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Multiresolution representations play an important role
in image processing and computer vision, as well as in mod-
eling stochastic processes [e.g., 1, 2]. Our work lies in the
intersection of these areas: we seek to develop and study a
new class of multiscale stochastic processes that are capable
of capturing the statistics of natural images. Such models
play a central role in a variety of applications in image pro-
cessing, such as compression, denoising, and enhancement.

Our work is motivated by empirical observations of nat-
ural image statistics when represented in multiscale bases.
It is now well-known that wavelet marginal distributions
are highly non-Gaussian, with heavy tails and high kurto-
sis [e.g., 3]. Moreover, in agreement with theoretical anal-
ysis of1=f processes [e.g., 4], the detail coefficients of or-
thonormal wavelets applied to natural images tend to be ap-
proximately uncorrelated. Despite this approximate decor-
relation, they are by no means independent. Indeed, they
exhibit a strong self-reinforcing characteristic in that if one
wavelet coefficient is large in absolute value, then “nearby”
coefficients (where nearness is measured in scale, position,
or orientation) also are more likely to be large in absolute
value [5, 6]. Similar behaviors have been observed by au-
thors modeling turbulent fluid flow [e.g., 7].

We have developed a class of non-Gaussian multiscale
processes, defined by random coarse-to-fine cascades on
trees of multiresolution coefficients, that exhibit precisely
these types of behavior. Our cascade models represent a
significant advance over linear models defined on multiscale
trees [1]. Although linear models lead to exceptionally ef-
ficient algorithms for image processing, they cannot cap-
ture the significant types of non-Gaussianity and nonlinear
cascade behavior present in wavelet coefficients of natural
images. To capture such behavior, we define cascades that
reproduce a rich semi-parametric class of random variables
known as Gaussian scale mixtures (GSM). We demonstrate
that this model class not only captures natural image statis-
tics, but also facilitates efficient and optimal processing,
which we illustrate by application to image denoising. More
details of the work reported here can be found in [8, 9].
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1. GAUSSIAN SCALE MIXTURES

A GSM vectorc of lengthm has the representation as a

product of two independent random variablesc
d
=
p
z u,

where
d
= indicates equality in distribution. The positive

scalar random variablez is themixing variablewith den-
sity pz, whereasu � N (0; Q) is a Gaussian random vector.
Samples ofc are obtained by sampling a Gaussian random
vectoru and multiplying each component by the mixing co-
efficient drawn independently from densitypz. As a conse-
quence, any GSM vector has a density given by an integral:

pc(c) =

Z
1

0

1

(2�)m=2 jzQj1=2 exp
�
�c

TQ�1c

2z

�
pz(z)dz:

Finite mixtures of Gaussians correspond to the special case
wherepz is a discrete probability mass function. A num-
ber of well-known heavy-tailed distributions belong to the
GSM class, including the generalized Gaussian (or stretched
exponential) family, the�-stable family, and the Studentt-
variables. In previous work [8], we have shown that GSM
vectors can account well for the non-Gaussian properties
of natural images, including marginal (Fig. 1) and pairwise
joint distributions (Fig. 2).

2. RANDOM CASCADES ON WAVELET TREES

In order to build global probability distribution on the space
of images consistent with these local descriptions, it is nat-
ural to make use of a probabilistic graphical model. The
simplest choice is the quad tree associated with the wavelet
transform. Letc(s) represent ad-vector of wavelet coef-
ficients at nodes, corresponding to the same spatial scale
and position but different orientations. The multiplier vari-
ables for a large class of GSMs can be generated by pass-
ing a Gaussian randomd-vectorx(s) through a nonlinearity
h : Rd ! R

d . Thus, the GSM coefficient can be written
asc(s) = h

�
x(s)

� � u(s), whereh
�
x(s)

� � p
z(s) cor-

responds to the mixing variable;u(s) � N (0; Q(s)) is a
Gaussian random vector of lengthd; and� denotes entry-
wise multiplication.

We define coarse-to-fine stochastic dynamics on the state
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Fig. 1. Log histograms of GSM model fits (dotted line) to the log empirical histograms of steerable pyramid coefficients (a single
subband) applied to natural images. Parameters are computed by numerical minimization of the Kullback-Leibler divergence.

variablesx(s) andu(s):

x(s) = A(s)x(s�
) +B(s)w(s)

u(s) = C(s)u(s�
) +D(s)�(s);

wheres�
 denotes the parent node ofs. Herex(s) andu(s)
ared-vectors, andw and� areN (0; I) process noises of
lengthd that are mutually uncorrelated and white. Obser-
vations of the vectorc(s) of wavelet coefficients are given
by:

y(s) = h
�
x(s)

�� u(s) + v(s);

wherev(s) � N (0; R(s)) is white observation noise. Note
that while the state dynamics correspond to a multiscale au-
togressive (MAR) process [see 1], the nonlinear observation
equation produces a GSM random vector at each node.

The tree structure imposes a powerful Markov property:
Any two vectors of wavelet coefficientsc(s) andc(t) are
conditionally independent given their common state ances-
torsx(s^ t) andu(s^ t). Given this structure, it is straight-
forward to show that the joint distributions of any pair of
wavelet vectorsc(s) andc(t) are given by:

c(s)
d
= h

h
A(s; t)x(s ^ t) + �1(s)

i
� u(s)

c(t)
d
= h

h
A(t; s)x(s ^ t) + �2(t)

i
� u(t)

where�1 and�2 are uncorrelated white noises, and

A(s; t) ,
s^tY
r=s

A(r): (1)

The contours of joint distributions of wavelet coefficients
from natural images show a wide range of shapes, ranging
from circular to a concave star-shape (see left three panels
of Fig. 2). Others proposed modeling these joint contours
with a 2D generalized Gaussian [10]. Here we show that
the dependency structure of a random tree cascade accounts
remarkably well for this range of behavior. In particular,
we consider a random cascade on a tree withA(s) � 
 and
B(s) �

p
1� 
2; with u white in scale (typical for natural

images); andh(x) , kxk. For nodess andt at the same
scale and orientation but spatially separated by distance�,
equation (1) yieldsA(s; t) / 
[log 2(�)+1], which allows us
to predict the form of any pairwise joint distributions. The
top row of Fig. 2 shows the empirical behavior of steerable
pyramid wavelet coefficients applied to natural images, as
compared to coefficients of the simulated random cascade
in the bottom row. The shapes of the joint contours of im-
age data and simulated model (left three panels) are strik-
ingly similar; the joint conditional histograms (right three
panels) demonstrate that the relationship between wavelet
coefficients ranges from strong dependence of quadrature
phase pairs, to near-independence of distant pairs. Thus,
a GSM cascade on a tree accounts well for pairwise joint
dependencies of coefficients at a range of separations.

3. STATE ESTIMATION

An important problem is the estimation of the state process
x(s), which determines the mixing variablesh

�
x(s)

�
. Here

we outline an algorithm for maximum a posteriori (MAP)
estimation of the statex(s). Although the algorithm is gen-
erally applicable, it will be particularly efficient under the
assumption thatu(s) is uncorrelated from node-to-node. We
begin by forming a Gaussian vectorx by stacking up the
vectorsx(s) in a fixed order; define a vector of observa-
tionsy in a similar fashion. The problem of MAP estima-
tion corresponds to minimizing the negative log likelihood
f(x) , � log p(xjy). We apply Newton’s method to the
problem. That is, we generate a sequencefxng according
to the recursion:

x
n+1 = x

n + �n
�r2f(xn)

��1rf(xn)
where�n is a stepsize;rf (respectivelyr2f ) is the gra-
dient,r2f is the Hessian off . Associated with Newton’s
method is the hurdle that computing the descent direction
dn =

�r2f(xn)
��1rf(xn) may be very costly, especially

in application to images, where the dimension of the Hes-
sian will be enormous (� 105).

Clearly, it is crucial to exploit structure inherent in the
problem. We have observed that computing the descent di-
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Fig. 2. Left three panels show log contours of joint probability for pairs of wavelet coefficients at same scale and orientation,
but varying spatial separation. Right three panels show joint conditional histograms for the same pairs of coefficients. Here each
column of the 2D histogram corresponds to a 1D conditional histogram of the wavelet coefficient conditioned on its neighbor.
Intensity corresponds to frequency of occurrence, except that each column has been independently rescaled to fill the full range.

rection can be reformulated as an equivalent linear-Gaussian
estimation problem. Such problems can be solved very quickly
byO(d3N) algorithms [see 1], whered is the dimension of
x(s) andN is the total number of nodes in the tree. This
leads to a hybrid algorithm, where the quadratic approxi-
mation inherent in Newton’s method is performed globally
on the entire graph, but the local tree structure is exploited
in the computation of each descent direction. As a Newton-
like method, the resulting algorithm has a number of desir-
able properties: namely, convergence to a stationary point
is guaranteed, and under suitable regularity conditions, the
rate of convergence is supergeometric [11]. This estimation
algorithm is described in more detail in [9].

Lastly, when conditioned onbx(s), the Bayes least square
estimate of wavelet coefficientsc(s) = h

�
x(s)

��u(s) from
the noisy observationsy(s) = c(s) + v(s) is given by the
standard formula:

bc(s) = Pc
�
Pc +R(s)

��1
y(s)

whereR(s) is the covariance matrix of the observation noise,
andPc � Pc(s; bx(s)) is the covariance matrix of the vector
c(s) conditioned on the estimatebx(s).

A related problem is that of estimating the system ma-
trices (e.g.,A;B) involved in the state dynamics. For this
purpose, we have developed an approximate EM technique
that exploits the state estimation algorithm at each step. We
refer the interested reader to [9].

4. RESULTS

Fig. 3 illustrates a typical sample path of a 1D GSM process
on a chain (a special case of tree), as well as the behavior of
the estimator based on noisy observations (SNR 2.76 dB).
Observe that the sample path alternates between regions of
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Fig. 3. Estimation of a 1-D GSM process generated
with h(x) , (x3)+ from measurements contaminated by
white Gaussian noise.

low amplitude values, interspersed with regions of high am-
plitude process values. Changes in the premultiplierx(s)
cause the transition from one region to another. The SNR
of the estimatebc(s) shown in Figure 3(a) is9:71 dB, which
is within 0:50 dB of the ideal performance assuming perfect
knowledge of the premultiplierx(s) at each node. Note that
the estimator effectively suppresses noise in regions where
the multiplierh(x(s)) is of low amplitude, while simultane-
ously preserving peaks in high amplitude regions.

We have also applied the algorithm to denoise natural
images, using a 4-orientation steerable pyramid [12], and
various choices of the nonlinearity. Here we compare the re-
sults of our algorithm withh(x) = (x5)+ to Wiener filtering
applied to each subband (linear), to MATLAB’s adaptive fil-
tering (wiener2.m), as well as to thresholding. Reported in
Table 1 are SNR (dB) results for the256� 256Einstein im-
age for four levels of SNR. Our results are superior in both
SNR and visual quality to the other estimators. However,
denoising with local estimates of the multiplier [e.g. 13]
yields higher SNR results, suggesting that the tree structure
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Orig. Linear Adapt. Thres. GSM Tree

1.59 9.28 8.47 10.12 10.54

4.80 10.61 11.29 11.71 12.31

9.02 12.58 14.23 14.04 14.68

13.06 14.96 15.95 15.89 16.83

Table 1. Denoising results (SNR in dB) for256 � 256
Einstein image using a 4-orientation steerable pyramid.

does not fully capture all dependencies.

5. DISCUSSION

In summary, we have developed a semi-parametric class
of non-Gaussian multiscale statistical processes defined by
random cascades on wavelet trees. This model class is rich
enough to accurately capture the remarkably regular non-
Gaussian features of natural images, but sufficiently struc-
tured to permit estimation of the underlying state variables.
We showed that our models accurately fit both the marginal
and joint histograms of wavelet coefficients from natural
images. We developed a Newton-like method for exact MAP
state estimation that exploits fast algorithms for tree estima-
tion, and hence is very efficient. Applications of this algo-
rithm to denoising of both 1D signals and natural images
were presented.

The GSM-tree model class is related to a number of
previous approaches to image coding and denoising. First,
the coefficients generated by GSM cascades exhibit pre-
cisely the self-reinforcing property exploited by zerotree en-
coders [e.g., 14]. Second, GSM models induce a scission of
a wavelet coefficient into an unknown multiplier or variance
times another random component. Forms of this scission
are seen in a number of approaches to image coding and de-
noising [e.g. 13, 15, 16, 6]. Most approaches have assumed
the multiplier to be fixed but unknown, and estimated it in
a local and suboptimal fashion. Our GSM framework al-
lows a choice of prior on the multiplier, and the associated
algorithm efficiently computes the exact MAP estimate. A
close relative of the GSM-tree model class are discrete-state
Gaussian mixtures on trees [17]. In contrast to these finite
mixtures, we have advocated the use of infinite mixtures of
Gaussians. Further discussion of links between GSM mod-
els and other work can be found in [9].

A number of extensions to the GSM-tree model pre-
sented here are possible. Although we have assumed a fixed
parametric form of the nonlinearity, using a nonparametric
form would give more flexibility with no loss of efficiency.
Secondly, while this work has focused on trees, GSM pro-
cesses can also be defined on non-tree graphs with addi-
tional connections betweeen spatial neighbors. Adding ex-
tra connections to the graph will increase modeling power,
but also will necessitate different techniques for estimation.

Lastly, although the current model assumes the same num-
ber of multipliers as coefficients, previous empirical work [8]
shows that a smaller set of multipliers suffices to describe a
number of wavelet coefficients. Estimating the order of the
underlying multiplier process, though a challenging prob-
lem, could lead to more powerful models.
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