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Abstract

We develop a new class of non-Gaussian multiscale stochastic processes de�ned by random cascades
on trees of multiresolution coe�cients. These cascades reproduce a semi-parametric class of random
variables known as Gaussian scale mixtures, members of which include many of the best-known heavy-
tailed distributions. This class of cascade models is rich enough to accurately capture the remarkably
regular and non-Gaussian features of natural images, but also su�ciently structured to permit the
development of e�cient algorithms. In particular, we develop an e�cient technique for estimation, and
demonstrate in a denoising application that it preserves natural image structure (e.g., edges). Our
framework generates global yet structured image models, thereby providing a uni�ed basis for a variety
of applications in signal and image processing, including image denoising, coding and super-resolution.

Running head: Random cascades on wavelet trees for modeling natural images
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1 Introduction

Stochastic models of natural images underlie a variety of applications in image processing and low-level

computer vision, including image coding, denoising and restoration, interpolation and synthesis. Accord-

ingly, the past decade has witnessed an increasing amount of research devoted to developing stochastic

models of images [e.g., 19, 38, 45, 48, 55]. Simultaneously, wavelet transforms and other multiresolution

representations have profoundly in
uenced image processing and low-level computer vision [e.g. 34]. More-

over, multiscale theory has proven useful in modeling and synthesizing a variety of stochastic processes [e.g.,

60, 12, 33].

The intersection of these three lines of research | statistical image models, multiscale representations,

and multiscale modeling of stochastic processes | constitute the focus of this paper. More speci�cally, our

goal is to develop and study a new class of multiscale stochastic processes that are capable of capturing

the statistics of natural images. These processes are de�ned by random coarse-to-�ne cascades on trees of

wavelet or other multiresolution coe�cients. Our cascade models represent a signi�cant variation on linear

models de�ned on multiscale trees [e.g., 8]. Although such models lead to exceptionally e�cient algorithms

for image processing, their linear nature means that they cannot capture the striking types of non-Gaussian

behavior present in wavelet pyramids of natural images. To capture such behavior, we de�ne random

cascades that reproduce a rich semi-parametric class of random variables known as Gaussian scale mixtures

(GSM). We demonstrate that the structure of our random cascade models not only captures natural image

statistics, but also facilitates e�cient and optimal processing, which we illustrate by application to image

denoising. Preliminary forms of parts of this work have appeared in [57, 56].

1.1 The statistics of natural images

We begin with an overview of previous empirical work on natural image statistics. Typically, the term

\natural images" is used in a loose fashion to denote the ensemble of visual images found in the natural

environment, as opposed to other image classes (e.g., radar images). The study of image statistics dates

back to the pioneering work of television engineers in the 1950s [e.g., 20, 39], who studied the autocovariance

function of images. Other work has emphasized the fractal structure of natural images [e.g., 40, 19, 54].

Consistent with fractal behavior, a large body of empirical work has shown that the power spectrum

of natural images obeys a f�
 law [e.g., 19, 45]. Moreover, natural images exhibit highly non-Gaussian

statistical dependencies that can be revealed by examining the statistics of a multiresolution decomposition.

Figure 1 contrasts the marginal distributions of wavelet coe�cients for Gaussian noise with those for a
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typical natural image. Plotted on the vertical axis is log probability, so that the Gaussian curve is an

inverted parabola. In contrast, the marginal distribution obtained from the natural image is heavy-tailed

and kurtotic. These characteristics, which are are found for a wide range of �lters and natural images,

have been modeled by a number of researchers [e.g., 34, 48, 55, 21].

Another important feature of natural images is their approximate scale invariance, meaning that their

statistics are invariant (up to a multiplicative constant) to changes in scale. Intuitively, there should be no

preferred scale in an ensemble of natural images, since (disregarding occlusion) the same scene is equally

likely to be viewed from a range of distances. One manifestation of the scale invariance of natural images is

their f�
 spectral characteristic. The marginal distributions of wavelet coe�cients provide further support

for approximate scale invariance. When they are renormalized by a scale-dependent factor, the resulting

histograms tend to coincide, as they should for a scale-invariant process [21, 27].

While a great deal of attention has been devoted to marginal statistics of single coe�cients, much

less has been paid to joint statistics of groups of wavelet coe�cients. Both theoretical [53] and empirical

studies [e.g., 48] show that coe�cients of orthonormal wavelet decompositions of natural images tend to be

roughly decorrelated. More recent work has shown that, nearby wavelet coe�cients, despite being roughly

uncorrelated, exhibit strong dependencies. The basic form of dependency, which is surprisingly regular

over a range of multiscale transforms, choice of coe�cient pairs, and natural images [3, 48], is illustrated

in Figure 2. Shown are two joint conditional histograms of two wavelet coe�cients, which we call the

\child" and its coarser scale \parent" at the same spatial position and orientation. Each column of the

2D plots corresponds to a 1D conditional histogram p(child jparent) for a �xed value of the parent. Light

intensity corresponds to frequency of occurrence, where each column has been independently rescaled to

form a conditional histogram. Panel (a) corresponds to Gaussian white noise image. As expected, the two

coe�cients are independent, because the shape of the cross-section p(child jparent) is independent of the

value of the parent.

In contrast, panel (b) shows typical behavior for a natural image. Although the two wavelet coe�cients

are approximately decorrelated, they are highly dependent. In particular, the distribution of the child

conditioned on the value of the parent has a standard deviation that scales with the absolute value of the

parent. The characteristic \bow tie" shape of this histograms is found for wavelet coe�cients at nearby

spatial positions, adjacent orientations and spatial scales, and over a wide range of natural images. Thus,

wavelet coe�cients from natural images exhibit a striking self-reinforcing characteristic, in that if one

wavelet coe�cient is large in absolute value, then \nearby" coe�cients (where nearness is measured in

scale, position, or orientation) also are more likely to be large in absolute value.
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1.2 Overview

The previous section lays out a number of striking empirical characteristics that should be reproduced

by a stochastic model for images. The goals of this paper are to develop a mathematical framework for

capturing the structure of natural images, and to show that it can be used as the consistent basis for

a variety of image processing tasks. As with other work on natural images [e.g., 21, 43, 48], we work in

terms of wavelet or other multiresolution coe�cients, which can be identi�ed with the nodes of a multiscale

tree. The basis of our approach is the decomposition of wavelet coe�cients into two underlying stochastic

processes de�ned on the multiscale tree. In particular, we model wavelet coe�cients as a product of one

white multiscale Gaussian process with a second continuous-valued multiplier process. This multiplier

process, which is generated as a nonlinear function of a second Gaussian multiscale process (called the

premultiplier), serves to control the non-Gaussian dependencies among wavelet coe�cients.

The class of marginal distributions generated by this nonlinear mixing is rich, including many of the

best known and well-studied heavy-tailed processes. Moreover, the multiscale tree structure allows us

to construct global probability distributions on all wavelet coe�cients, and hence statistical models for

natural images. We show that this framework is powerful enough capture the key characteristics of natural

images described above; moreover, it does so in a parsimonious fashion, requiring only a small set of

parameters. Both Gaussian processes in the underlying decomposition are modeled by the multiscale

framework of [8, 33], which permits e�cient and optimal algorithms. As a result, although our models

produce highly non-Gaussian statistics, we are able to exploit this embedded linear-Gaussian structure to

great advantage. A number of other researchers [e.g., 21, 54, 43, 44, 48] have studied and exploited the

properties of natural images on which we focus here, and our approach has both some similarities and

important di�erences with these earlier e�orts. Later in the paper, we discuss these links both in image

modeling (Section 3.4), and in image denoising and coding (Section 4.2).

In next section, we provide the mathematical preliminaries for our treatment, including an introduction

to and some new results concerning so-called Gaussian scale mixtures. We also brie
y review the relevant

features of the linear multiscale modeling framework in [e.g., 8, 33]. In Section 3, we introduce the class of

multiscale wavelet cascade models and illustrate the characteristics that can be captured by such models,

including the highly non-Gaussian characteristics of natural images. In Section 4, we develop an algorithm

for MAP estimation of the premultiplier process. On the basis of this estimator, we develop a technique

for image denoising that preserves the structure of natural images. In addition, we describe an algorithm

for estimating model parameters. Section 5 provides illustrative results of applying the wavelet denoising
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algorithm to both 1D signals and natural images. Section 6 summarizes our work, and points out directions

for future work.

2 Mathematical preliminaries

This section develops mathematical preliminaries necessary for de�ning random cascades on wavelet trees.

We begin by introducing the semi-parametric class of random variables known as Gaussian scale mix-

tures (GSMs), and providing some analysis of their properties required for our development. The second

subsection reviews the relevant aspects of previous work on linear multiscale stochastic processes.

2.1 Gaussian scale mixtures

In this section, we introduce and describe some of the basic properties of GSMs, including several new

results whose proofs can be found in Appendix A. To begin, a GSM vector c is formed by taking the

product of two independent random variables, namely a positive scalar random variable z known as the

multiplier or mixing variable, and a Gaussian random vector u distributed as1 N (0;�). With this notation,

we have c
d
=
p
zu, where

d
= denotes equality in distribution.

The choice of mixing variable speci�es the GSM variable c with associated GSM density pc. In partic-

ular, the GSM density can be represented as an integral of a Gaussian kernel function scaled and weighted

by the mixing variable:

pc(c) =

Z
1

0

1

(2�)m=2jz�j1=2 exp
�� c

T��1c

2z

�
pz(z)dz (1)

where pz is the density of the mixing variable, and m is the dimension of the random vector c. As a

special case, the �nite mixture of Gaussians corresponds to choosing pz to be a (discrete) probability mass

function, in which case the integral reduces to a �nite sum.

A �rst question concerns characterizing which random vectors can be represented as GSMs. For sim-

plicity in notation, we focus on the case of a scalar GSM, although the results can be stated more generally.

We begin with a few de�nitions. First of all, recall that the characteristic function of a random variable

c is given by �c(s) =
R
1

�1
exp (i c s)pc(c)dc, where pc is the density function of c. We also need the notion

of complete monotonicity: a function f de�ned on (0;1) is completely monotone if it has derivatives f (n)

of all orders, and (�1)n f (n)(y) � 0 for all y > 0 and n = 0; 1; 2; : : : . With these de�nitions, we have the

following necessary and su�cient conditions:

1The notation x � N (�;�) means that x is distributed as a Gaussian with mean � and covariance �.
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Theorem 1. A symmetric random variable c with characteristic function �c(t) is a GSM if and only if

g(s) , �c(
p
s) is completely monotone.

Proof. See Appendix A.

Andrews and Mallows [1] provide the following necessary and su�cient conditions on the density function:

Theorem 2. Let c have a density function pc that is symmetric about zero. Then c is a GSM if and only

if f(y) , pc(
p
y) is completely monotone.

These two theorems provide straightforward criteria for a GSM in the characteristic function and density

domains respectively.

The family of Gaussian scale mixtures includes several well-known families of random variables, in-

cluding those shown in Table 1. The densities of these variables are characterized by a scale parameter �

and a parameter � that controls the heaviness of the tails. Each family typically exhibits a range of tail

behavior as � varies, ranging from Gaussian to very heavy-tailed. In fact, although the scale parameter

� is analogous to a variance, the tails of many of these variables are so heavy that variances fail to exist.

A classical example is the �-stable family, which has been extensively studied [see 46]. The case � = 2

corresponds to the familiar Gaussian, whereas variables with smaller � > 0 have increasingly heavy tails.

A well-known example with heavy tails is the Cauchy distribution, which corresponds to � = 1. The

generalized Gaussian family, also known as the generalized Laplacian family, is described by a parameter

� 2 (0; 2]. The choice � = 2 again corresponds to a Gaussian, whereas � = 1 is a symmetrized Lapla-

cian. The generalized Gaussian family is often used to model the marginals of wavelet coe�cients [e.g.,

34, 37, 21, 50], where the tail parameter when �t to empirical histograms is typically less than one. The

symmetrized gamma family is also important because it (like the �-stable) is in�nitely divisible [17], a

property emphasized in the context of natural images in [27].

For most of the random variables in Table 1, it is either well-known or straightforward to �nd the density

of the multiplier variable. For the generalized Gaussian family, however, this veri�cation is not entirely

straightforward. In order to show that the generalized Gaussian is a GSM, we �rst need to formally develop

a relation apparent in Table 1 (e.g., compare symmetrized gamma and generalized Student variables).

Theorem 3. Let c
d
=
p
z u be a GSM with characteristic function �c, and let the mixing variable z have

density pz. De�ne f(v) , pz(v)=
p
v, and suppose that

R1
0

f(v)dv < 1, in which case we can consider a

random variable v with the density f . Then the GSM y
d
= 1p

v
u has density py(y) / �c(y):
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Proof. See Appendix A.

On the basis of Theorem 3, one would conjecture that the generalized Gaussian family should have

a representation c
d
= 1p

v
u, with the density of v satisfying f(v) / p�

2

(v)=
p
v, where p�

2

is the density

of a positive �
2
-stable random variable. In order to prove this conjecture, it is necessary to verify that

f (as de�ned above) valid density function: i.e. that
R1
0

f(v) dv < 1. This veri�cation is not entirely

straightforward, because with certain exceptions (e.g., � = 1

2
), there are no explicit forms for the positive

�-stable densities. Nonetheless, it can be proved by using properties of positive �-stable densities [17], and

we summarize the result in the following:

Proposition 1. The generalized Gaussian family has the representation c
d
= 1p

v
u, where in particular, v

has the density proportional to p�
2

(v)=
p
v, and p�

2

is the density of a positive �
2
-stable variable.

Proof. See Appendix A.

In this paper, we will frequently exploit the fact that a large class of non-negative multipliers z can be

generated by passing a Gaussian random variable x through the appropriate function h : R ! R
+ . The

following result characterizes those GSMs that can be represented in this way:

Proposition 2. Let c
d
=
p
zu be a GSM, and suppose that the cumulative distribution function F of the

multiplier is invertible. Then c has an equivalent representation c
d
= h(x)u for an appropriate function

h : R ! R
+ , where x � N (0; 1).

Proof. Let F and G be the CDFs of z and x respectively. Since the inverse function F�1 : [0; 1] ! R
+ is

de�ned, we have z
d
= F�1(G(x)), and h(x) ,

�
F�1(G(x))

�1=2
is the appropriate function.

According to this representation, the multiplier z is given by h2(x). We refer to the Gaussian quantity

x as the premultiplier since it is the stochastic input to the nonlinearity h that generates the multiplier.

The conditions of Proposition 2 (i.e., invertible cumulative distribution function F ) will be satis�ed under

a variety of conditions, including when the density pz is nowhere zero on (0;1). This latter condition

includes all random variables listed in Table 1.

In many cases, it is possible to determine explicitly the form of h. For example, choosing h(x) = jxj
will generate the square root of gamma variables of index 1=2, which allows us to produce the symmetrized

Gamma variable of index 1=2. For the purpose of application, the precise form of GSM may not be

critical. In this context, an advantage of the GSM framework is that it does not require an explicit
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form of the density of c, but instead focuses attention on the multiplier. Our set-up allows an arbitrary

choice of the nonlinearity h, meaning that it permits the use of GSMs which may confer a computational

or analytical advantage. For the results in this paper, we will choose h from parameterized families of

functions that generate random variables with ranges of behavior. One example is the family of functions

f(exp(x=�) j � > 0g, corresponding to the lognormal family listed in Table 1. Another choice is the family

f(x+)� j � > 0g, which generates a class of variables with a range of tail behavior that is qualitatively

similar to the symmetrized Gamma and generalized Gaussian families.2

The GSM class includes many random variables with tails so heavy that variances and lower moments

may fail to exist. Such variables are characterized by polynomial decay in the tails of the distribution,

where the prototypical example is the �-stable family for � < 2. Polynomially-decaying tails are not

appropriate for modeling the wavelet coe�cients of natural images, for which the tails tend to drop o�

more quickly. Therefore, for the applications to natural images in this paper, we consider GSMs for which

variances exist. Such variables can still exhibit highly non-Gaussian tail behavior, as will be clear in our

modeling of wavelet marginal densities.

2.2 Multiscale stochastic processes

In this section, we introduce some of the basic concepts and results concerning linear multiscale models

de�ned on trees. We limit our treatment to those aspects required for subsequent development; the reader

is referred to other literature [e.g., 8, 33, 18, 12] for further details of these models, and their application

to a variety of 1-D and 2-D statistical inference problems.

The processes of interest to us are de�ned on a tree T , such as that illustrated in Figure 3. The nodes

s 2 T are organized, as depicted in the �gure, into a series of scales, which we enumerate m = 0; 1; : : : ;M .

At the coarsest scale m = 0 (the top of the tree) there is a single node s = 0, which we designate the

root node. At the next �nest scale m = 1 are q nodes, that correspond to the children of the root node.

We specialize here to regular trees, so that each parent node has the same number of children (q). This

procedure of moving from parent to child is then applied recursively, so that a node at scale m < M gives

birth to q children at the next scale (m + 1). These children are indexed by s�1; : : : s�q. Similarly, each

node s at scale m > 0 has a unique parent s�
 at scale (m � 1). It should be noted that such trees

arise naturally from multiresolution decompositions. For instance, a wavelet decomposition of a 1D signal

generates a binary tree (q = 2), whereas decomposing an image will generate a quadtree (q = 4).
2Here the notation x

+ denotes the positive part of x, de�ned by x
+ = x for x � 0 and 0 otherwise.
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To de�ne a multiscale stochastic process, we assign to each node of the tree a random vector x(s). The

processes of interest to us are a particular class that are Markov with respect to the graph structure of the

tree. In particular, a multiscale Markov tree process x(s); s 2 T has the property that for any two distinct

nodes s; t 2 T , x(s) and x(t) are conditionally independent given x(�) at any node � on the unique path

from s to t. For example, if we de�ne s^ t as the coarsest-scale node on this path (also the nearest common

ancestor of s and t), then x(s) and x(t) are independent given x(s ^ t).

Multiscale processes in which the random variables x(s) at each node assume a discrete set of values

represent a generalization of the usual (discrete) Markov chain to more general tree graphs. A number

of researchers have studied and made use of such discrete multiscale processes [e.g., 7, 10]. Of particular

relevance here is the work of Baraniuk and colleagues [10, 43], who have used such discrete multiscale

stochastic processes as part of their non-Gaussian modeling framework for signal and image processing. In

Section 3.4, we brie
y discuss this work and its relationship to our framework.

The class of multiscale Markov processes of interest to us are Gaussian processes speci�ed by the

distribution x(0) � N (0; Px(0)) at the root node, together with coarse to �ne dynamics

x(s) = A(s)x(s�
) +B(s)w(s) (2)

where the process noise is white3 on T . The vector x(s) at each node is distributed as N (0; Px(s)) where

the covariance Px(s) , E [x(s)xT (s)] evolves according to the discrete-time Lyapunov equation:

Px(s) = A(s)Px(s�
)A
T (s) +Q(s) (3)

where Q(s) , B(s)BT (s). In this paper, we will pay particular attention to stationary processes, for

which we have A(s) = A, B(s) = B, and Px(s) = Px for all nodes s 2 T , where the covariance Px is the

solution of the Lyapunov equation APxA
T + BBT = Px . Processes de�ned according to the dynamics

in equation (2) are called multiscale autoregressive (MAR) processes. It has been shown that the MAR

framework can e�ectively model a wide range of Gaussian stochastic processes, including one-dimensional

Markov processes [31, 33], 1=f -like processes [8, 12, 11, 32, 60], and Markov random �elds [33, 32].

An additional bene�t of the MAR framework is that it leads to extremely e�cient algorithms for

estimating the process x(s) on the basis of noisy observations of the form y(s) = C(s)x(s) + v(s) where

v(s) is a zero-mean white noise process with covariance R(s). In particular, the optimal estimates of x(s)

at every node of the tree based on fy(s); s 2 T g can be calculated very e�ciently by a direct algorithm [8]

that is a generalization of two-pass algorithms for estimation of time series (e.g., the Rauch-Tung-Streibel
3Here we assume without loss of generality that means are zero, since it is straightforward to add in non-zero means.



Random cascades on wavelet trees and and modeling natural images 11

smoother [42]). It consists of an upward pass from the leaf nodes to the root, followed by a downward pass

from the root to the leaves. The computational complexity is O(d3N) where d is the maximal dimension

of x(s) at any node, and N is the total number of nodes. This same algorithm also computes Pe(s), the

covariance of the error [x(s)� bx(s)] at each node s 2 T .

For notational reasons, it is useful to write down a vectorized form of the solution to the estimation

problem. Let x be a vector formed by stacking the vectors x(s) from each node s 2 T in a �xed order,

and de�ne y analogously so that y = Cx+ v where C is a block diagonal matrix comprised of the C(s)

matrices, and v � N (0; R) where R is the block diagonal matrix formed using the R(s) matrices. The

Bayes least-squares (BLS) and maximum a posteriori (MAP) estimates are identical in this case, and are

given by

bx = PeC
TR�1y Pe =

�
P�1
x

+ CTR�1C
�

(4)

where Pe is the covariance of the error e = x�bx. It is important to realize that for typical image processing

problems (with several hundred thousand nodes), bx and Pe are of extremely high dimension, and thus their

computation as suggested by equation (4) is prohibitive. Instead, the fast tree algorithm solves the set

of equations P�1
e

bx = CTR�1y and simultaneously computes the diagonal blocks of Pe, with the two pass

procedure outlined previously.

3 Random cascades on wavelet trees

In this section, we introduce and develop a new type of multiscale stochastic process de�ned by random

cascades on trees. In particular, each tree node corresponds to a vector of wavelet or multiresolution

coe�cients, and the cascade process is constructed so as to produce a GSM vector at each node. We show

that the GSM variables produced by these cascade processes account well for the statistical properties

of wavelet decompositions of natural images, including self-similarity, kurtotic and heavy-tailed marginal

histograms, and self-reinforcement among local groups of coe�cients.

3.1 Cascades of Gaussian scale mixtures

As noted previously, naturally associated with a multiresolution decomposition like the wavelet transform

is a tree of coe�cients (a binary tree for 1D signals; a quadtree for images). Lying at each node is a random

vector c(s), which will be used to model a vector of d wavelet coe�cients at the same scale and position,

but di�erent orientations. Using the decomposition of Proposition 2, we model the wavelet vector c(s) as
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a GSM of the form

c(s)
d
= h(x(s))� u(s) (5)

where x(s) and u(s) are d�dimensional independent Gaussian random vectors. Here the nonlinearity h

acts element-wise on the vector x(s), and � denotes element-wise multiplication of the two d-vectors. We

assume that h has been appropriately normalized so that E [h2 (xk(s))] = 1 for k = 1; : : : d, where xk(s)

denotes the kth element of the vector x(s), so that u(s) controls the variance of c(s).

To specify a multiscale stochastic process, we need to de�ne parent-to-child dynamics on the underlying

state variables x(s) and u(s). Recall that for wavelet coe�cients of natural images, the parent and child

vectors are close to decorrelated. We can express the covariance between c(s) and its parent c(s�
) as

cov
�
c(s); c(s�
)

�
= E

�
h(x(s))[h(x(s�
))

�T�
� cov

�
u(s); u(s�
)

�
, where we have used the independence of x

and u. This relationship shows that the decorrelation of c(s) and c(s�
) is determined by the u process.

Therefore, to model wavelet coe�cients of natural images, it is appropriate to choose u(s) as a white noise

process on the tree T , uncorrelated from node to node. In contrast, the vector x(s) must depend on its

parent x(s�
), in order to capture the strong property of local reinforcement in wavelet coe�cients of natural

images. Therefore, the GSM representation of equation (5) decomposes the wavelet vector c(s) into two

random components, one of which controls the correlation structure, while the other controls reinforcement

among wavelet coe�cients.

We model the white noise process u(s) as

u(s) = D(s)�(s) ; �(s) � N (0; I) (6)

so that D(s) controls any scale-to-scale variation (and hence the scaling law) for the process. To capture

the dependency in the premultiplier process x(s), we use a MAR model:

x(s) = Ax(s�
) +Bw(s) (7)

with x(0) � N (0; Px(0)) and �(s) � N (0; I) at the root node. Although we specialize here to the stationary

case of a MAR model (i.e., A(s) � A and B(s) � B for all nodes s 2 T ), it is clear that GSM cascades

with non-stationary MAR dynamics are also possible. Figure 4 provides a graphical representation of this

model structure for two levels of a binary tree. The premultiplier process x(s) and white noise u(s) both

live at the nodes of a multiscale tree, represented by open circles. These processes generate the wavelet

coe�cient vector c(s), represented by �lled squares, via the nonlinearity h.

Equations (5), (6) and (7) together specify the coe�cients c(s) of a multiresolution decomposition on a

tree. For each node s, let m(s) be its spatial scale, and let p(s) be its spatial location in the image plane.
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The quantity c(s) is a random vector of wavelet coe�cients for a set of di�erent orientations at the same

spatial location. For the 1-D examples shown subsequently, we use an orthonormal wavelet representation,

whereas for 2-D applications to images, we use the steerable pyramid [51], an overcomplete representation

that divides the image into subbands localized in both scale and orientation. A steerable pyramid can be

designed with any number of orientation bands; for the work reported here, we use d = 4 orientations.

These coe�cients then de�ne a random image via the inverse transform

I(p1; p2) =
X

s2T

dX

k=1

ci(s) k;s(p1; p2) (8)

where (p1; p2) is a point in the 2-D image plane, ck(s) is the k
th element of c(s) (corresponding to the kth

orientation), and  k;s corresponds to the multiresolution basis element corresponding to orientation k, and

centered at scale and position (m(s); p(s)).

An advantage of the steerable pyramid for image processing tasks (e.g., denoising) is its translation-

invariance [51]. Achieving this invariance requires overcompleteness, implying that there is redundancy in

each vector of coe�cients c(s). In principle, this can be easily accommodated by taking �(s) in (6) to be a

lower-dimensional random vector, so that D(s) is rectangular. For the work reported here, we have taken

�(s) to be of the same dimension as u(s) and hence c(s). This is not a strictly accurate model since it

suggests that there are more degrees of freedom in the c(s) than there should be; however, we have found

this formulation to be adequate in practice.

3.2 Properties of GSM cascades

In this section, we examine the properties of random cascades of Gaussian scale mixtures on trees. We

show that they are well-suited to capturing the statistical behavior of multiresolution coe�cients from

natural images.

3.2.1 Self-similarity

Recall that self-similarity of a process means that its statistics are invariant (up to a multiplicative constant)

under any change of scale. Note that GSM tree processes, as de�ned above, are generated by a discrete

multiresolution transform as in equation (8). Such processes can never be strictly self-similar. However, by

appropriate choice of parameters, we can ensure that they satisfy a weaker form of self-similarity, known

as dyadic self similarity. In particular, dyadic self-similarity of the random image I(p1; p2) means that

I(p1; p2)
d
= 2�k


I
�
2k(p1; p2)

�
for all integers k, where 
 is a parameter. From equation (8), it can be shown
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that the synthesized process I(t) will be dyadically self-similar if and only if the basis coe�cients satisfy

c(s)
d
= 2


�
m(t)�m(s)

�
c(t) for all nodes s; t 2 T . We guarantee this condition by choosing D(s) = 2�
m(s) in

equation (6), and taking the state process x(s) to be stationary, so that x(s)
d
= x(t) for all nodes s; t 2 T .

The parameter 
 > 0 controls the drop-o� in the power spectrum of the synthesized process [e.g., 12].

3.2.2 Marginal distributions

That the marginal densities of wavelet coe�cients are well-�t by at least one GSM family | namely, the

generalized Gaussian with tail exponent � used as a �tting parameter | is widely known [e.g., 34, 37,

21, 50]. In previous work [55], we have demonstrated that other GSM families also provide good �ts to

wavelet marginals. For example, Figure 5 shows �ts of the symmetrized gamma family to the histograms

of marginal distributions from various natural images. Fitting was performed by numerically minimizing

the Kullback-Leibler divergence between empirical and theoretical histograms. The �ts are typically quite

good; for instance, panel (d) shows one the worst �ts that we obtained from a range of natural images.

Thus, the GSM class provides a 
exible framework for choosing probabilistic models that capture real

image statistics. As a result, it permits the use of GSM families that may have analytical or computational

advantages | that is, families for which the multiplier distribution is easily expressed and manipulated

for state and parameter estimation.

3.2.3 Self-reinforcing property

Recall that the tree-structured nature of the dynamics in equations (7) and (6) imposes a powerful Markov

property on the wavelet coe�cients c(s). In particular, any two vectors of wavelet coe�cients c(s) and c(t)

are conditionally independent given x(s ^ t), where s ^ t denotes the nearest common ancestor in scale of

nodes s and t. In this section, we exploit this property to show that the tree structure accounts for the

drop-o� in dependence between a pair of coe�cients as the spatial separation is increased.

The contours of joint distributions of wavelet coe�cients from natural images show a wide range of

shapes, ranging from circular to a concave star-shape (see top row of Figure 6). Huang and Mumford [21]

suggested that these joint contours might be modeled with a 2D generalized Gaussian. Here we show that

the dependency structure of a random tree cascade accounts remarkably well for this range of behavior. In

particular, we consider a random cascade on a multiresolution tree with A(s) � �I and B(s) �
p
1� �2 I;

and h(x) , jxj which generates symmetrized gamma variables of index 0.5 (see Section 2.1). The tree

structure speci�es the joint distribution of any pair of wavelet coe�cients c(s) and c(t).
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Plotted along the second row of Figure 6 are joint contours of log probability for pairs of steerable

pyramid wavelet coe�cients [51] taken from the \Mountain" image shown at the top. In this example,

we used a complex-valued transform, which incorporates both even and odd phase coe�cients [see 41].

Coe�cient pairs are at the same spatial scale and orientation, but with a varying spatial separation of �

pixels. The third row shows the same plots for coe�cients of the simulated GSM random cascade. The

shapes of the joint contours of image data and simulated model are strikingly similar. First of all, consider

the pair of coe�cients in quadrature phase (i.e., even and odd phase coe�cients at the same spatial location,

corresponding to � = 0). The joint contours for this quadrature pair are very close to circular for natural

images, as has been noted previously [61]. Likewise, the model with � = 0 generates a pair of coe�cients

with circular joint contours. For a pair of nearby coe�cients (� = 8), the contours are diamond-shaped,

whereas they become a concave star-shape for widely separated coe�cients (� = 128). Plotted in the

last two rows are joint conditional histograms that more explicitly illustrate the dependence between the

coe�cient pairs. While all pairs are decorrelated, they exhibit a range of statistical dependencies. The

pair in quadrature phase at the same spatial location are highly dependent, as revealed by the familiar

\bow tie" shape of the joint conditional histogram. As the spatial separation � increases, the dependence

between coe�cient pairs drops o� with increasing spatially separation, until the widely separated pair

(third column) are extremely close to independent. This near independence is clear because the joint

conditional histogram has almost constant cross-section regardless of the value of the abscissa. Thus, a

GSM cascade on a tree accounts well for pairwise joint dependencies of coe�cients over a full range of

spatial separations.

3.3 Parameters of GSM cascades

An attractive feature of the wavelet cascade models developed here is that they are speci�ed by a rather

small set of parameters. First of all, the matrices D(s) determine any scale-to-scale variation in the process,

and hence the scaling law. Secondly, the choice of the nonlinearity h determines the form of the marginal

distributions of wavelet coe�cients, including tail behavior and kurtosis. Thirdly, the system matrices A

determine the dependency of the underlying premultiplier process x(s) from node to node.

Variations in D(s) control the amount of power at high frequencies relative to low frequencies, and

hence the overall smoothness of the process. The e�ect of such changes is well-understood from studies

of f�
 type Gaussian processes on multiscale trees [e.g., 60, 12]. Here we investigate the e�ect of varying

the nonlinearity h, as well as the system matrices. In particular, we simulate a one-dimensional cascade
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(i.e., the wavelet representation of a 1-D process) with the parameters D(s) = 2�
m(s) and 
 = 1:5; the

nonlinearity h(x) = (x+)�; and system matrices A = �; and B =
p
1� �2, where the choices of the

parameter �, and the scale-to-scale dependence � were varied.

Figure 7 shows simulated random cascades for four combinations of the parameters (�; �) using the

`Daub4' wavelet. The �rst three panels in each sub�gure correspond to three scales of the wavelet pyramid,

ranging from coarse to �ne. The fourth panel in each sub�gure corresponds to the synthesized GSM

process. First considering the e�ect of the parameter �, note that the wavelet coe�cients in cascades with

� = 2 (panels (c) and (d)) exhibit sparse behavior, in that a few outlying values tend to dominate. The

wavelet coe�cients of images also exhibit such sparsity, in that coe�cients corresponding to edges and

other discontinuities will tend to dominate. Of course, for both natural images and simulated cascades,

this sparsity is a re
ection of heavy tails in the densities/histograms. In contrast, wavelet coe�cients in

the cascades corresponding to � = 0:2 (panels (a) and (b)) are distributed much more densely. In fact, the

histograms of these coe�cients, as well as the behavior of the synthesized processes, are both quite close to

Gaussian. Varying the parameter � also has a dramatic e�ect, particularly for the cascades with � = 2.

With � = 0:05 (panels (a) and (c)), coe�cients from scale to scale are close to independent, so that high

valued coe�cients do not tend to cluster in patterns through scale. In contrast, the high scale-to-scale

dependence for the cascades with � = 0:95 manifests itself in trails of large (in absolute value) coe�cients

through scale. One such trail is especially apparent in panel (d). These trails through the scale space of

wavelet coe�cients lead to a localized area of discontinuity and sharp variations in the synthesized process.

Indeed, such trails are the scale space signature of discontinuities and other structures of interest. In this

respect, our GSM tree models constitute a precise analytical model for the cascade behavior exploited by

successful image coders such as embedded zero-trees [e.g., 47].

3.4 Relation to previous work on image modeling

In this section, we discuss relations between GSM cascades on wavelet trees, and other approaches to image

modeling. Simoncelli and colleagues [3, 48, 49] modeled the dependency between wavelet coe�cients with

a conditionally Gaussian model, where the variance of one wavelet coe�cient depends on the absolute

value of its neighbors. This local model has proven useful in a variety of applications, including image

coding, denoising, and texture synthesis. Our GSM cascades capture these same dependencies, but using

an auxiliary multiplier variable that controls dependencies between coe�cients. The multiplier variable is

de�ned on a multiscale tree, thereby inducing a global probability distribution on the space of images.
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Huang and Mumford [21] analyzed a variety of image statistics, documenting approximate scale invari-

ance and a range of shapes in the joint contours of empirical histograms of wavelet coe�cients. Building on

earlier work of Ruderman [44], Lee and Mumford [27] developed a random collage model that exhibits both

translational invariance and approximate scale invariance. As discussed in Section 3.2.1, our GSM tree

models satisfy an approximate form of scale invariance. Moreover, the marginal distributions of GSMs are

highly kurtotic for many choices of multiplier variables, and particular choices ensure that the statistics will

be in�nitely-divisible (e.g., symmetrized Gamma, �-stable.) As shown in Figure 6, our GSM tree models

generate a range of behaviors in the joint contours of pairs of wavelet coe�cients. Thus, our GSM cascades

capture many of the properties emphasized by Mumford and colleagues in a parsimonious manner.

Our work is also related to the framework for non-Gaussian signal processing developed by Baraniuk and

colleagues [10], and applied to image denoising [43]. Their framework uses a hidden discrete-state process

de�ned on a tree to capture dependencies between wavelet coe�cients, which themselves are modeled

as �nite scale mixtures of Gaussians. Accurately modeling the heavy tails and high kurtosis of wavelet

marginal distributions will typically require a large number of discrete states. The corresponding increase

in the number of parameters leads to models that may not provide a parsimonious description. In contrast,

we have emphasized the use of in�nite parametric mixtures, which as we have shown, accurately capture

both the heavy tails and high kurtosis of wavelet marginal distributions with a small number of parameters.

4 Estimation

We now turn to problems of estimation in GSM cascades on wavelet trees. Such problems involve using

data or observations to make inferences about either the state (i.e., x(s) and u(s)) of the GSM, or about

unknown model parameters. Of particular interest are estimates of the premultiplier process x(s), which

determines the multiplier h(x(s)). A signi�cant bene�t of the GSM framework is that conditioned on

knowledge of the premultiplier, a GSM model reduces to a linear-Gaussian system, which can be analyzed

by standard techniques. In the context of image processing, estimates of the premultiplier are of potential

use for a variety of applications (e.g., coding, denoising).

In this section, we develop a Newton-like algorithm for maximum a posteriori (MAP) estimation of the

premultiplier x(s) based on noisy observations. The cost of computing intermediate quantities within each

iteration scales linearly in problem size, because very fast algorithms (see Section 2.2) can be applied to the

underlying Gaussian-tree structure. Furthermore, under suitable regularity conditions, this algorithm has

a number of desirable properties, including guaranteed convergence to a local optimum at a quadratic rate.
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We then show this algorithm can be used as the basis of a method for wavelet domain denoising. Next we

turn to the problem of estimating parameters that specify a GSM model, and develop a technique in which

state estimates are exploited in intermediate computations. The resultant technique is an approximate

form of expectation-maximization algorithm [14], where intermediate computation is again e�cient due to

the tree structure.

4.1 State estimation

Here we consider the problem of estimating the premultiplier x(s) given noisy observations

y(s) = h(x(s))� u(s) + v(s) (9)

where v(s) � N (0; R(s)) is observation noise. An interesting feature of this problem is that unlike the

standard linear observation problem (see Section 2.2)), the task of estimating x(s) given noiseless observa-

tions (i.e., R(s) � 0) is not trivial. Indeed, even in the absence of v(s), the state u(s) e�ectively acts as a

multiplicative form of noise. With the noise v(s) present, we have an estimation problem that is nonlinear,

and includes both additive and multiplicative noise terms.

Given that we have a dynamical system de�ned on a tree, optimal estimation can, in principle, be

performed by a two-pass algorithm, sweeping up and down the tree. For the linear-Gaussian case described

in Section 2.2, computation of the optimal estimate (which is simultaneously the Bayes' least-squares (BLS)

and maximum a posteriori (MAP) estimate) is particularly simple, involving the passing of conditional

means and covariances only. In general, for nonlinear/non-Gaussian problems, however, not only are the

BLS and MAP estimates di�erent, but neither is easy to compute. However, the GSM models developed

here have structure that can be exploited to produce an e�cient and conceptually interesting algorithm

for MAP estimation.

To set up the estimation problem, let x denote a vector formed by concatenating the state vectors

x(s) at each node, and de�ne the vector y similarly. Recall that the computation of the MAP estimate

involves the solution of the optimization problem bxMAP , argminx
�
� log p(xjy)

�
. Herein we simply

write bx to mean this MAP estimate. At a global level, our algorithm is a Newton-type method applied

to the objective function f(x) , � log p(xjy). That is, it entails generating a sequence fxng via the

recursion x
n+1 = x

n + �nS�1(xn)rf(xn), where the matrix S(xn) is the Hessian of f , or some suitable

approximation to it; and �n is a step size parameter. This class of methods is attractive [see 2], because

under suitable regularity conditions, not only is convergence to a local minimum guaranteed, but in addition

the convergence rate is quadratic. The disadvantage of such methods, in general, is that the computation
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of the descent direction dn , �S�1(xn)rf(xn) may be extremely costly. This concern is especially valid

in image processing applications, where the dimension of the matrix S(xn) will be of the order 105 or

higher.

One of the most important features of our model set-up is that the computation required for each step

of the Newton recursion can indeed be performed e�ciently. More precisely, the computation of the descent

direction is equivalent to the solution of a linear MAR estimation problem, allowing the e�cient algorithm

of [8] described in Section 2.2 to be used for its computation. In order to demonstrate this equivalence,

we rewrite the objective function as f(x) = � log p(yjx) � log p(x) + C using Bayes' rule, where C is a

constant that absorbs terms not depending on x. The vector x is distributed as N (0; Px), where the large

covariance matrix Px is de�ned by the system matrices A and B in equation (7). As a result, the log

prior term can be written as 1

2
xTP�1

x
x + C. Finally, since the data y(s) at each node is conditionally

independent of all other data given the state vector x, we can write:

f(x) = �
NX

s=1

log p(y(s)jx(s)) +
1

2
xTP�1

x
x+ C

From this representation of f , it can be seen that the Hessian of f will have the formr2f(x) = P�1
x

+D(x),

where D(x) is a block diagonal matrix, with each block corresponding to a node s. With this form of the

Hessian, the descent direction dn is given by dn = �
�
P�1
x

+D(xn)
�
�1
rf(xn). Comparing this form of the

descent direction to the linear-Gaussian problem given in equation (4), it is clear that the two problems are

equivalent with appropriate identi�cation of data terms, observation matrix, and noise covariance. Further

details of these identi�cations, as well as calculation of the Hessian, the gradient rf(x) and D(x), can be

found in Appendix B.

Note that the overall structure of this MAP estimation algorithm is of a hybrid form. The Newton-like

component involves an approximation of the objective function f that is performed globally on the entire

graph at once. Local graphical structure is exploited within each iteration where the descent direction

is computed by extremely e�cient and direct algorithms for linear multiscale tree problems [8]. Thus,

the complexity per iteration scales as O(d3N), where N is the number of nodes, and d is the number of

orientations. As a Newton method, quadratic convergence is guaranteed for suitably smooth choices of the

nonlinearity. This method is distinct from extended Kalman �ltering [e.g. 24], a technique for approximate

estimation of nonlinear dynamic systems, because the objective function is approximated globally on the

entire state trajectory at once.

Another important characteristic of the GSM framework is that conditioning on the premultiplier

x(s) reduces the model to the linear-Gaussian case. That is, when the multiplier is known, the observa-
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tions (9) are of the standard linear-Gaussian form. If, indeed x(s) were known exactly, we would have

that Pc(s) = H[x(s)]Pu(s)H[x(s)] where Pu(s) = D(s)DT (s) is the covariance of u(s), and the matrix

H[x(s)] , diagfh(x(s))g. This suggests a suboptimal estimate in which we replace x(s) by bx(s) | namely:

bc(s) = bPc(s)
� bPc(s) +R(s)

�
�1
y(s) (10)

where bPc(s) = H[bx(s)]Pu(s)H[bx(s)]. It is this form of wavelet estimator that we use in our application to

image denoising in Section 5.

4.2 Relation to other estimators

There are a number of interesting links between the GSM tree estimator developed here, and previous

approaches to wavelet denoising. In particular, there is a large class of pointwise approaches to denoising,

so-called because they operate independently on each wavelet coe�cient. The link to the GSM framework

comes from the Bayesian perspective, in which many of these methods can be shown to be equivalent to

MAP or BLS estimation under a particular kind of GSM prior for the marginal distribution. For example,

soft shrinkage [15], a widely studied form of pointwise estimate, is equivalent to a MAP estimate with a

certain GSM prior | namely, a Laplacian or generalized Gaussian distribution with tail exponent � = 1 [see

4]. Speci�cally, suppose that the prior on x has the form px(x) / exp (��

2
jxj), and that y is an observation

of x contaminated by Gaussian noise of variance �2. Under these assumptions, it is straightforward to

verify that the MAP estimate is given by

bxMAP = [y � sign(y � �) � ]+ (11)

where � , ��
2

2
. For the purposes of comparison, we apply this type of soft thresholding to image denoising

in Section 5. Additional relations between thresholding and MAP estimators are discussed in [37]. It is

shown in [50] that by varying the tail parameter � of a generalized Gaussian prior, it is possible to derive

a full family of pointwise Bayes least-squares (BLS) estimators.

The GSM framework can also be related to the James-Stein estimator (JSE), a technique with an

interesting and often controversial history. The JSE applies to the problem of estimating the �xed mean

c of a multivariate normal distribution from noisy observations y = c + v, where v � N (0; �2I), and the

length of the vector quantities is p. The maximum likelihood estimate of c, which is simply the data y

itself, was long thought to be best in the sense that no other estimator could achieve a lower mean-squared

error (MSE) for all values of c. However, in 1961 James and Stein [23] introduced an estimator of the

mean for dimension p � 3 that achieves a uniformly lower MSE for all values of c. The empirical Bayesian



Random cascades on wavelet trees and and modeling natural images 21

derivation for the JSE [see, e.g. 16] provides the link to GSMs. In the empirical Bayes formulation, c

is modeled as a random quantity, distributed according to N (0; �2). If the quantity � were known, then

the Bayes least-squares (BLS) estimate of c given y would be given by bcBLS =
�
(�2)=(�2 + �2)

�
y. For �

unknown, we can imagine trying to mimic the BLSE by estimating �2, and then substituting this estimate

into the formula for the BLSE. In fact, the JSE proceeds more directly by estimating the quantity �2

�2+�2

as (p�2)�2

kyk2
, which can be shown [26] to be an unbiased estimate. Substituting this estimate into the BLSE

formula yields the positive-part JSE, de�ned as bc = �
[kyk2 � (p� 2)�2]+]

�
kyk2

�
y.

The link to Gaussian scale mixtures is clear. Under the empirical Bayesian interpretation, the JSE

decomposes the unknown mean c into two parts c = �u where u � N (0; I), and � is an unknown but

�xed quantity. That is, the JSE decomposes the mean into a type of Gaussian scale mixture, involving a

Gaussian component u and an unknown multiplier � . For the Gaussian scale mixtures discussed in this

paper, we typically viewed � as a random variable, and assigned it a prior under which we computed the

MAP estimate. The JSE is very similar, except that it does not assign a prior to � , and performs an

operation that is very close to ML estimation of �2

�2+�2
. Finally, both the JSE and the GSM tree method

replace the variance in standard linear-Gaussian equations (e.g., in equation (10)) by an estimated variance.

Although not always explicitly stated, many other approaches to image denoising and image coding

rely on a GSM type decomposition. The roots of this approach lie in the image coding literature, where

researchers in the 1970s proposed dividing DCT coe�cients into groups according to their variance [6].

Similarly, Lee [28] proposed an enhancement technique that used local variances in the pixel domain, which

is now implemented in the MATLAB wiener2 routine. More recent approaches also involve modeling

wavelet coe�cients as a scale mixture distributions [e.g., 30, 9, 5, 29, 35, 36, 52]. Another approach is

to model dependency between the variance of a subband coe�cient and its neighbors directly, using a

conditionally Gaussian model [3, 48, 49]. Some models permit the variance parameter to assume only a

discrete set of values [e.g., 29], whereas others allows a continuum of values. The latter models e�ectively

correspond to in�nite mixture models, similar to those emphasized in the current paper.

A step common to all these techniques, whether for denoising or coding, is to estimate the multiplier

or variance. Conditioned on the variance estimate, coe�cients can be denoised by the standard LLS

estimator in equation (10). Many approaches use a ML-like estimate for the variance parameter, based

on a local neighborhood of coe�cients. In such a ML framework, the variance parameter is viewed as an

unknown but �xed quantity, without a prior distribution. These forms of estimator are thus very close to

the James-Stein estimator discussed previously. More recently, Mihcak et al. [36] assumed an exponential

distribution on the variance parameter, and performed a local and approximate form of MAP estimation.
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This corresponds to a local GSM model using a symmetrized Gamma distribution with parameter � = 1.

Overall, the GSM tree framework presented in this paper represents an extension from local to global

models. Our models allow an arbitrary choice of the prior on the multiplier, which is controlled by the

choice of the nonlinearity h. Moreover, the GSM tree algorithm computes the MAP estimate based on

a global prior model on the full multiresolution representation. This global prior, which incorporates the

strong self-reinforcing properties among wavelet coe�cients, is induced by the multiscale tree structure.

In the context of the underlying tree, our GSM cascade models are closely related to the non-Gaussian

modeling framework of Baraniuk and colleagues [10]. In their models, a multiscale discrete-state mul-

tiplier process de�ned on a tree controls the dependency among wavelet coe�cients, which are modeled

as �nite scale mixtures of Gaussians. Such models have proven useful in various applications, including

image denoising [43]. For �nite mixtures in which the multiplier variable takes on discrete values, there

exist direct recursive algorithms for computing the marginal distributions of the discrete multiplier states

conditioned on the data. The BLS estimate of wavelet coe�cients given noisy observations can be obtained

by taking expectations over these marginal distributions [see 10]. However, the computational complexity

of computing marginal distributions scales exponentially as � M
d, where M is the number of multiplier

states and d is the dimension of the multiplier. In practice, therefore, both the number of states and

dimension of the multiplier may be limited; for example, the denoising algorithm of [43] uses a low and

high variance state (M = 2), and a scalar multiplier at each node (d = 1). A small number of multiplier

states means that the models may not properly capture the non-Gaussian tail behavior and high kurtosis of

wavelet marginals, whereas a low multiplier dimension will restrict the modeling of dependencies between

orientations. In contrast, our GSM modeling framework emphasizes in�nite scale mixtures of Gaussians.

As we have illustrated, these in�nite mixtures accurately capture the non-Gaussian tail behavior and high

kurtosis of wavelet coe�cients. Regardless of the particular GSM used, the complexity of our algorithm

scales as � d3, where d is the dimension of multiplier vector at each node.

4.3 Parameter estimation

We now address the problem of estimating the parameters of a GSM random cascade model. Recall that a

GSM model is speci�ed by a small set of quantities | namely, the matrices D(s) that control the scaling

law; the pointwise nonlinearity h; and the system matrices A and B that control the MAR dynamics.

Determining the matrices D(s) amounts to estimating the variance, and hence can be done with standard

methods. The nonlinearity h controls the marginal distributions, so that estimating h is similar to �tting
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a parameterized distribution to the marginal histograms of wavelet coe�cients, again a fairly standard

procedure. The novel aspect of our GSM models are the system matrices A and B that control the scale-

to-scale dependence of the underlying premultiplier process, and it is on the estimation of these quantities

that we focus here. In particular, let � be a vector of parameters that specify these system matrices, so

that we write the stationary MAR dynamics as:

x(s) = A(�)x(s�
) +B(�)w(s) (12)

The task is to estimate the parameter vector � on the basis of noisy observations given by equation (9).

We begin by observing that this set-up shares a characteristic common to many parameter estimation

problems: namely, the estimation of � would be relatively straightforward given the premultiplier x. Given

this property, the parameter estimation problem lends itself to the use of the expectation-maximization

(EM) algorithm [14], a technique frequently used to obtain the maximum likelihood (ML) estimate of �.

Recall that the ML estimate is given by b�ML = argmax�2�
�
log p(yj�)

�
where � is the domain of �. In

accordance with its name, the EM algorithm alternates between taking expectations over a set of \hidden"

variables x, and then performing maximization of the resulting function. In particular, the E-step of

iteration n involves taking the expectation of the augmented log likelihood log p(x; y; �) with respect to

the conditional density p(x jy; �n�1), where �n�1 is the parameter estimate from the previous iteration. In

the standard version of the EM algorithm, the M-step entails �nding the global maximum of the resulting

function. However, there exist other versions of EM (often called GEM for generalized EM [14]) in which

the M-step consists of taking gradient step.

A disadvantage of EM-type algorithms is that calculating the expectation over the conditional den-

sity p(x jy; �n�1) can be di�cult. This problem is often encountered for continuous-valued variables,

where the integrals are typically intractable. One approach in such cases is to develop an approximation

q(xjy; �n�1) � p(x jy; �n�1)), and perform an approximate E-step by taking expectations with respect to

the distribution q, whose form is chosen to make such expectations comparatively easy to compute. It can

be shown that such approximate methods will still converge, although they need not converge to a local

maximum of the log likelihood, but rather to a local maximum of a lower bound on the likelihood [25].

We have developed such an approximate EM method for parameter estimation in GSM systems, where

the approximation q to the conditional density is obtained from the algorithm described in Section 4.1.

It should be noted that even with an approximate form of the density, taking the expectation is not, in

general, a straightforward task. Again the problem stems from the high dimensionality of the conditional

density | in applications such as image processing, it will be on the order of 105 or 106. Nonetheless, we
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have found that the tree structure of the problem can again be exploited to great advantage. In particular,

we make use of highly e�cient algorithms for Gaussian likelihood calculation on multiscale trees in order

to perform gradient ascent.4 This approximate EM algorithm itself is developed in Appendix C. Thus, by

exploiting the tree structure, we obtain a tractable technique for estimating the parameters specifying the

system matrices.

5 Illustrative Results

In this section, we present some illustrative results of the state estimation algorithm developed in the

previous section. We focus, in particular, on the problem estimating wavelet coe�cients c(s) on the basis

of noisy observations y(s). The wavelet coe�cients are generated by GSM tree dynamics, and hence lie

at the nodes of a multiresolution tree. However, to illustrate the basic properties of our estimator, we

�rst consider its application to the estimation of 1-D sequence of scalar-valued coe�cients c(s) from a

corresponding sequence of measurements. These sequences can be thought of as the successive values of

one of the components of c(s) and y(s) on a single coarse-to-�ne path in a tree, such as that in Figure 3.

Following this 1-D example, we illustrate the application of our full algorithm to perform image denoising

on a multiresolution quadtree of coe�cients.

5.1 Examples in 1D

We �rst consider a scalar GSM process obtained by sampling a GSM tree process along the unique tree path

beginning at the root node and moving down the tree (from parent to child), terminating at a speci�ed

�ne-scale node. Such a sample path reveals the scale-to-scale dependence inherent in a GSM tree pro-

cess. We generate the process on the tree with dynamics of the form x(s) = �x(s� 1) +
p
1� �2 w(s) and

c(s) = h(x(s))u(s), where u(s) and w(s) distributed asN (0; 1) at each node. We estimate c(s) = h(x(s))u(s)

on the basis of the noisy observations given in equation (9), with R(s) = �2.

Shown in Figure 8 are sample paths from two di�erent GSM processes, as well as estimates based

on noisy observations. The sample paths were generated with � = 0:95, and the nonlinearities h(x) =

exp(1:5x) for panel (a) and h(x) = (x+)3 for panel (b). Observe that the sample paths of both GSM

processes alternate between regions of low amplitude values, interspersed with regions of high amplitude

process values. Changes in the premultiplier x(s) cause the transition from one region to another. In both

4Thus, the overall procedure actually exploits tree structure twice: once to compute the density q(xjy; �n�1) using the

estimation algorithm of Section 4.1 and again in order to calculate the required expectation.
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examples, the signal-to-noise ratio (SNR) of the noisy observations was on the order of 2:5 dB, where the

SNR of the observations is de�ned as SNRobs = 10 log10(var[c(s)]=�
2). For any estimator �c(s), we can

de�ne an SNR for comparison as SNRest = 10 log10(var[c(s)]= var
�
�c(s)� c(s)

�
). Recall that our estimator

of c(s) consists of two steps: �rst computing the MAP estimate of x(s), and then computing the mean of

c(s) conditioned on the data y(s) and the estimate bx(s). As a result, a fair comparison is to see how the

SNR enhancement of our estimator compares to that of an \ideal" case in which we know x(s) exactly (so

that the corresponding estimate of c(s) is obtained node-by-node via standard linear estimation). For the

example in Figure 8(a), our estimator achieves an SNR of 9.71 dB, while the unachievable ideal SNR is less

than 0.50 dB higher. In addition to this quantitative comparison, it is also worthwhile to comment on the

qualitative properties of the estimator. Note that for both GSM process, the estimator e�ectively suppresses

noise in regions where the multiplier h(x(s)) is of low amplitude, while simultaneously preserving peaks in

high amplitude regions. Thus, the estimator behaves in a way well-suited for data with the characteristics

of natural imagery | i.e., for which it is desirable to smooth low variance regions, while simultaneously

preserving edges and other discontinuities of interest.

Figure 9 illustrates statistical properties of the estimator. Plotted in panel (a) are empirical histograms

of the original wavelet coe�cients c, the noisy observations y, and the estimates bc. Observe that the

histogram of the original values shows the high kurtosis and heavy tails that are typical of a GSM. In

contrast, while the noisy histogram of observations retains the heavy tails, the noise contamination removes

the high kurtosis and makes it appear roughly Gaussian near the origin. The estimation routine restores

the high kurtosis, as shown in the histogram of estimated coe�cients.

Note that the estimate bc(s) at any node s can be viewed as a random variable given by a function

bc(s) = Gs(y) of the vector of data y. Plotted in panel (b) is a joint conditional histogram of noisy

observations y(s) and estimates bc(s) for a given node s. In particular, each column in this �gure corresponds

to the distribution of jbc(s)j conditioned on the corresponding value of jy(s)j represented on the abscissa.

Note that we always have jbc(s)j � jy(s)j, since bc(s) is obtained multiplying y(s) by an adaptive factor

always less than one. Therefore, all parts of the histogram in panel (b) lie below the diagonal. For data

jy(s)j near zero, the estimate also tends to cluster near zero. At the other extreme, as the data becomes

large in absolute value, then jbc(s)j clusters near jy(s)j. The overlaid solid line in panel (b) corresponds to

the mean of the estimator conditioned on di�erent values of the data. It shows that in an average sense,

this estimator behaves similarly to a form of shrinkage or soft thresholding [e.g., 15, 50]. That is, the

estimator preferentially shrinks smaller observation values while modifying larger ones much less. Based

on the discussion in Section 4.2, this is not surprising since many forms of thresholding, when interpreted in
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a Bayesian framework, correspond to a pointwise GSM model. Of course, it is important to emphasize that

the GSM tree estimator is similar to thresholding only in this average sense. Thresholding is a deterministic

operation applied pointwise to each coe�cient, whereas our estimate of each coe�cient is based on the

full vector of data y, using a global prior model that incorporates the strong cascade dependencies among

coe�cients.

5.2 Image denoising

Here we illustrate the application of the GSM-tree framework to denoising natural images, using the

steerable pyramid [51]. This is an overcomplete representation that decomposes the image into subbands

localized in both scale and orientation. In all cases, we use a decomposition with four orientations, which

corresponds to a state dimension of d = 4. Therefore, lying at each node of a quadtree are the two 4-vectors

x(s) and u(s), which are used to model the 4-vector of wavelet coe�cients c(s). By the notation ck(s),

we mean the coe�cient at scale s and orientation5 k. We refer to a collection of all coe�cients at the

same scale and orientation (but di�erent spatial positions) as a subband. Noisy observations of the wavelet

coe�cients are given by equation (9), where R(s) = �2I.

Recall that the GSM-tree algorithm �rst computes the MAP estimate of the premultipliers x(s), which

it then uses to compute denoised wavelet coe�cients via equation (10). We have experimented with

di�erent choices of the nonlinearity h, including the previously discussed families fexp(x=�) j� > 0g and

f(x+)�j� � 0g. As a Newton-like method, convergence of the algorithm tends to be rapid for su�ciently

smooth (i.e., C2) choices of this nonlinearity. The computational cost per iteration scales linearly in the

number of wavelet coe�cients. Given the denoised multiresolution coe�cients c(s), the clean image is

obtained by inverting the multiresolution decomposition.

We compare the denoising behavior of the GSM-tree algorithm to a number of other techniques. With

the exception of one algorithm (MATLAB's adaptive �ltering), all techniques are applied to the steerable

pyramid decomposition, and involve an estimate of the subband variance. This estimate is given by

�2c = [var(y(s))� �2n]
+, where �2n is the variance of the noise in the subband (which can be computed

directly from �). All of the algorithms compared here are semi-blind, in that we assume that the noise

variance �2 is known. The techniques to which we compare our algorithm here are:

1. Wiener subband technique: for each subband, compute denoised coe�cients as bc(s) = �2c
�
�2c + �2n

�
�1
y(s).

where �2c is the variance of the subband, and �2n is the noise variance in that subband.
5Here the orientations k = 1; : : : ; 4 are ordered from vertical through to the �45� orientation.
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2. Adaptive: MATLAB's adaptive �ltering routine called by wiener.m: it performs pixel-wise Wiener

�ltering with a variance computed from a local 5� 5 neighborhood [see 28].

3. Soft thresholding: [15] For each subband, compute the soft threshold given in equation (11), where the

threshold t = ��2
n
=2 is determined by the noise variance �2

n
and the scale parameter � of a Laplacian

distribution �t to the subband marginal.

We have applied these algorithms to a variety of natural images. In Figure 10, we depict representative

results for the 256� 256 \Einstein" image. Shown in Table 2 are the SNR in decibels (dB) of the denoised

images for all algorithms, based on original noisy images at four levels of SNR. For all levels of SNR, the

GSM tree algorithm is superior to other techniques. Figure 10 depicts cropped denoised images for the

\Einstein" image (a), on the basis of the noisy observations (SNR 4.80 dB) shown in (b). Panels (c), (d),

(e), and (f) show the results of the Wiener subband denoising, MATLAB adaptive �ltering, thresholding,

and the tree algorithm respectively.

Although the GSM-tree algorithm is superior to these other techniques, it is important to note that

the method presented here is not as good as we ultimately expect to be able to achieve. The reason can be

traced directly to one of the well-known limitations of tree models [22], namely that nodes corresponding

to nearby spatial positions in the original image may be much farther apart in terms of tree distance (for

example, variables x(4) and x(5) in Figure 4). As a result, although tree models are very successful at

capturing longer range dependencies, they may improperly model the dependency between certain pairs

of nearby variables, which can lead to artifacts. In this context, it is worth noting that Strela et al. [52]

have recently obtained excellent denoising results by using a local GSM model that avoids the problems

associated with a tree structure.

There are several ways to address the problem of these boundary artifacts while retaining a global

probability model. One approach is the so-called overlapping tree framework of [22], which retains the tree

structure but uses nodes that overlap spatially. Another is to relax the requirement of a tree structure

by introducing graphical connections between wavelet coe�cients that are spatially close. The addition of

extra connections between spatially adjacent nodes should increase modeling power signi�cantly. However,

it also presents di�cult algorithmic issues for estimation, since we can no longer exploit extremely fast tree-

based algorithms. Nonetheless, there exist a number of alternative and emerging approaches, including

techniques from numerical linear algebra [13], as well as our recent work on estimation in graphs with

cycles [58]. Other directions for future work, including exploiting the phase information provided by

complex-valued transforms, are discussed brie
y in the following section.
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6 Conclusion

In this paper, we have developed a semi-parametric class of non-Gaussian multiscale stochastic processes

de�ned by random cascades on trees of multiresolution coe�cients. As we have pointed out, although our

methodology has strong intellectual ties to a variety of di�erent image models and methods for image anal-

ysis, it also di�ers in fundamental and important ways. First of all, the power of our modeling framework

is demonstrated by its ability to accurately capture both the approximate decorrelation and dramatic

non-Gaussian dependencies of wavelet coe�cients of natural images. This is achieved by decomposing

wavelet coe�cients into two underlying stochastic processes: a Gaussian white noise process is mixed with

a non-Gaussian multiscale process that captures self-reinforcing dependencies. A second signi�cant feature

of our modeling framework is its parsimony: only a very small set of parameters are needed to specify

a GSM wavelet cascade. This suggests that �tting such models from data is a far better-posed problem

than other approaches which require many more degrees of freedom to be speci�ed. Thirdly, our modeling

framework is su�ciently structured to permit e�cient application to image processing. In particular, we

showed how very fast tree algorithms can be used to perform estimation, and established their e�ectiveness

in application to image denoising.

A number of extensions to the modeling framework presented here are possible. First, previous empirical

work [55] shows that a small set of multipliers is su�cient to describe a local neighborhood of wavelet

coe�cients. In contrast, models described in this paper use a number of multipliers equal to the number

of wavelet coe�cients. Estimating the order of the underlying multiplier process, though a challenging

problem, is an important one in order to develop models of even more power. Second, in the current

application, we have considered only �xed parametric forms of nonlinearity. Using a nonparametric form

of this nonlinearity would allow the model to further adapt to the image under consideration, with no

loss of e�ciency. Third, using the information about phase provided by a complex-valued multiresolution

decomposition [see, e.g., 41] should lead to even better image models. Finally, in order to overcome the

well-known limitations of tree-structured models, we are investigating GSM processes de�ned on graphs

with cycles (i.e., non-trees). The addition of extra edges to the graph leads to more powerful models, but

also presents new challenges in performing estimation.

A Proofs on Gaussian scale mixtures

We collect here proofs of various results stated about Gaussian scale mixtures.
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A.1 Proof of Theorem 1

Combining the following lemmas give us the proof of Theorem 1.

Lemma 1. Consider a GSM variable with representation x
d
=
p
zu, and let �c(t) and  z(t) be the char-

acteristic function and Laplace transform of c and z respectively. Then �c(t) =  z(t
2=2).

Proof. Apply iterated expectation to the representation of �c(t) = E[exp(jct)], and use the fact that the

characteristic function of a N (0; 1) variable is exp (�t2=2).

Lemma 2. A function g on (0;1) is the Laplace transform of a probability distribution F () g is

completely monotone and g(0) = 1.

Proof. See Section (XIII; 4) of Feller [17].

A.2 Proof of Theorem 3

Theorem 3. Let x
d
=
p
zu be a GSM with characteristic function �c, and let the mixing variable z have

density pz(u). De�ne f(v) , pz(v)=
p
v, and suppose that

R1
0
f(v)dv <1, in which case we can consider

a random variable v with the density f . Then the GSM y
d
= 1p

v
u has density py(y) / �c(y):

Proof. We write

�c(t) =

Z 1
�1

�Z 1
0

1p
2�z

exp (�u
2

2z
) pz(z)dz

�
exp (jut)du

=

Z 1
0

�Z 1
�1

1p
2�z

exp (�u
2

2z
) exp (jut)du

�
pz(z)dz

=

Z 1
0

p
z exp (�z t

2

2
)
pz(z)p
z
dz (13)

where we have used Fubini's theorem, and the fact that the characteristic function of a N (0; z) variable is

exp (�zt2=2). From the �nal equation, it is clear that if v has density f(v) , pz(v)=
p
v, then y , 1p

v
u is

a GSM with density py(y) / �c(y).

A.3 Proof of Proposition 1

The following classical result is required in the proof:
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Lemma 3. For 0 < � < 1, let G� be the distribution function of a positive �-stable variable. Then as

x! 0, we have ex
��

G�(x)! 0.

Proof. See Feller [ xXIII; 6 17].

Equipped with this result, we can now prove the proposition:

Proposition 1. The generalized Gaussian family has the representation y
d
= 1p

v
u, where in particular, v

has the density proportional to p�
2

(v)=
p
v, and p�

2

is the density of a positive �
2 -stable variable.

Proof. We need to establish existence of the integral
R1
0

p�
2

(u)
p
u
du, where p�

2

(u) = d
du
G�

2

(u). Integrating

by parts, we obtain
R1
0

p�
2

(u)
p
u

du =
G�

2

(u)
p
u

����
1

0

+ 1
2

R1
0

G�

2

(u)

u
3

2

du. Examining the �rst term on the right side,

clearly limu!1
G�

2
(u)

p
u

= 0 sinceG�

2

(u) � 1 for all u 2 R. Otherwise, we write G�

2
(u)

p
u

=
h
eu
�

�

2 G�(u)
i �

e�u
�

�

2p
u

�
.

By inspection, the second term in square brackets tends to zero as u ! 0; using Lemma 3, the �rst term

in square brackets also tends to zero. By the product theorem for limits, we have limu!0

G�

2
(u)

p
u

= 0. As

for the second term in the integration by parts, similar arguments show that the integral exists.

B State estimation

Here we explicitly compute the gradient and Hessian of the objective function f(x) , � log p(x jy).
To begin, we write � log p(yjx) = 1

2

PN
s=1

�
log det[B(x(s))] + yT (s)B�1(x(s))y(s)

�
+ C where the matrix

B(x(s)) , H(x(s))Pu(s)H(x(s)) +R(s) is the covariance of y(s) given x(s). Here Pu(s) is the covariance

of u(s), and the matrix H(x(s)) , diagfh(x(s))g. Using this expansion, we can write

f(x) =
1

2

NX
s=1

�
log det[B(x(s))] + yT (s)B�1(x(s))y(s)

�
+

1

2
xTP�1

x
x+ C (14)

where Px is the covariance matrix of x, and C absorbs terms not dependent on x. Note that P is de�ned

by the system matrices A(s) and Q(s) at each node s (see equation (7)). We compute the derivative of f

with respect to x:

(rf(x))(s;i) =
1

2
trace

h
B�1 @B

@x(s; i)

i
� yT (s)B�1 @B

@x(s; i)
B�1y(s) + 1

2

�
P�1
x

x
�
(s;i)

where @B
@x(s;i) =

@H(x(s))
@x(s;i) Pu(s)H(x(s)) +H(x(s))Pu(s)

@H(x(s;i))
@x(s;i) . Here the notation (s; i) refers to the ith

element of the vector x(s) at node s, and @
@x(s;i) refers to the partial derivative with respect to this element.

Similarly, the Hessian can be computed as r2f(x) = P�1
x

+D(x) where D(x) is a block diagonal matrix.
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We now show that the computation of the descent direction dn , �
�
P�1
x

+D(xn)
�
�1
rf(xn) corre-

sponds to the canonical form of a linear-Gaussian problem shown in equation (4). In particular, we let

P�1
x

be the inverse covariance matrix in both cases; we set the inverse noise covariance R�1 � D(xn); and

the observations matrix C � I. Finally, we de�ne a vector of �ctitious data as y = �D�1(xn)rf(xn).

Note that we have assumed here that the blocks of D(xn) are positive de�nite to ensure that is constitutes

a valid covariance. Satisfying this condition may require modifying D, in which case the method is not

exact Newton but a Newton-like method.

C Details of parameter estimation

C.1 Initial set-up

In this section, we provide the details of estimating the parameter vector � in the model (12) given the noisy

wavelet coe�cients y(s) in equation (9). We approximate the conditional density p(xjy; �) by expanding

the negative log conditional density in a Taylor series about the MAP estimate bx:
f(x; �) � f(bx; �) + 1

2
(x� bx)0�P�1

x
(�) +D(bx)�(x� bx) (15)

where we have used the fact that rf(bx; �) = 0 by de�nition of the MAP estimate. Here the matrix D(bx)
is the one that appeared earlier in the Hessian of f . This Taylor series expansion yields the approximation

p(xjy; �) � q(xjy; �) , N (bx; C(bx; �)) where the covariance is given by C(bx; �) , �
P�1
x

(�) +D(bx)	�1
. At

iteration n, we use the approximating density q(xjy; �n�1) to perform approximate E-step by calculat-

ing the expectation of the augmented log likelihood L(�; �n) , E q(xjy;�n )

�
log p(x;y; �)

�
. It is straight-

forward to show [25] that this function is a lower bound on the log likelihood p(y; �). Like many

generalized EM methods, instead of performing an exact maximization of L at the M-step, we will

simply take a gradient step. This generates a series of parameter estimates f�ng via the recursion

�n = �n�1 + �nS(�n�1; �n�1)rL(�n�1; �n�1) where S is the Hessian of L (or some approximation to it);

and �n is a step size parameter.

To perform these updates, we need to calculate the gradient rL. The ith element of this gradient is

given by @L
@�i

= E q

h
@
@�i

�
log p(x; �)

�i
, where we have used the dominated convergence theorem to inter-

change expectation and di�erentiation, and the fact that log p(yjx; �) does not depend on �. Recall that

for a Gaussian process x � N (0; Px), we have � log p(x; �) = N
2 log(2�) + 1

2 log detP (�) +
1
2x

TP�1(�)x,

where we write P � Px for simplicity in notation. The partial derivative with respect to �i is given

by � @
@�i

�
log p(x; �)

�
= 1

2 trace
�
P�1 @P

@�i

�
� 1

2x
TP�1 @P

@�i
P�1x. We calculate the ith element of the gradient
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rL by taking the expectation of of � @

@�i

�
log p(xj�)

�
with respect to this approximating normal density

q(x; �n) � N (bx; C(x; �n)), where the covariance C was de�ned earlier. Following some elementary calcula-

tions, we obtain

@L

@�i
=

1

2
trace

�
P�1

@P

@�i

�
�

1

2
bx0P�1

@P

@�i
P�1bx� 1

2
trace

�
CTP�1

@P

@�i
P�1

�
(16)

C.2 Gradient evaluation via likelihood calculations

Although equation (16) is analytically straightforward, its actual computation is non-trivial. Recall that

the matrices P and C, as well as their inverses and derivatives, are all N �N , where N is very large (say

105). This large dimension renders infeasible any brute force approach. However, the tree structure can

be exploited to develop a very fast algorithm for likelihood calculation of MAR models [see 59], consisting

of a single upward sweep from leaves to root.

This algorithm for computing MAR likelihoods turns out to be useful here. By applying the matrix in-

version lemma to equation (16) and simplifying, we have @L

@�i
= �1

2
bx0P�1 @P

@�i
P�1bx+ 1

2
trace

h�
P +D�1

�
�1 @P

@�i

i
.

For any covariance matrix �, let J(u; �) , 1

2
trace log(�) + 1

2
u
T��1

u be the corresponding Gaussian likeli-

hood. With this de�nition, it can be shown be shown that @L

@�i
(bx) = @J

@�i
(P ; bx)� @J

@�i
(P ;0) + @J

@�i
(P +D�1;0).

Thus, the gradient computation can be performed by taking derivatives of standard Gaussian likelihoods

on the tree. Similarly, this structure permits e�cient computation of elements of the Hessian.
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Figure 1. Histograms of wavelet marginal distributions for (a) Gaussian noise; and (b) a typical natural
image. Vertical axis gives log probability (rescaled).
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Figure 2. Joint conditional histograms for a wavelet coe�cient (parent) and its coarser scale child taken from
Gaussian white noise (a), contrasted with a natural image (b). Each column of the 2-D plots corresponds to
1-D conditional histogram of p(child j parent). Lightness corresponds to frequency of occurrence,where each
column has been independently rescaled to form a conditional histogram.
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Figure 3. A segment of a q-adic tree, with the unique parent s�
 and children s�q ; : : : s�q corresponding to
node s.
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Figure 4. Graphical illustration of model structure. Premultiplier process x(s) and white noise u(s) are
de�ned on nodes (represented by 
) of the multiscale tree. Wavelet coe�cient vectors c(s) (represented by
�) is generated via nonlinearity h.
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Figure 5. Log histograms of GSM model �ts (dotted line) to the log empirical histograms of steerable
pyramid coe�cients (a single subband) applied to natural images. Parameters are computed by numerical
minimization of the Kullback-Leibler divergence.
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Figure 6. Examples of empirically observed distributions of wavelet coe�cients, compared with simulated
distributions from the GSM gamma model. Top row: \Mountain" image. Second row: Empirical joint
histograms for the \mountain" image, for three pairs of wavelet coe�cients, corresponding to basis functions
with spatial separations � = f0; 8; 128g. Third row: Simulated joint distributions for � = 0:92, h(x) = jxj,
and the same spatial separations. Contour lines are drawn at equal intervals of log probability. Fourth row:
Empirical conditional histograms for the \mountain" image. Fifth row: Simulated conditional histograms for
the GSM cascade. For these conditional distributions, intensity corresponds to probability, except that each
column has been independently rescaled to �ll the full range of intensities.
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Figure 7. Simulated random cascades for various choices of the parameters. Heaviness of tails (and hence
impulsiveness of the process) increases with the parameter �, whereas the parameter � controls the scale-to-
scale dependence.
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Figure 8. Estimation of a 1-D GSM processes based on observations contaminated by white Gaussian noise.
(a) GSM process generated with h(x) , exp(1:5x). (b) GSM generated with h(x) , [x+]3.
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Figure 9. (a) Empirical histograms of original wavelet coe�cients, estimated coe�cients, and noisy ob-
servations, all plotted on a semilog scale. (b) Joint histogram of absolute value of noisy observations
y(s) = c(s) + v(s) versus absolute value of estimates bc(s). The overlaid solid line is the conditional mean
E
�
jbc(s)j �� jy(s)j

�
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Figure 10. Cropped denoising results using a 4-orientation steerable pyramid. (a) Original image. (b)
Noisy image. (c) Wiener subband denoising. (d) MATLAB adaptive. (e) Soft thresholding. (f) GSM-tree
algorithm.
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Mixing density GSM density GSM char. function

�Z(�) symmetrized Gamma [1 + �2t2]��, � > 0

�=Z(�� 1

2
)

Student:

[1 + t2=�2]�� � > 1

2

No explicit form

Positive �

2
-stable �-stable exp (�j�tj�), � 2 (0; 2]

No explicit form
generalized Gaussian:

exp (�
�
� c
�

�
��), � 2 (0; 2]

No explicit form

z
d
= � exp (x=�)

� � 0

Log multiplier

No explicit form
No explicit form

Table 1. Example densities from the class of Gaussian scale mixtures. The notation Z(
) denotes a positive

gamma variable z of index 
 with density p(z) = z

�1

�(
) exp (�z).
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Noisy Wiener subband wiener2.m Soft threshold GSM Tree

1.59 9.28 10.19 10.11 10.54

4.80 10.61 11.86 11.47 12.31

9.02 12.58 13.37 13.24 14.68

13.06 14.96 14.23 15.41 16.83

Table 2. Denoising results (SNR in dB) for 256 � 256 Einstein image using a 4-orientation steerable
pyramid. The original noisy SNR is given by 10 log

10
[var(I)=�2], and the cleaned SNR is given by

10 log
10
[var(I)= var(bI � I)], where I and bI denote the original and denoised images respectively.


