of image motion [13] and disparity [14], description of image textures
[15], and recognition of persons using iris patterns [16]. However, the behaviors of local
phase at different scales in the vicinity of image features, and the means by which blur
affects such behaviors have not been deeply investigated.

2 A Motivating Example

A motivating example is shown in Fig. 1, where the original “Einstein” image (Fig. 1(a)) is
blurred with a circular-symmetric Gaussian filter. We decompose the original image using
the “steerable pyramid” [17], a multi-scale linear decomposition whose basis functions
are spatially localized, oriented, and roughly one octave in bandwidth. We then multiply
the transform coefficients at each scale with an appropriate scaling factor, so that the total
energy of the coefficients at each scale matches that of the blurred image (Fig. 1(b)). Since
all the coefficients in the same scale are multiplied by the same factor, the phase information
of the coefficients is preserved. An inverse steerable pyramid transform is then applied to
create Fig. 1(c). Figure 1(d) is generated with the same procedure, but with the roles of
Fig. 1(a) and Fig. 1(b) reversed. Interestingly, Fig. 1(c) appears significantly sharper than
Fig. 1(d), even though its spectral falloff is matched to the blurred image. On the other hand,
the fact that the local phase information of the sharp image is well preserved in Fig. 1(c) but
significantly altered in Fig. 1(d) suggests that the disruption of local phase may be a more
important factor for blur perception. To take explicit advantage of this notion, for purposes
of both detection and correction of blur, we would like to understand the typical behavior
of local phase in natural images.
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Fig. 1: Demonstration of the significance of local phase in blur perception. (a) original
image; (b) blurred image, obtained by convolving with a circular-symmetric Gaussian low-
pass filter; (c) Image with high-frequency band energy reduced from image (a) to match
that of image (b); (d) Image with high-frequency band energy elevated from image (b) to
match that of image (a). The images are cropped for visibility.

3 Local Phase Coherence of Isolated Features

Wavelet transforms provide a convenient framework for localized representation of signals
simultaneously in space and frequency. The wavelets are dilated/contracted and translated
versions of a “mother wavelet”w(x). In this paper, we consider symmetric (linear phase)
wavelets whose mother wavelets may be written as a modulation of a low-pass filter:

w(x) = g(x) ejωcx , (1)

whereωc is the center frequency of the modulated band-pass filter, andg(x) is a slowly
varying and symmetric function. The family of wavelets derived from the mother wavelet
are then

ws,p(x) =
1√
s

w
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s

)
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)
ejωc(x−p)/s , (2)

wheres ∈ R+ is the scale factor, andp ∈ R is the translation factor. Considering the fact
thatg(−x) = g(x), the wavelet transform of a given real signalf(x) can be written as
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]
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Now assume that the signalf(x) being analyzed is localized near the positionx0, and we
rewrite it into a functionf0(x) that satisfiesf(x) = f0(x − x0). Using the convolution
theorem and the shifting and scaling properties of the Fourier transform, we can write

F (s, p) =
1
2π
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−∞
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1
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)
G(ω − ωc) ejω(p−x0)/s dω , (4)

whereF (ω), F0(ω) andG(ω) are the Fourier transforms off(x), f0(x) andg(x), respec-
tively.

We now examine how the phase ofF (s, p) evolves across spacep and scales. From Eq.
(4), we see that the phase ofF (s, p) highly depends on the nature ofF0(ω). If F0(ω) is
scale-invariant, meaning that

F0

(ω

s

)
= K(s)F0(ω) , (5)

whereK(s) is a real function of onlys, but independent ofω, then from Eq. (4) and Eq.
(5) we obtain
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2π
√
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Since bothK(s) ands are real, we can write the phase as:

Φ(F (s, p)) = Φ(F (1, x0 +
p− x0

s
)) . (7)

This equation suggests a strong phase coherence relationship across scale and space. An
illustration is shown in Fig. 2(a), where it can be seen that equal-phase contours in the(s, p)
plane form straight lines defined by

x0 +
p− x0

s
= C , (8)

whereC can be any real constant. Further, all these straight lines converge exactly at the
location of the featurex0. More generally, the phase at any given scale may be computed
from the phase at any other scale by simply rescaling the position axis.

This phase coherence relationship relies on the scale-invariance property of Eq. (5) of the
signal. Analytically, the only type of continuous spectrum signal that satisfies Eq. (5)
follows a power law:

F0(ω) = K0 ωP . (9)
In the spatial domain, the functionsf0(x) that satisfy this scale-invariance condition in-
cludes the step functionf0(x) = K(u(x)− 1

2 ) (whereK is a constant andF0(ω) = K/jω)
and its derivatives, such as the delta functionf0(x) = Kδ(x) (whereK is a constant and
F0(ω) = K). Notice that both functions off0(x) are precisely localized in space.

Figure 2(b) shows that this precisely convergent phase behavior is disrupted by blurring.
Specifically, if we convolve a sharp feature (e.g., an step edge) with a low-pass filter, the
resulting signal will no longer satisfy the scale-invariant property of Eq. (5) and the phase
coherence relationship of Eq. (7). Thus, a measure of phase coherence can be used to detect
blur. Note that the phase congruency relationship [8, 11], which expresses the alignment
of phase at the location of a feature, corresponds to the center (vertical) contour of Fig. 2,
which remains intact after blurring. Thus, phase congruency measures [8, 11] provide no
information about blur.
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Fig. 2: Local phase coherence of precisely localized (scale-invariant) features, and the
disruption of this coherence in the presence of blur. (a) precisely localized features. (b)
blurred features.

4 Phase Prediction in Natural Images

In this section, we show that if the local image features are precisely localized (such as the
delta and the step functions), then in the discrete wavelet transform domain, the phase of
nearby fine-scale coefficients can be well predicted from their coarser-scale parent coeffi-
cients. We then examine these phase predictions in both sharp and blurred natural images.

4.1 Coarse-to-fine Phase Prediction

From Eq. (3), it is straightforward to prove that forf0(x) = Kδ(x),

Φ(F (1, p)) = −ωc (p− x0) + n1π , (10)

wheren1 is an integer whose value depends on the value range ofωc (p− x0) and the sign
of Kg(p− x0). Using the phase coherence relation of Eq. (7), we have

Φ(F (s, p)) = −ωc (p− x0)
s

+ n1π . (11)

It can also be shown that for a step functionf0(x) = K[u(x) − 1
2 ], wheng(x) is slowly

varying andp is located near the feature locationx0,

Φ(F (s, p)) ≈ ωc (p− x0)
s

− π

2
+ n2π . (12)

Similarly, n2 is an integer.

The discrete wavelet transform corresponds to a discrete sampling of the continuous
wavelet transformF (s, p). A typical sampling grid is illustrated in Fig. 3(a), where be-
tween every two adjacent scales, the scale factors doubles and the spatial sampling rate
is halved. Now we consider three consecutive scales and group the neighboring coeffi-
cients{a, b1, b2, c1, c2, c3, c4} as shown in Fig. 3(a), then it can be shown that the phases
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Fig. 3: Discrete wavelet transform sampling grid in the continuous wavelet transform do-
main. (a) 1-D sampling; (b) 2-D sampling.

of the finest scale coefficients{c1, c2, c3, c4} can be well predicted from the coarser scale
coefficients{a, b1, b2}, provided the local phase satisfies the phase coherence relationship.
Specifically, the estimated phaseΦ̂ for {c1, c2, c3, c4} can be expressed as

Φ̂




c1

c2

c3

c4


 = Φ


(a∗)2 ·




b3
1

b2
1b2

b1b
2
2

b3
2





 . (13)

We can develop a similar technique for the two dimensional case. As shown in Fig. 3(b),
the phase prediction expression from the coarser scale coefficients{a, b11, b12, b21, b22} to
the group of finest scale coefficients{cij} is as follows:

Φ̂({cij}) = Φ
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4.2 Image Statistics

We use a 3-scale 8-orientation “steerable pyramid” [17] to decompose the image into 26
subbands (24 oriented, plus highpass and lowpass residuals). Using Eq. (14), the phase
of each coefficient in the 8 oriented finest-scale subbands is predicted from the phases of
its coarser-scale parent and grandparent coefficients as illustrated in Fig. 3(b). We applied
such a phase prediction method to a dataset of 1000 high-resolution sharp images as well as
their blurred versions, and then examined the errors between the predicted and true phases
at the fine scale. The summary histograms are shown in Fig. 4. In order to demonstrate
how blurring affects the phase prediction accuracy, in all these conditional histograms, the
magnitude axis corresponds to the coefficient magnitudes of the original image, so that the
same column in the three histograms correspond to the same set of coefficients in spatial
location. From Fig. 4, we observe that phase coherence is highly effective in natural images
and the phase prediction error decreases as the coefficient magnitude increases. Larger
coefficients implies stronger local phase coherence. Furthermore, as expected, the blurring
process clearly reduces the phase prediction accuracy. We thus hypothesize that it is this
disruption of local phase coherence that the visual system senses as being ”unnatural”.
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Fig. 4: Local phase coherence statistics in sharp and blurred images. (a),(b),(c): example
natural, blurred and highly blurred images taken from the test image database of 1000
(512×512, 8bits/pixel, gray-scale) natural images with a wide variety of contents (humans,
animals, plants, landscapes, man-made objects, etc.). Images are cropped to 200×200 for
visibility; (d),(e),(f): conditional histograms of phase prediction error as a function of the
original coefficient magnitude for the three types of images. Each column of the histograms
is scaled individually, such that the largest value of each column is mapped to white; (g)
phase prediction error histogram of significant coefficients (magnitude greater than 20).

5 Discussion

This paper proposes a new view of image blur based on the observation that blur-induced
distortions of local phase contribute more to the perception of blurriness than the widely
noted loss of high-frequency energy. We have shown that isolated precisely localized fea-
tures create strong local phase coherence, and that blurring disrupts this phase coherence.
We have also developed a particular measure of phase coherence based on coarse-to-fine
phase prediction, and shown that this measure can serve as an indication of blur in natural
images. We are currently working on methods for deblurring based on this measure.

The importance of local phase coherence in blur perception seems intuitively sensible from
the perspective of visual function. In particular, the accurate localization of image features
is critical to a variety of visual capabilities, including various forms of hyperacuity, stere-
opsis, and motion estimation. Since the localization of image features depends critically
on phase coherence, and blurring disrupts phase coherence, blur would seem to be a partic-
ularly disturbing artifact. This perhaps explains the subjective feeling of frustration when
confronted with a blurred image that cannot be corrected by visual accommodation.

For purposes of machine vision and image processing applications, we view the results of
this paper as an important step towards the incorporation of phase properties into statistical
models for images. We believe this is likely to lead to substantial improvements in a variety
of applications, such as deblurring or sharpening by phase restoration, denoising by phase
restoration, image compression, and a variety of more creative photographic applications,
such as image blending or compositing, reduction of dynamic range, or post-exposure ad-
justments of depth-of-field.



Furthermore, if we would like to detect the position of an isolated precisely localized fea-
ture from phase samples measured above a certain allowable scale, then infinite precision
can be achieved using the phase convergence property illustrated in Fig. 2(a), provided the
phase measurement is perfect. In other words, the detection precision is limited by the
accuracy of phase measurement, rather than the highest spatial sampling density. This pro-
vides a workable mechanism of “seeing beyond the Nyquist limit” [18] and may be used
for the design of super-precision signal detection devices.
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