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The response properties of neurons in the early stages of the visual system can be described using the rectified responses of a set of
self-similar, spatially shifted linear filters. In macaque primary visual cortex (V1), simple cell responses can be captured with a single
filter, whereas complex cells combine a set of filters, creating position invariance. These filters cannot be estimated using standard
methods, such as spike-triggered averaging. Subspace methods like spike-triggered covariance can recover multiple filters but require
substantial amounts of data, and recover an orthogonal basis for the subspace in which the filters reside, rather than the filters them-
selves. Here, we assume a linear-nonlinear-linear-nonlinear (LN-LN) cascade model in which the first LN stage consists of shifted
(“convolutional”) copies of a single filter, followed by a common instantaneous nonlinearity. We refer to these initial LN elements as the
“subunits” of the receptive field, and we allow two independent sets of subunits, each with its own filter and nonlinearity. The second
linear stage computes a weighted sum of the subunit responses and passes the result through a final instantaneous nonlinearity. We
develop a procedure to directly fit this model to electrophysiological data. When fit to data from macaque V1, the subunit model
significantly outperforms three alternatives in terms of cross-validated accuracy and efficiency, and provides a robust, biologically
plausible account of receptive field structure for all cell types encountered in V1.
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Introduction
The stimulus selectivity of neurons in primary visual cortex (V1)
is often described using oriented linear filters. Simple cells com-
bine signals from afferents arriving from the lateral geniculate
nucleus (LGN) (Hubel and Wiesel, 1962; Alonso et al., 2001); the
resulting behavior can be modeled with a linear filter and a rec-
tifying nonlinearity in an “LN” cascade (Jones and Palmer, 1987;
Heeger, 1992). Complex cell responses can be described by sum-
ming the responses of a set of simple cells with identical orienta-

tion tuning, which differ in spatial position and/or phase (Hubel
and Wiesel, 1962; Movshon et al., 1978; Adelson and Bergen,
1985).

The simple-complex distinction may not be a true dichotomy
(Mechler and Ringach, 2002), and “subspace” characterization
methods (Steveninck and Bialek, 1988; Brenner et al., 2000; Pan-
inski, 2004; Sharpee et al., 2004; Simoncelli et al., 2004) have
shown that the responses of individual V1 cells may be fit by a set
of linear filters numbering from one to more than a dozen
(Touryan et al., 2002; Rust et al., 2005; Chen et al., 2007). These
models usefully extend traditional accounts of simple and com-
plex cells, but their biological interpretation is unclear; the ex-
tracted filters are constrained by the analysis to be orthogonal and
therefore span the relevant subspace with diverse shapes and po-
sitions. Moreover, although these orthogonal filters can be used
to constrain a model based on spatially shifted (convolutional)
filters (Rust et al., 2005; Lochmann et al., 2013), the initial char-
acterization of the subspace has many more degrees of freedom in
its parameterization and thus requires large amounts of data for
accurate estimation.
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Significance Statement

We present a new subunit model for neurons in primary visual cortex that significantly outperforms three alternative models in
terms of cross-validated accuracy and efficiency, and provides a robust and biologically plausible account of the receptive field
structure in these neurons across the full spectrum of response properties.
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We have developed a general model for V1 neurons (Fig. 1),
along with a direct method for fitting it to spiking data. The
model has two channels (one excitatory, one suppressive), each
formed from a weighted sum of linear-nonlinear (LN) subunits,
similar in concept to Hubel and Wiesel’s original description of
complex cell responses as resulting from a spatial combination of
simple cells (Hubel and Wiesel, 1962), to Barlow and Levick’s
characterization of directionally selective retinal ganglion cells in
the rabbit (Barlow and Levick, 1965), and to Victor and Shapley’s
subunit model for Y-type ganglion cells in cat retina (Victor and
Shapley, 1979).

To make the fitting problem tractable, we assume that the
subunit filters of each channel differ only in spatial position and
that their nonlinearities are identical. The difference between the
responses of the two channels is transformed with a rectifying
nonlinearity to give the firing rate of the neuron. We have devel-
oped a method for directly and efficiently estimating the model,
and have tested it on data from V1 neurons driven by spatiotem-
poral white noise. The results show that the fitted model outper-
forms previously published functional models (specifically, the
LN, energy, and spike-triggered covariance [STC]-based models)
for all cells, in addition to providing a more biologically reason-
able account of the origins of cortical receptive fields. A brief
account of some of this work has appeared previously (Vintch et
al., 2012).

Materials and Methods
Electrophysiology
We recorded from 38 well-isolated single neurons in the primary visual
area (V1) of adult macaque monkeys (Macaca nemestrina and M. fascicu-
laris; 6 males), using methods that are described in detail previously
(Cavanaugh et al., 2002). Typical experiments spanned 5–7 d during
which animals were maintained in an anesthetized and paralyzed state
through a continuous intravenous infusion of sufentanil citrate and ve-
curonium bromide. Vital signs (temperature, heart rate, end-tidal PCO2

levels, blood pressure, EEG activity, and urine quantity, and specific

gravity) were continuously monitored and maintained within physiolog-
ical limits. Eyes were treated with topical gentamicin, dilated with topical
atropine, and protected with gas-permeable hard contact lenses. Addi-
tional corrective lenses were chosen via direct ophthalmoscopy to make
the retinae conjugate with the experimental display. All experimental
procedures and animal care were performed in accordance to protocols
approved by the New York University Animal Welfare Committee, and
in compliance with the National Institute of Health Guide for the Care and
Use of Laboratory Animals.

We recorded neuronal signals with quartz-platinum-tungsten micro-
electrodes (Thomas Recording) lowered through a craniotomy and du-
rotomy centered between 10 and 16 mm lateral to the midline and
between 3 and 6 mm behind the lunate sulcus. We recorded across all
cortical depths. Receptive fields were centered in the inferior quadrant of
the visual field, between 2 and 5 degrees from the center of gaze. The
amplified signal from the electrode was bandpassed (300 Hz to 8 kHz)
and routed to a time-amplitude discriminator, which detected and time-
stamped spikes at a resolution of 0.1 ms.

Visual stimulation
We presented pixellated (XYT) noise stimuli on a gamma-corrected CRT
monitor (Eizo T966; mean luminance, 33 cd/m 2), at a resolution of
1280 � 960 pixels, with a refresh rate of 120 Hz, positioned 114 cm from
the animal’s eyes. We generated stimuli pseudorandomly using Expo
software (http://corevision.cns.nyu.edu) on an Apple Macintosh com-
puter. The stimuli consisted of a pixel array (usually 16 � 16) filled with
white, ternary noise that was continuously refreshed at 40 Hz. The width
of the array was approximately double that of the receptive field (as
measured with optimized drifting gratings) while still maintaining ade-
quate pixel resolution to capture receptive field features. For a subset of
cells, we measured responses to a repeated “frozen” sample of noise for
cross-validation. Each sample of frozen noise had identical statistics to
the main white-noise stimuli, lasted 25 s, and was repeated 20 times in
succession.

Data for flickering bar (XT) noise stimuli were taken from Rust et al.
(2005); these data were collected similarly, and details can be found in the
original article. Stimuli were displayed using a Silicon graphics Octane-2
workstation at 100 Hz. Each frame consisted of a square region contain-
ing 16 adjacent parallel bars of the neuron’s preferred orientation, ar-

a

b

Figure 1. Subunit model for a single channel. a, A signal flow diagram describes how stimulus information is converted to a firing rate. The stimulus is passed through a bank of spatially shifted,
but otherwise identical, linear-nonlinear subunits. The activity of these subunits is combined with a weighted sum over space (and optionally time; not shown), and passed through an output
nonlinearity to generate a firing rate. b, Responses of intermediate model stages are depicted for an example input (for simplicity, a single frame is shown, rather than a temporal sequence). Each
stage, except for the last, maps a spatially distributed array of inputs to a spatially distributed array of responses, depicted as pixel intensities in an image. The pooling stage sums over these responses
and applies the final output nonlinearity.
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ranged to cover its receptive field. On each frame, each bar was randomly
assigned one of two luminance values (i.e., the bars were filled with white
binary noise).

Model fitting
We consider four models for neuronal responses in primary visual cor-
tex. All models were fit to the same data, which consisted of individual V1
cell spiking responses to the spatio-temporal pixel arrays.

LN model. The stimulus is filtered with a linear kernel whose spatial
extent matches the stimulus (e.g., 16 bars, or 16 � 16 pixels) and whose
temporal duration is typically 16 frames for XT stimuli and 8 frames for
XYT stimuli. The filter output is then passed through an instantaneous
nonlinearity that converts a simulated membrane potential to a spike
rate. The model response (expected spike count in the t-th 25 ms time
bin) is written as follows:

r̂LN �t� � f �kT xt� (1)

where xt is a vector containing the spatiotemporal stimulus segment
(intensity values over spatial position and time) preceding the t-th time
bin, the superscript T indicates vector transposition, k is the vectorized
filter kernel, and f is a scalar-valued nonlinear function. We estimate the
filter kernel using the spike-triggered average (STA); the spike-count
weighted average of preceding stimulus frames (Chichilnisky, 2001). We
then use least-squares regression to estimate a piecewise-linear output
nonlinearity over 9 equispaced nodes chosen to span the response distri-
bution (this method is also used to determine the output nonlinearity for
the other models, except for the Rust STC model which assumes a mod-
ified Naka-Rushton function).

Energy model. The energy model is the de facto standard description of
complex cells in primary visual cortex (Adelson and Bergen, 1985). The
responses of two filters with orthogonal phase preferences (odd-
symmetric and even-symmetric) are squared and summed to generate
phase-invariant selectivity. Similarly, the summed and squared responses
of a second pair of filters are subtracted to capture suppression. Although
this model is commonly used for complex cells, there is no standard
method for fitting to white noise responses (for fitting methods using
sparse bar stimuli, see Emerson et al., 1992). We have developed a novel
optimization procedure to fit this model to spiking responses to white-
noise stimuli. We search for the single even-symmetric filter whose
squared response best matches the observed spike count in terms of mean
square error. We then take the 2D Hilbert transform (Bracewell, 2000)
yielding an odd-symmetric filter (orthogonal to the original) with iden-
tical power spectrum.

The model response is written as follows:

r̂energy �t� � ��kT xt�
2 � �kH

T
xt�

2� � ��sT xt�
2 � �sH

T xt�
2� (2)

where k and s are the vectorized excitatory and inhibitory filter kernels,
respectively, and the subscript H indicates a directional Hilbert trans-
form. We use gradient descent to solve for the even-symmetric filters that
minimize the squared response error.

To obtain the quadrature filters for k and s, we first estimate the filter’s
predominant spatiotemporal orientation in the Fourier domain using
orthogonal least-squares regression. This is obtained by seeking the
eigenvector u with the largest eigenvalue of the matrix MTM, where M is
a 2- or 3-column matrix (for modeling XT or XYT stimuli, respectively)
whose rows contain each of the Fourier frequencies weighted by the
filters’ Fourier amplitudes at those frequencies. The odd-symmetric fil-
ters are then computed by Hilbert-transforming the even-symmetric fil-
ters in the direction of this eigenvector.

Rust (STC-based) model. STC can be used in combination with spike-
triggered averaging to obtain multiple filters spanning a response “sub-
space” (Steveninck and Bialek, 1988; Brenner et al., 2000; Simoncelli et
al., 2004; Rust et al., 2005; Touryan et al., 2005; Fairhall et al., 2006; Pillow
and Simoncelli, 2006; Schwartz et al., 2006; Chen et al., 2007). The gen-
eral procedure uses an eigenvector decomposition of the covariance ma-
trix of those stimuli that elicited spikes. We compute the stimulus
covariance matrix as a spike-weighted sum of stimulus outer-products as
follows:

Ĉ �
1

tmax
�

t
rt�xt xt

T� (3)

where rt is the spike count measured in the t-th 25 ms time bin, and tmax

is the total number of time bins in the sum. The estimated model filters
are the eigenvectors of this matrix whose eigenvalues differ significantly
from those expected by chance (Rust et al., 2005). Specifically, larger
eigenvalues are associated with stimulus attributes that excite the cell
(when presented in either polarity); smaller eigenvalues are associated
with stimulus attributes that suppress the cell. We find the relative
weighting of each eigenvector by projecting the stimuli onto it, squaring
the responses, and performing ordinary least-squares regression against
the observed spike count. Whereas Rust et al. (2005) used nested signif-
icance testing to determine the relevant number of filters to include in the
model, here we use cross-validated prediction error because it explicitly
maximizes the measure of performance used throughout this paper: the
r value of the measured spike count compared with model-predicted
firing rate.

STA/STC analysis produces a set of excitatory and suppressive filters,
but does not resolve how their responses should be combined to yield an
estimated firing rate. Rust et al. (2005) proposed a phenomenological
model built on the responses of the STA- and STC-derived filters. The
STA response is half-wave-rectified, squared and weighted, and then
added to the weighted responses of the fully squared STC filters responses
to form an excitatory channel response, Et. Similarly, the suppressive
STC responses are squared and weighted, and combined to form a sup-
pressive channel response, St. A Naka-Rushton nonlinear combination
of these two non-negative channel responses is then used to compute a
firing rate as follows:

r̂STC �t� � � �
�Et

� � �St
�

	Et
� � 
St

� � 1
(4)

where Et and St are the excitatory and inhibitory channel responses for
the t-th time bin. The 6 free parameters in this expression (�, �, �, 
, 	, �)
are fit to the data for each cell.

Subunit model. The subunit model linearly combines multiple chan-
nels (two channels, an excitatory and a suppressive channel, are used for
analysis in this paper), which are themselves each a weighted sum of LN
afferents, or subunits. Each channel contains an array of subunits, each
consisting of the common linear filter (L) and instantaneous nonlinearity
(N). The nonlinear subunit responses are pooled with a spatial weighting
function. The output of the full model is generated from the linear com-
bination of the channels as follows:

r̂subunit �t� � fr ��
c
�
m,n

wc�m, n� fc,� ��
i, j,�

kc �i, j, ��

� x �m � i, n � j, t � ��� � b� (5)

where kc is the filter kernel for the cth channel, fc,� is the subunit nonlin-
earity specified by parameter vector �, wc represents the spatial pooling
weights, and fr is a final rectifying nonlinearity, which transforms the
summed channel responses (the “generator signal”) into a firing rate. For
the XT stimuli, the pooling is also performed over time, but for brevity,
the equations in this section do not reflect this temporal weighting. The
subunit nonlinearity, fc,�, is parameterized as piecewise linear as follows:

fc,� �s� � �
l

�c,lTl �s� (6)

where the Tl are a fixed set of 13 evenly spaced overlapping “tent” func-
tions. This allows us to combine the subunit nonlinearities and pooling
within the generator signal into a single summation as follows:

g�t� � �
c
�
m,n

wc�m, n� �c,lTl � �
i, j,�

kc�i, j, ��

� x�m � i, n � j, t � ��� � b (7)
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To fit this model, we optimize over the parameters by minimizing mean
square error of the generator signal g(t) against the measured spike
counts. Specifically, we solve the problem using coordinate descent, al-
ternating between fitting the subunit nonlinearity and spatial pooling
with alternate least squares (Young et al., 1976) and then optimizing over
the subunit filters with gradient descent.

Because the generator is bilinear in �c,l and wc for fixed kc, these pa-
rameters are easy to optimize under most conditions (for an extensive
treatment, see Ahrens et al., 2008). We further ensure that the solution
path is well behaved through regularization: we use a cross-validated
ridge prior for the spatial pooling to keep wc compact, and a smoothing
prior is used for �c,l to prevent fc,� from becoming jagged or discontinu-
ous. This optimization problem is not convex, but like Ahrens et al.
(2008), we find that the solution is stable for our data (for more details
and validation against simulated data, see Vintch, 2013).

The bilinear form of the generator facilitates the calculation of the
gradient for the subunit kernel, kc. Specifically, between any two nodes of
the piecewise nonlinearity fc,�, the generator is a linear function of the
kernel. Updating kc causes the linear subunit outputs to drift between
nodes; but because we regularize fc,� to be smooth, the optimization
problem remains well behaved. After this iterative fitting procedure has
converged, we complete the model fit by estimating a (piecewise linear)
second stage output nonlinearity.

Subunit model initialization
The convergence time of the fitting procedure, particularly when a sup-
pressive channel is included, benefits from a judicious choice of initial
conditions. For the XT models, we use the fitted energy model to initial-
ize the convolutional filters. Specifically, we invert the Fourier power of
the excitatory and suppressive energy filters, assuming an odd filter with
zero phase of the desired size.

The XYT models have many more parameters and must be fit to da-
tasets with more samples. In general, we find that the energy model does
not produce results of sufficient quality, especially in the suppressive
channel, to be effective as an initialization tool. We therefore developed a
novel technique that we call “convolutional STC” to generate initial fil-
ters (Vintch et al., 2012). We compute an STC matrix over a set of
spatially overlapping stimulus blocks, each the size of the subunit model
kernels. We use the eigenvectors with the largest and smallest eigenvalues
to initialize each channel in the subunit model. This initialization proce-
dure generally returns better cross-validated models than the method
described for the XT models.

Model validation
We estimate each of the four models on “training” data and validate on
the held-out set of “testing” data. This is essential because the spiking
responses contain both a stimulus-driven component (the signal) and

LN
 m

od
el

E
ne

rg
y 

m
od

el

100

0

ip
s

100

0

ip
s

200

0

ip
s

200

0

ip
s

a

b

c

d

Simple cell Complex cell

1.2º

80ms 80ms

1.1º

Figure 2. The LN and energy models fit to space-time (XT) data for an example simple cell and an example complex cell. a, c, LN model. XT filter is depicted as a grayscale image, with intensity
indicating filter weight. Oblique filter orientation indicates a preference for moving stimuli (Adelson and Bergen 1985). In this figure and others, the input is in unspecified units, adjusted to span the
range of linear responses that arise, given the combination of the experimental stimuli and fitted model parameters. The noisy appearance of the complex cell linear filter is indicative of a poor fit.
b, d, Energy model, with two quadrature pairs of filters (one excitatory and one inhibitory). Display contrast for filters is normalized within each model (e.g., the suppressive filters are slightly weaker
than the excitatory filters, and thus are plotted with proportionately less contrast). The energy model is invariant to phase, allowing it to capture this property of complex cells, but preventing it from
describing simple cells (rsimple � 0.08, rcomplex � 0.41).
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random fluctuations (the noise). Models that are underconstrained (too
many parameters for the amount of data) tend to fit the noise as well as
the signal, showing high accuracy for the training data but worse perfor-
mance on the testing data.

For XT data we performed “5-fold cross-validation”: we use 4/5th of
the data for training and test the fit on the remaining 1/5th of the data.
We do this five times and average the fitting error over all five sets (the
tranches of data correspond to randomly selected trials over time, rather
than temporally contiguous sequences). Performance is measured as the
correlation coefficient between the measured spike count and the pre-
dicted firing rate, and overfitting is assessed by comparing the training
performance to the test performance. Although valuable for this dataset,
this form of cross-validation is relatively cumbersome because the model
must be estimated five times in succession.

We also collected data that allows us to perform a different kind of
validation that is both more efficient and more illuminating. For a subset
of cells that were presented with the XYT stimuli, we collected responses
to 20 repeats of a 25 s stimulus that had not been presented before. We
then tested the fitted model on each repeated trial and computed the
average correlation coefficient over all 20 trials. That is, the model was fit
to the longer, unrepeated stimulus presentation and tested on each of the
shorter, repeated stimulus segments.

These cross-validation methods allow us to compare performance
across models and provide a measure of overfitting, but they cannot tell
us how well the models are performing on an absolute scale. Each re-
corded spike count includes many sources of noise (e.g., input noise,
variability in spike generation, spike sorting errors), and this noise estab-

lishes a limit to the performance that any stimulus-driven model can
achieve. We estimate this ceiling by computing an “oracle” response that
seeks to minimize the effects of noise. Specifically, as a prediction of the
response on a given trial, we take the average of responses on the other 19
trials. Many neurons are very unreliable, and their trial-to-trial variabil-
ity is high. For these neurons, the oracle is expected to perform poorly, as
is any stimulus-driven model. By comparing our models to the oracle
maximum, we learn how much of the explainable (stimulus-driven) vari-
ance each model captures.

Assessing the parameters of the fitted subunit models
The structure of the subunit model is convenient for dissociating the
spatiotemporal position of the receptive field from its tuning properties.
We measure the spatial and temporal extent of the subunit filter and
linear pooling for the XT models by fitting a 2D Gaussians with 6 param-
eters (1 for amplitude, 2 for spatial position, and 3 for the covariance
matrix; Cholesky decomposition). The subunit filters are bandpass and
contain both positive and negative components, so we first compute
spatial power envelope before fitting a Gaussian. First, we find the 2D
Hilbert transform in the direction of the subunit filter’s preferred orien-
tation. The power envelope is then the square-root of the sum of squares
of the original subunit filter and its Hilbert transform. We compute the
relative influence of the excitatory channel and the suppressive channel
by comparing the SD of their independent responses over all stimuli
frames.

For the cells tested with XYT stimuli, we also collected direction tuning
curves for optimal drifting gratings. To determine the model predictions

a

b

c

d

Figure 3. The Rust-STC and subunit models fit to XT data for the example simple and complex cells of Figure 2. a, c, Rust-STC model. Contrast of individual filters indicates their weighted
contribution to the full model. The output nonlinearity is a joint function of the excitatory and suppressive drive (see Materials and Methods) and is depicted as a 2D image in which intensity is
proportional to firing rate. Cross-validated model performance: rsimple � 0.56, rcomplex � 0.47. b, d, Subunit model with two channels (excitatory and suppressive). The subunit filters are
constrained to have unit norm, but the intensities in the image depicting the linear pooling weights indicate their relative contribution to the response. Cross-validated model performance:
rsimple � 0.55, rcomplex � 0.42.
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for direction tuning, we generated drifting sinusoidal stimuli near the
model-optimal SF and TF and fed these sequences to each model along
with the fitted parameters for each cell. Gratings have more effective
contrast than the noise to which the models were fit. We therefore fit a
new output nonlinearity for each model and each cell to account for the
output scaling. For the subunit model, we also extended the dynamic
range of the subunit nonlinearities, fitting each with a piecewise
power-law function. Specifically, the nonlinearity for each channel is
split at zero, and both the positive and negative side are fit with an

independent nonlinearity of the form ⎣x � b⎦p, where b is an offset

and p is a power bounded between 0 and 5.

Results
We analyzed the responses of neurons in macaque primary visual
cortex to white-noise stimuli. One population of 52 neurons
(data from Rust et al., 2005) was stimulated with an array of
random black and white parallel bars at the neuron’s preferred
orientation, covering the receptive field. We label this class of
stimuli “XT noise,” referring to the two relevant dimensions of
space (X) and time (T). A newly recorded second population of

38 neurons was studied with ternary pixel noise updated at 40 Hz.
We refer to these stimuli as “XYT noise.” For each cell, we fit the
subunit model and three other previously published models: an
LN model based on the STA, the “energy model” (Adelson and
Bergen, 1985), and the “Rust-STC model” (Rust et al., 2005).

The LN cascade model is the simplest and most well-known
descriptive model for response of sensory neurons. At each mo-
ment in time, the linear stage computes a weighted sum (or inte-
gral, if the stimulus space is continuous) over local stimulus
values and recent time. The weights determine the stimulus se-
lectivity of the model cell, and the linear operation can be inter-
preted as passive combination of incoming signals weighted by
their associated synaptic efficacies. This response is then trans-
formed with a rectifying nonlinear function, which can be inter-
preted as converting membrane voltage to firing rate. When
applied to neurons from area V1, this framework is only practical
for simple cells, which are known to have a monotonic contrast-
polarity response functions. Complex cells, which respond well
to stimuli of both polarities and exhibit position-invariant re-

a b c

d e

Figure 4. Comparison of models across all cells fit to space-time (XT) data. Model performance is measured as the correlation between the measured spike count and the model-predicted firing
rate. Each point corresponds to a cell, with hollow symbols indicating performance on training data and solid symbols indicating performance on held out testing data (i.e., cross-validated). a, b, The
subunit model outperforms both the LN and energy models. c, The subunit model outperforms the Rust-STC model on cross-validated data (solid points), but not on training data (hollow points),
a clear indication that the Rust-STC model is overfitting. d, Relative performance of Rust-STC, energy, and LN models, plotted by projecting the 3D vector of r values for each cell onto the surface of
the unit sphere. The relative performance of energy versus LN models gives an intrinsic indication of cell complexity. The Rust-STC model outperforms the energy model for most complex cells and
has performance approximately comparable with the LN model for simple cells (the LN model is a special case of the Rust-STC model). e, Relative performance of subunit, energy, and LN models. The
subunit model consistently outperforms the other models, independent of cell type.

14834 • J. Neurosci., November 4, 2015 • 35(44):14829 –14841 Vintch et al. • A Subunit Model of V1 Responses



sponses within their receptive fields, cannot be explained with a
single filter, regardless of nonlinearity. Figure 2a, c shows model
parameters for an example simple and complex cell, fitted to the
XT data.

The “energy model” (Adelson and Bergen, 1985) is a standard
model for complex cell responses. The model computes the sum
of squares of responses of two space-time oriented linear filters, a
quadrature pair that have the same frequency response magni-
tude but different symmetry (one is even-symmetric, the other
odd-symmetric). This LN-L construction is a quantitative instan-
tiation of the qualitative description given by Hubel and Wiesel
(1962) and can be thought of as combining the responses of four
simple cells with identical retinotopic location and orientation
and frequency selectivity, differing only in the precise arrange-
ment of excitatory and suppressive regions. The response of this
model to sinusoidal gratings is phase insensitive while retaining
selectivity for spatial orientation and direction. We developed a
method to fit this model to spiking data recorded during expo-
sure to white-noise stimuli (see Materials and Methods). Figure
2b, d shows model parameters for the example simple and com-
plex cells.

Neurons in V1 have been traditionally categorized as simple
or complex (Hubel and Wiesel, 1962), but their properties may
lie on a continuum (Mechler and Ringach, 2002; Rust et al.,
2005). The model developed by Rust et al. (2005), which we will
denote as Rust-STC because of its reliance on spike-triggered
covariance for filter estimation, combines aspects of the LN and
energy models into a single framework, in which a set of LN
responses are additively combined to form excitatory and sup-
pressive signals, which are then combined using a spiking non-
linearity that includes both subtractive and divisive interactions
(Rust et al., 2005). The linear filters are obtained from STA and
covariance (STC) analyses. Unlike the LN or energy models, the
combination of linear and energy-like elements allows the Rust-
STC model to accommodate the range of simple and complex
cells, as can be seen for the example simple cell and complex cell
(Fig. 3a,c).

A drawback of the Rust-STC model is that, unlike the LN and
energy models, the parameters are more difficult to interpret as
biological elements, primarily because the STC analysis forces the

filters to be orthogonal. As a consequence, pairs of filters beyond
the first pair are delocalized in both space-time and spatiotem-
poral frequency (Fig. 3a,c), properties that are generally not ob-
served in real cells (Rust et al., 2005; Vintch et al., 2012).
Furthermore, the Rust-STC model has many more degrees of
freedom than the LN or energy models. As a result, obtaining an
accurate fit to the responses of an individual neuron requires a
large amount of data (Rust et al., 2005).

We have developed a subunit model that retains many of the
advantages of the Rust-STC model, but with an architecture that
has a more natural biological interpretation and requires far less
data to achieve a satisfactory fit (Vintch et al., 2012). The model
sums over two channels, one excitatory and one suppressive; each
channel is constructed from a bank of LN “subunits” with iden-
tical receptive field structure, which differ in their spatial and
temporal position (in other words, the set of linear filters perform
a convolution). For each channel, the set of linear filter responses
are passed through a common output nonlinearity before they
are linearly weighted and summed to generate the channel re-
sponse. Because of this structure that enforces local computa-
tions, the model operates on the same stimulus space as the
Rust-STC model with many fewer parameters. The model frame-
work, along with examples of the computation performed at each
stage, is depicted in Figure 1. We fit the linear filter and nonlin-
earity, as well as the spatial and temporal pooling functions
(weights), for both an excitatory and suppressive channels for
each cell (see Materials and Methods). Fitted model parameters
for the example simple and complex cell are shown in Figure 3b,
d. The model fitted to the simple cell makes primary use of
one channel, with an asymmetric (approximately half-wave-
rectifying) nonlinearity, and a pooling region that is highly con-
centrated. For the complex cell, on the other hand, the model uses
a symmetric (approximately quadratic) nonlinearity, and a much
broader pooling region.

When averaged across all cells presented with the XT stimuli,
the subunit model produced the most accurate cross-validated
fits of the tested models (� rLN 	 � 0.18, � renergy 	 � 0.17,
� rSTC 	 � 0.26, � rsubunit 	 � 0.29; Fig. 4a– c). The LN, energy,
and subunit models exhibit cross-validated (testing) perfor-
mance that differs only slightly from their corresponding training

a b c

Figure 5. Dependence of model-estimated pooling extent and strength on cell complexity. The abscissa of each graph represents a complexity index (derived from the LN and energy models as
(Eenergy 
 ELN)/(Eenergy � ELN); see Materials and Methods). A value of 
1 indicates a purely simple cell; and a value of 1 indicates a purely complex cell. a, Relative spatial pooling size in the fitted
subunit model increases with cell complexity. For each cell, we computed the ratio of SDs of 2D Gaussian envelopes fitted to the pooling weights and the subunit filter. As expected, complex cells pool
over a larger relative region than simple cells. This same effect is seen for the suppressive channel (gray x’s). b, Relative temporal pooling size is not correlated with cell complexity, but pooling
duration of the inhibitory channel is generally larger than that of the excitatory channel. c, Relative strength of excitatory to inhibitory channels increases with cell complexity. Relative strength is
computed as the ratio of SDs of the two channel responses (i.e., generator signals) over all stimuli.
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performance (Fig. 4a– c), indicating that these data are sufficient
to constrain them. The inferior performance of the LN and en-
ergy models arises because each has a form that is too restrictive
to account for the behaviors found across all cells. In particular,
The LN model only captures behavior of simple cells, and the
energy model captures complex cells (Fig. 2). On the other hand,
both the Rust-STC and subunit models are able to capture the
behaviors of both cell types (Fig. 4d,e).

The performance improvement of the subunit model over
the Rust-STC model arises primarily because of overfitting in the
latter. On training data, the Rust-STC model outperforms the
subunit model, but it underperforms on a held-out test set (Fig.
4c). Test performance as a percentage of training performance
was 96% and 67% for the subunit and Rust-STC, respectively,
which are significantly different from one another (two-tailed t
test; p �� 0.05). This overfitting behavior of the Rust-STC model
is a result of the substantially larger parameter space. Although
both models compute responses as a function of a 16 � 16 pixel
stimulus space, the Rust-STC model uses a set of linear filters that
are the full size of this space, whereas the subunit model uses two
8 � 8 filters that are applied convolutionally. In addition to the
larger filter size, the Rust-STC model generally uses more than
two filters (the number is adapted for each cell), which are esti-
mated from a 256-dimensional covariance matrix. To examine
whether the filter size alone accounted for the overfitting, we fit
each cell with a Rust-STC model restricted to the central 8 � 8
pixel region of the stimulus. As expected, the average cross-
validated performance of this model was significantly worse

(� rreducedSTC 	 � 0.23, which is 89% of the unrestricted perfor-
mance). However, despite the fourfold reduction in the di-
mensionality of the parameter space, the restricted model still
overfit the data, exhibiting test performances that were 74%
that of the training performance on average (which was not
significantly different from the unrestricted Rust-STC model;
two-tailed t test).

The subunit model also has the advantage that its structure
dissociates receptive field position and spatial extent from stim-
ulus tuning properties. A simple cell and a complex cell with
identical subunit filters would exhibit identical frequency and
orientation tuning properties but would differ in the size of their
receptive fields and their invariance to stimulus phase or posi-
tion. We measured the spatial and temporal extent of the subunit
filter and pooling map for each cell by fitting a 2D Gaussian
envelope to each (see Materials and Methods). As expected, pool-
ing for most complex cells covers a larger spatial region than that
of simple cells (Fig. 5a). This is true in both the excitatory channel
and the suppressive channel (rexcitatory � 0.42, p � 0.05; rsuppressive

� 0.39, p � 0.05). The extent of pooling over time was not cor-
related with cell type (Fig. 5b), but over all cells the suppressive
channel tended to sum over time more broadly than the excit-
atory channel (p � 0.05, t test).

The smaller pooling envelope for simple cells should not be
interpreted to mean that simple cells have less suppression. For
each cell, we calculate a “channel strength” index that is 0 if
excitation and suppression are balanced, and near 1 if excitation
is much stronger than suppression (see Materials and Methods).

a

b

Figure 6. The LN and energy models fitted to space-space-time (XYT) data from an example complex cell. a, The LN model shows selectivity for spatial patterns over time. The 3D filter kernel is
depicted on the right as a stack of spatial filters, each associated with one (25 ms) temporal frame. Three relevant time slices (50, 75, and 100 ms) are replotted on the left for clarity. b, The energy
model, with two quadrature pairs of filters (one excitatory, one inhibitory).
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Although our extracellular recordings do not allow us to distinguish
between excitatory and inhibitory inputs, the data show a tendency
for simple cells to be more balanced and for complex cells to have a
stronger excitatory drive (Fig. 5c; r � 0.38; p � 0.05).

The subunit model is easily extended to handle stimuli with
two spatial dimensions in addition to time. We presented 38 cells
with ternary pixel noise at 40 Hz on a 16 � 16 grid. We fit these
data with a subunit model whose filter kernels covered an 8 � 8
pixel region, and 8 frames. Because of the relatively slow frame
rate, we used a pooling stage that combined subunit responses
only over space.

For a subset of neurons, we also measured responses to 20
repeats of an identical (“frozen”) noise stimulus. Cross-validated
performance for these repeat experiments was computed by fit-
ting to subsets of 19 of the repeated trials, and measuring corre-
lation (r value) between the measured spike count of the 20th trial
and the model-predicted firing rate.

The four model fits for an example complex direction-
selective cell are shown in Figures 6 and 7 This cell responds best
to horizontal features that drift upward over time, a preference
that can be observed in the filter kernels of all four models.
The Rust-STC model filters for this cell are much noisier than
those for any of the other models, a result of the high dimension-
ality of the parameter space. For this example cell, the subunit
model had the best cross-validated performance (rLN � 0.16,
renergy � 0.28, rSTC � 0.43, rsubunit � 0.54).

As with the XT data, the subunit model outperformed the
other models in terms of average cross-validated correlation
across all XYT cells (� rsubunit 	 � 0.27, � rSTC 	 � 0.16,

� renergy 	 � 0.12, � rLN 	 � 0.12; Fig. 8). For these stimuli, the
difference in model performance was more substantial than for
the XT stimuli: the subunit model performed �70% better than
the Rust-STC model on average. The Rust-STC model also
showed a larger gap between training and testing performance
than for the other models (Fig. 8d, open and closed circles), again
indicating a high degree of overfitting. Most of the increase in
performance for the subunit model comes from the model struc-
ture and filters; replacing all of the subunit nonlinearities with
best-fit second-order polynomials (thus matching the shape of
the filter nonlinearities in the Rust-STC model) does not signifi-
cantly affect overall subunit model performance (p � 0.98, two-
tailed t test). The specific choice of nonlinearity may affect model
interpretation (Kaardal et al., 2013) but does not materially affect
model performance.

We can also compare the performance of the subunit model to
the upper bound derived from the frozen noise measurements,
which we refer to as the “oracle” prediction. The oracle used the
mean response over 19 repeated presentations to predict the fir-
ing rate for the 20th presentation (Fig. 8a; we do this for all 20
trials and take the average). On average, the subunit model per-
formed 76% as well as the oracle model, whereas the Rust-STC
model only performed 49% as well. Thus, the subunit model is
able to capture a significant percentage of the explainable
(stimulus-driven) variance in each cell’s binned spike counts, and
can do so much more efficiently (i.e., with less training data) than
the Rust-STC model.

We also examined the ability of each model to predict direc-
tion tuning curves for drifting gratings. We simulated responses

a

b

Figure 7. The Rust-STC and subunit models fitted to XYT data from the example complex cell of Figure 6. Conventions follow Figure 6. a, Rust-STC model. The high dimensionality of the XYT filters
means that the parameters of this model are difficult to estimate and the resulting filters are very noisy. b, Subunit model. The convolutional nature of the subunit model allows it to cleanly capture
the structure of the complex cell receptive field. There is a clear selectivity for upward motion over time and suppression by opposite-direction motion at a lower spatial frequency.
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to sine-wave gratings at the optimal spa-
tial and temporal frequency for each cell,
and used each model, with parameters fit-
ted to the white-noise training data, to
predict the grating responses averaged
across phase (i.e., the DC response). Grat-
ings have higher effective contrast than
the white noise used to estimate the model
parameters, so we estimated a new out-
put nonlinearity that mapped the model
drive (sum of excitatory and inhibitory
channels) to the observed spike count.
We then compared these model-
predicted direction tuning curves to the
actual measured tuning curves (Fig. 9a
shows this for an example cell).

The subunit model was consistently
more accurate than the other three in pre-
dicting the direction tuning curves (Fig.
9b). The superior performance of the sub-
unit model comes both from its estimates
of direction preference (Fig. 9c) and of
tuning width (Fig. 9d). All models predict
tuning curves that are broader than those
directly measured, although the subunit
model was the most accurate. The cells for
which the model provided accurate tun-
ing curve estimates are also the cells for
which the subunit model predicts novel
white-noise stimuli well (r � 0.49, p �
0.025; Pearson r value, data not shown).
These cells were also the cells with the
highest average firing rate (r � 0.57, p �
0.007; Pearson r value) and the highest
number of total recorded spikes (r � 0.59,
p � 0.005; Pearson r value).

Discussion
We have developed a generalized subunit
model for neurons in primary visual cor-
tex, along with a method to directly and
efficiently estimate the parameters of
this model from measured spike counts.
The model includes as special cases the LN
model that is widely used for simple cells,
as well as the energy model that is widely
used for complex cells. It in turn is a spe-
cial case of a general subspace model.
When fit to a relatively short segment of
responses to white-noise stimuli, the new
method significantly outperforms both of
these classic models in terms of the accu-
racy of predicted responses on a held out
test set, over a large set of neurons from
macaque primary visual cortex. We also
compared the performance of our model to that of Rust et al.
(2005), which provides good fits for both simple and complex
cells. The subunit model performed significantly better on cross-
validated data than the Rust-STC model, primarily because it is more
compactly parameterized and thus less susceptible to overfitting. As
the number of samples grows, the Rust-STC model could perform as
well or better than the subunit model because of the flexibility pro-
vided by its larger number of parameters.

Subunit models date to the work of Hubel and Wiesel (1962),
who proposed that the absence of distinct excitatory and suppres-
sive subregions in most complex cell receptive fields could be
explained by combining the responses of a set of spatially distrib-
uted simple cells having similar stimulus preferences; this model
was further developed and quantified by Movshon et al. (1978).
In the retina of the cat, Hochstein and Shapley (1976) showed
that spatial frequency responses of Y cells arose from spatial filter
significantly smaller than the receptive field size, and proposed a

a

b c

d e

Figure 8. Comparison of model performances across a subset of XYT cells (n � 21), for which we obtained responses to a
1000-frame stimulus repeated 20 times. a, Model performance is computed as the average correlation (r) between the observed
spike count for each of the 20 trials and the model-predicted firing rate. We also computed performance for an “oracle,” which
predicts responses on a given trial using a rate estimated by averaging the other 19 trials. This provides an approximate upper-
bound on performance of any stimulus-driven model. b– d, The subunit model outperforms all other models on cross-validated
testing data (solid), but not on training data (hollow). This indicates significant overfitting for the other models, especially the
Rust-STC model. e, Comparison of subunit and Rust-STC models to the oracle. On average, the subunit model (orange points)
captures 76% of the variance explained by the oracle, and the Rust-STC model (purple points) captures 49%.
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model for these responses based on a sum of nonlinear subunits.
Adelson and Bergen (1985) introduced the spatiotemporal “en-
ergy model” as a simplification of the Hubel and Wiesel (1962)
description that used only two filters, of differing phase, whose
responses were squared and summed. Fukushima (1980) sug-
gested that the spatial pooling of rectified filter responses is a
canonical operation that is repeated in all visual cortical areas to
impart translation-invariance. Consistent with our own motiva-
tions, convolutional processing was introduced to artificial neu-
ral networks as a means of greatly reducing the parameterization,
and thus enabling efficient training (LeCun et al., 1989). This
notion was generalized to include pooling over other dimensions
by Perrett and Oram (1993), and is widely used in modern object
recognition systems (Poggio and Edelman, 1990; LeCun and
Bengio, 1995; Wallis and Rolls, 1997; Riesenhuber and Poggio,
1999; Jarrett et al., 2009). It has also been proposed as a means of
representing statistical quantities (local variances or covari-
ances), which can support the representation and recognition of
visual texture (Freeman and Simoncelli, 2011; Freeman et al.,
2013).

Methods for fitting V1 models directly to physiological re-
cordings originate with the work of Jones and Palmer, who used
reverse correlation (De Boer and Kuyper, 1968; Marmarelis and
Marmarelis, 1978) to obtain spatial or spatiotemporal receptive
fields for simple cells (Jones and Palmer, 1987). Emerson et al.
(1992) introduced a sparse noise methodology for fitting the en-
ergy model to complex cell responses. Lau et al. (2002) fit com-
plex cell responses using an artificial neural network model that
included multiple unconstrained filters, revealing families of ori-
ented receptive fields of differing phase similar to the energy
model. Parallel work by Touryan et al. (2002) used the spike-
triggered covariance (Steveninck and Bialek, 1988) to estimate
orthogonal pairs of oriented filters underlying complex cell re-
sponses, and later work by Rust et al. (2005) and extended this
analysis to reveal larger sets of orthogonal filters which explain
the responses of most complex cells. This generality comes at a
cost: STC methods assume Gaussian stimulus ensembles (Panin-
ski, 2004), and recording durations that strain existing experi-
mental capabilities (although we note that Park and Pillow, 2011,
have recently introduced regularization methods for STC that

a

c

b

d

Figure 9. Predicting responses to drifting gratings. a, Black dots indicate the measured tuning curve for drifting gratings over 16 directions. Colored lines indicate the model-predicted tuning
curves for all four model types (model predictions are rescaled for illustration purposes; see Materials and Methods). b, For all cells, we quantify model tuning curve accuracy as the correlation
between the actual tuning curve and the model-predicted tuning curve. Here, a histogram is plotted over all cells (n�38). Triangles represent population means. Error bars (horizontal lines) indicate
SD. c, Error in direction preference is smallest for the subunit model, but all models are unbiased in their error. d, Error in circular variance measures the width of the tuning curves (flat curves have
a CV of 1). All models tend to predict flatter tuning curves than those measured from drifting gratings, but the subunit model is better than the other models on average. Black and blue curves at the
bottom illustrate actual and model predicted tuning curves, respectively.
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partially alleviate these). Information-theoretic methods have
been introduced to find orthogonal filters that capture the sub-
space of stimuli responsible for neural responses (Paninski, 2004;
Sharpee et al., 2004). Compared with STC, these methods are less
restrictive in terms of the stimuli (e.g., they have been used with
natural movies), but the estimation of information generally
makes them even more data intensive.

The method introduced here greatly reduces the data require-
ments of the subspace methods, by exploiting the simplified pa-
rameterization that results from banks of spatially shifted
(convolutional) filters. Although one can proceed by first finding
a response subspace (using one of the methods described in the
previous paragraph, such as STC) and then solving for a filter
whose shifted copies span that same subspace (Rust et al., 2005;
Lochmann et al., 2013), such a two-step procedure does not gen-
erally realize the gains in accuracy that should accompany the
reduction in dimensionality because the errors introduced in the
first step are substantial, and the second step does not take them
into account. Our method is also related to several analysis tech-
niques in recent literature that incorporate the concept of sub-
units, but without building an explicit receptive field model.
Local spectral reverse correlation computes a spike-triggered
local Fourier spectrum over localized, stimulus windows
(Nishimoto et al., 2006). The method computes both localized
frequency and orientation tuning profiles (which can be linked to
the responses of suitably frequency-tuned filters), as well as a
position map. But as with the subspace methods, local spectral
reverse correlation requires substantial amounts of data to
achieve clean results. In addition, the spectral characterization of
local regions combines excitatory and suppressive influences,
complicating biological interpretation. Similar benefits and
drawbacks may be attributed to the method of Sasaki and
Ohzawa (2007), which estimates local second-order “subunit”
kernels that respond in a contrast-invariant manner to windowed
stimulus regions.

Perhaps the method most similar to our own is that of Eick-
enberg et al. (2012), who used an information-theoretic objective
function to fit a model constructed from a logical OR-like com-
bination of shifted filter responses. As in our case, the authors
found that this model was substantially more data-efficient than
a general subspace model. But the OR-like combination of shifted
filter responses differs substantially from the LN-LN construc-
tion of our model, and the authors found that it was most suitable
for characterizing responses of complex cells.

The model and methods presented in this paper offer a num-
ber of possibilities for extension and generalization. In particular,
our current fitting procedure optimizes squared error between
model response and observed spike counts. Incorporating a spike
generation stage, even a simple one such as a Poisson process,
would more accurately capture the precision associated with dif-
ferent spike count observations. For the purposes of this work, we
assumed that neurons were held in a steady state of gain and
adaptation by the continuous white-noise stimulation. It was
therefore unnecessary to build into the model the known nonlin-
ear mechanisms of gain control and adaptation (Sclar et al., 1990;
Carandini et al., 1997). For a more comprehensive account of V1
responses, these would need to be included. In this and other
ways, the general structure of the model reflects computations
found in earlier stages of visual computation, such as the retina
(Hochstein and Shapley, 1976; Victor and Shapley, 1979), and
perhaps later stages, such as V2 or V5 (MT). We are currently
exploring application of like models to suitable data (Vintch et
al., 2012; Freeman et al., 2013).

In conclusion, we take pleasure in observing that the subunit
model can readily be interpreted in biological terms. The field of
LN subunits can be viewed as a population of afferents from
upstream layers or visual areas, and the channel response arises
from a linear combination of these afferents, weighted by their
associated synaptic efficacies. The fitted subunit filters are tightly
localized in space and time, like receptive fields in visual cor-
tex (Hubel and Wiesel, 1962). Previous efforts to use high-
dimensional models to capture the diverse properties of cortical
receptive receptive fields, such as the Rust-STC model (Rust et al.,
2005) or related work based on maximally informative stimulus
dimensions (Sharpee et al., 2004), are opaque in connecting the
internal components of the models to biological mechanisms.
The subunit model presented here provides an accurate account
of the data in a more readily interpretable framework.
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