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Abstract

The early visual system is composed of a set of anatomically distinct areas that

are linked together in a hierarchy. This structure uses simple rules at each stage

but supports an impressive array of processing capabilities. In order to capture the

full range of these computations, neuronal models in these areas should include this

hierarchical architecture. Neurons in the earliest stages receive information directly

from sensory transducers, yielding linear-like visual representations that are closely tied

to visual stimulation. Neurons further downstream are more abstract and nonlinear in

their representation, being both more selective for relevant stimulus visual and invariant

across irrelevant features. Despite these computational differences, individual neurons

among all areas are anatomically similar and they can be described in simple terms;

inputs are summed across dendritic synapses and arbors and outputs are generated by

a spiking nonlinearity in the soma and axon hillock. This regularity can be exploited

to build simple but powerful hierarchical models that approximate the stages of visual

processing in cortex.

A realistic model architecture can reduce, and in some cases eliminated altogether,

the need for ad-hoc priors or regularizers. Incorporating physiological and anatomical

constraints, and careful experimental design (including the choice of stimuli), simplifies

models and allows for more direct and efficient estimation procedures. In this thesis

I present a series of hierarchical models for neurons in the early visual system (V1 &

V2) and show that they can accurately capture the computations performed by real

neurons. I also demonstrate that a stage-wise structure avoids overfitting and that it

allows for a more efficient estimation procedure than generic statistical models.

v



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I Models for V1 19

1 Linear-Nonlinear cascade models for V1 receptive fields 20

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 The architecture of V1 receptive fields . . . . . . . . . . . . . . . . . 22

1.3 Linear-Nonlinear model . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Spike-triggered covariance methods . . . . . . . . . . . . . . . . . . . 26

1.6 A direct subunit model . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Estimating the parameters of the subunit model . . . . . . . . . . . . 33

1.8 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.9 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



2 Spatiotemporal subunit models (XT) 46

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Standard models for V1 neurons (XT) . . . . . . . . . . . . . . . . . . 49

2.4 The generalized subunit model in primary visual cortex (XT) . . . . . . 53

3 3D spatiotemporal subunit models (XYT) 62

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 The subunit model in XYT . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

II Models for V2 78

4 Sparse afferent models 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 A hierarchical model for neurons in V1 and V2 . . . . . . . . . . . . . 92

4.4 Validating the sparse-afferent with playback and tuning experiments . . 98

4.5 Sensitivity to design aspects of the sparse-afferent model . . . . . . . 102

4.6 Properties of V1 and V2 receptive fields . . . . . . . . . . . . . . . . 106

4.7 Discriminating V1 and V2 receptive fields . . . . . . . . . . . . . . . . 113

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vii



List of Figures

1 Hubel & Wiesel qualitative models of V1 neurons . . . . . . . . . . . . 3

2 Linear-Nonlinear model for V1 neurons . . . . . . . . . . . . . . . . . 4

3 Spike-Triggered Average procedure . . . . . . . . . . . . . . . . . . . 5

4 Energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Rust-STC model for V1 neurons . . . . . . . . . . . . . . . . . . . . . 8

6 Spike-Triggered Covariance procedure . . . . . . . . . . . . . . . . . . 9

7 Rust-STC model on simulated subunits . . . . . . . . . . . . . . . . . 9

8 Heterogenous orientation tuning in V2 . . . . . . . . . . . . . . . . . 12

9 Anomalous edge detection in V2 . . . . . . . . . . . . . . . . . . . . . 14

10 An LN-L model for V2 receptive fields . . . . . . . . . . . . . . . . . . 15

11 A subunit model of disparity selectivity in V2 . . . . . . . . . . . . . . 17

1.1 Geometrical interpretation of Spike-Triggered Covariance . . . . . . . . 26

1.2 Spike-Triggered Covariance analysis does not find subunits . . . . . . . 28

1.3 Piecewise linear function with a ’tent’ basis . . . . . . . . . . . . . . . 30

1.4 Subunit channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Subunit computations for a single channel . . . . . . . . . . . . . . . 32

1.6 Example subunits in space-time for macaque V1 neuron . . . . . . . . 34

1.7 Subunits in space-time for a simulated simple cell . . . . . . . . . . . . 43

viii



1.8 Subunits in space-time for a simulated complex cell . . . . . . . . . . . 44

2.1 Linear-Nonlinear model examples in XT . . . . . . . . . . . . . . . . . 50

2.2 Energy model examples in XT . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Rust-STC model simple cell in XT . . . . . . . . . . . . . . . . . . . 53

2.4 Rust-STC model of complex cell in XT . . . . . . . . . . . . . . . . . 54

2.5 Subunit model examples in XT . . . . . . . . . . . . . . . . . . . . . 56

2.6 Comparison of models in XT . . . . . . . . . . . . . . . . . . . . . . 57

2.7 Model performance on the simple-complex spectrum . . . . . . . . . . 58

2.8 STC on a subunit model . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.9 Subunit pooling over space and time . . . . . . . . . . . . . . . . . . 61

3.1 LN model in XYT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Energy model in XYT . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Rust-STC model in XYT . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Subunit model in XYT . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Comparing model performance . . . . . . . . . . . . . . . . . . . . . 69

3.6 Computing an oracle response from repeat data . . . . . . . . . . . . 70

3.7 Oracle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Direction tuning example . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Summary of direction tuning . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Stimulus for V2 experiments . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 V1-like afferent filter bank design . . . . . . . . . . . . . . . . . . . . 85

4.3 Computing receptive field curvature . . . . . . . . . . . . . . . . . . . 90

4.4 Sparse-afferent V2 model . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 A V1 cell and V2 cell fit with the sparse-afferent model . . . . . . . . 94

ix



4.6 Sparse-afferent model performance . . . . . . . . . . . . . . . . . . . 96

4.7 Playback experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Playback experiment for an example cell . . . . . . . . . . . . . . . . 99

4.9 Average performance on playback experiment . . . . . . . . . . . . . . 100

4.10 Orientation tuning for an example V2 cell . . . . . . . . . . . . . . . . 101

4.11 The sparse-afferent V2 model reproduces orientation tuning . . . . . . 102

4.12 V2 models with different V1-filter bank depth . . . . . . . . . . . . . . 103

4.13 V2 models with BWT V1-filter bank . . . . . . . . . . . . . . . . . . 104

4.14 Example V2 cell with with half-wave and half-squaring nonlinearity . . 106

4.15 V2 models with half-wave rectification . . . . . . . . . . . . . . . . . 107

4.16 Structured V2 receptive fields (I) . . . . . . . . . . . . . . . . . . . . 108

4.17 Structured V2 receptive fields (II) . . . . . . . . . . . . . . . . . . . . 109

4.18 Model pooling over space and filters . . . . . . . . . . . . . . . . . . . 110

4.19 V2 cells are less homogeneous over space . . . . . . . . . . . . . . . . 111

4.20 Receptive field curvature . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.21 Model responses to texture images . . . . . . . . . . . . . . . . . . . 114

4.22 PCA on receptive field statistics . . . . . . . . . . . . . . . . . . . . . 116

4.23 LDA on receptive field statistics . . . . . . . . . . . . . . . . . . . . . 117

x



Introduction

This thesis presents a series of models that describe receptive fields and response

properties of neurons in the first two cortical stages of visual processing, V1 and

V2. Though the scope of the models are limited, due in part to the inclusion of

properties that are specific to each area, the principles embodied in these models

should be relevant to a wide range of neuroscientific inquiry. A common view of

sensory cortex is that it is a hierarchy, using simple, local computations to accomplish

increasingly sophisticated processing at each level. Our models mimic this hierarchical

architecture, with stages that each mirror their anatomical counterpart. The model

parameters are estimated so that they can reproduce the firing patterns of individual

neurons, and we demonstrate that they outperform the current standard quantitative

models. The stacked nonlinear structure of the models allows them to attain a variety

of complex selectivities and invariances that would otherwise by impossible with single-

stage models. This suggests a general framework for thinking about the transformation

of signals between areas in the brain: simple operations performed in succession.
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Background

Receptive field models for V1 neurons

Neurons in V1 are tuned for spatial position, local orientation, spatial frequency, and

temporal frequency [1, 2, 3, 4]. Some V1 cells also have a preference for spatiotemporal

phase and are selective for the specific patterns of light and dark regions in an image.

The collection of these properties, usually measured with drifting sine wave gratings,

are a type of descriptive model for neurons in V1. Each grating can be thought of

as a single point in Fourier (spatiotemporal frequency) space, and the model can be

’estimated’ for real neurons in this domain by mapping with an exhaustive search [5, 6].

Though this description is informative for many cells, it fails to give us much insight

into how these properties are computed in the brain. Orientation selectivity in V1 is

an emergent property that is not found in the preceding stages of visual processing.

V1 receives its predominant feedforward input from the Lateral Geniculate Nucleus

(LGN), whose neurons have spatially isotropic tuning properties; receptive fields have a

center-surround spatial profile with bandpass frequency tuning [7, 8, 9], but no intrinsic

preference for feature orientation due to their radial symmetry. How is it, then, that

oriented receptive fields are generated from unoriented inputs?

Hubel & Wiesel were the first to describe orientation tuning in primary visual cortex.

The receptive fields of simple cells, when mapped as a preference for light or dark

spots of light as a function of spatial position, resemble Gabor-like edge filters with

elongated excitatory and inhibitory lobes [1, 10]. Hubel & Wiesel were also the first to

provide a plausible mechanism for its computation in the form of a qualitative model.

They predicted that V1 simple cells could become selective for orientation by summing
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Figure 1: Hubel & Wiesel were the first to describe orientation selective neurons in V1.
They speculated that phase-sensitive simple cells (top) generate orientation tuning by
selectively pooling LGN afferents that lie along a line in space. Phase-invariant complex
cells (bottom) then pool over an array of similarly tuned simple cells to generate a
position invariant response that retains orientation selectivity. Receptive fields (left)
are depicted in only their spatial domain. (Adapted from [1])

together a set of precisely aligned LGN cells (Figure 1, top). Though this qualitative

model was not readily testable at the time, later simultaneous recordings in LGN and

V1 were able to give experimental support for this conceptual model [11].

Not all neurons in V1 are selective for spatial phase; complex cells retain the ori-

entation and spatiotemporal tuning of V1 simple cells but are not sensitive to contrast

3



firing rate

Figure 2: The Linear-Nonlinear model for V1 simple cells. Stimuli are first projected
onto a linear filter. In general, the filter is 3-dimensional (two in space and one in
time), but is depicted here in only two, such as one of space and one of time. The
filter response is passed through an output nonlinearity to generate an average spike
rate.

polarity or the precise location of edge-like elements within the receptive field envelope

[6]. This response property cannot be generated through a linear combination of LGN

afferents because any cell preferring an ordered white-black combination would be in-

hibited by a stimulus that was instead black-white. Hubel & Wiesel conjectured that a

related pooling mechanism to simple cells could account for position invariance in com-

plex cells. V1 cells that linearly pool over V1 simple cells, rather than directly pooling

LGN afferents, could exhibit phase invariance if they sum over a family of overlapping,

similarly tuned units (Figure 1, bottom). Together, these qualitative feedforward de-

scriptions of simple and complex cells have provided an invaluable anchoring paradigm

for vision research, but further progress requires testable mechanistic models.

The prototypical model for simple cells is the Linear-Nonlinear (LN) cascade, which

operates by projecting the stimulus onto a fixed linear filter with a monotonic, rectifying

spiking nonlinearity (Figure 2). Though the connection is slightly abstract, the model

is closely related to Hubel & Wiesel’s qualitative model. The processing stream from

retina to V1 can be largely approximated as a single linear operation. LGN neurons

pool over retinal ganglion cells, which in turn pool over an intricate retinal network,

yet to a first-order approximation each of these stages is linear; individual retinal and

4



STA analysis procedure STA in the stimulus domain

Figure 3: Spike-Triggered Averaging (STA) works by averaging together the stimuli
in a window preceding the spikes. This produces a one-dimensional filter (left) that
depicts the stimulus the optimal linear filter. We can also imagine this procedure in
the stimulus domain, in which each stimulus window is characterized as a vector, or a
point, in a high dimensional space (right). Each axis in this example is the contrast
of a pixel within a particular window of time. The STA is the direction in this space
where the stimulus projection optimally correlates with the observed spiking response.
(Adapted from [12])

LGN neurons have half-wave rectifying responses, but on- and off-cell pairs can capture

the full range of contrast values. Because cascades of linear operations can always be

collapsed into a single linear operation, Hubel & Wiesel’s model of pooling over LGN

cells can be extended to the linear combinations of pixel values that create an oriented

filter.

The linear parameters of simple cells can be estimated with Spike Triggered Aver-

aging (STA). STA is an analysis technique that averages together all stimulus frames

that precede a spike (Figure 3, left; see [12, 13, 14]), and for a cell with reasonable

nonlinearities and probed with elliptically symmetric stimuli, the calculated STA filter

will provide an unbiased estimate of the true linear receptive field [15]. It is often more

informative to consider these types of analysis techniques in the stimulus domain, where

5



we plot the raw distribution of stimuli and the spike-triggered distribution as points in

the high-dimensional stimulus space (Figure 3, right). In this view, STA is simply the

vector average of the spike-triggered stimulus ensemble [12]. Thus, STA is a subspace

method that projects a high dimensional stimulus onto a single stimulus dimension,

leaving the model blind to any stimulus deviations orthogonal to this direction.

Complex cells are not sensitive to any linear component of a stimulus; they respond

equally well to pairs of a stimulus and it’s contrast-reversed counterpart. Models for

complex cells must account for this strong nonlinearity. They should also be sensitive

to more than one stimulus dimension if they wish to capture position-invariance. The

classic description of a complex cell that instantiates these two properties is the Adelson

& Bergen ’Energy’ model. It is a phenomenological model that combines the response

of two oriented filters in phase quadrature [16]. Specifically, the responses of two

filters separated in phase by 90 degrees are squared and added to produce a firing rate

that is invariant to phase (Figure 4). This model is attractive for both theorists and

physiologists because it is uncomplicated and could be plausibly implemented with real

neural components. For example, a cell that dendritically adds the responses of four

simple cells even spaced in phase, and with half-squaring output nonlinearities, will be

completely phase invariant.

Like the LN model, the energy model is an example of a subspace approach; it is

driven by activity in a low, two-dimensional stimulus projection. Unlike the LN model,

the response is not driven by a monotonic function of those projections. Rather,

the squaring operation that follows the linear filters acts to detect the variance of

the projection from zero, both positive and negative, and precludes the model from

responding linearly to any image features. This strong nonlinearity can make the model

difficult to work with; it is not commonly fit to white-noise data because there is no

6



firing rate

Figure 4: An energy model for complex cells. The response of two phase-quadrature
filters are squared and added together to produce a response that is invariant to stimulus
phase [16].

standard estimation procedure (though see [17] for a nice example of fitting this type

of model to two-bar data, and Chapter 1 of this thesis in which we describe a procedure

for fitting the model to data from white-noise experiments).

Real V1 cells are usually somewhere between completely phase invariant and com-

pletely phase selective, and models for these cells should be flexible enough to capture

the full range of response types. The Rust-STC model is one successful hybrid exam-

ple that blends together components of both the LN and energy models [18]. Figure

5 shows how an idealized version of this model generates a response by first pass-

ing stimuli through LN units with nonlinearities that are either half-squaring (linear

response) or full squaring (energy response). Units are then pooled together into an

excitatory channel or a suppressive channel, depending on their tuning properties, and

the channels are combined with a joint nonlinearity to generate a firing rate. The

output nonlinearity can typically accommodate suppression that is linear and divisive.

The parameters of the Rust-STC model are estimated with STA and STC (Spike-

Triggered Covariance) analyses. As described above, STA captures the linear, phase-

selective kernel of V1 receptive fields by computing the mean of the spike-triggered

stimulus ensemble. STC works in an analogous manner, but computes the covariance

7
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Figure 5: The Rust-STC model for neurons in V1. LN units are combined into an
excitatory channel and a suppressive channel. A joint nonlinearity, f(·), converts the
channel responses to a firing rate.

of the spike-triggered distribution [12, 18]. The eigenvectors of this covariance ma-

trix describe the orthogonal axes, or filters, along which stimulus variance excites or

suppresses spiking activity (Figure 6). The Rust-STC model is also a subspace model

because a handful of filters usually suffice to describe the activity of most cells.

Though the Rust-STC model is equally adept at describing the responses of both

simple and complex cells, the parameters of the model fit to complex-like cells are
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STC analysis procedure STC in the stimulus domain

Figure 6: Spike-Triggered Covariance also operates on the spike-triggered stimulus
ensemble. Rather than operating on the mean of the spike-triggered stimulus ensemble,
STC operates on the covariance of this ensemble to produce a set of stimulus directions
whose variance maximally excites or suppresses the cell. (Adapted from [12])

difficult to interpret in biological terms. The idealized portrait of a Rust-STC V1

model is depicted in Figure 5, with well localized filters that resemble realistic V1

simple cells. In reality, the model regularly produces filters that are unlocalized in both

space-time and spatiotemporal frequency, due to the constraint that forces components

to be orthogonal (see [18] and Chapter 1 of this thesis). This issue is not unique to the

Rust-STC model, as it extends to many other types of orthogonal subspace methods

Figure 7 (following page): The Rust-STC model on a simulated ’subunits’ cell. [Left
column] A complex cell is presented with a stimulus that is composed of flickering bars
in space and time (xt). STC yields a series of quadrature-pair filters. Higher order
filters in green are not localized in space-time or spatiotemporal frequency. [Middle
column] Imagine that the complex cell is actually composed of simple filters, each just
a shifted copy of some canonical oriented filter. [Right column] STC on the simulated
subunit cell does not return the true subunits of the cell. Rather, the STC filters are
consistent with those found for the real cell. Thus, it seems plausible that real complex
cells could be composed of a set of shifted subunits. (Adapted from [18])
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[19, 20, 21]. Nonetheless, Rust et al. were able to confirm that the results from their

model were consistent with a ’subunit’ architecture, which is a more realistic depiction

of V1 receptive fields.

The classic Hubel & Wiesel model for a complex cell pools over a multiple copies

of similarly tuned V1 simple cells. These simple cell afferents are termed the subunits

of the complex cell receptive field, and they are formed by shifting identical copies of

a linear filter over space to generate position invariance. Rust et al. ran an experiment

to determine what would happen if they fit the Rust-STC model to a simulated cell

that was actually composed of a series of shifted subunits (Figure 7). They found that

the estimated filters for this simulation matched those observed for real cells, which

suggests that though the firing patterns of real cells could be computed by a subunit

computation [18], their model would not be able to return the true subunit filters.

Chapters 1, 2, and 3 of this thesis extend this concept into a direct subunit model

that can be fit to V1 spiking data from reverse correlation experiments. We find

that subunits are indeed an adequate description of the receptive fields across the

entire response-type spectrum of neurons in V1. Including this architecture allows the

model to avoid overfitting, and it provides a reliable substrate for further scientific

investigation.

Receptive field models for V2 neurons

Visual area V2 is the largest cortical region in the brain, yet it’s function is largely

mysterious. It is located in inconvenient territory for scientific study; receiving it’s

predominant input from V1, it is too far removed from phototransduction to be closely

tied to visual stimulation, and at several synapses from area IT, it is also too far from
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Figure 8: [Left] Attneave [22] demonstrated that image regions with high curvature
are important for recognizing objects. If the high-curvature regions of an image are
connected with straight lines, the image of a cat is still readily perceptible. [Right]
Anzai et al. [23] probed neurons in V1 and V2 with hard-edged local drifting gratings.
They found that some neurons in V2 had heterogenous orientation selectivity over
space. Some neurons appeared to respond to angles or X- and T-junctions. Could
neurons with these types of feature-selectivities underly object perception? (Adapted
from [22] and [23])

object perception to be easily probed with behavioral tasks. Most attempts at receptive

field characterization generally find that neurons in V2 have properties that resemble

those in V1. However, a number of studies suggest that some neurons in V2 possess

selectivities or invariances to image features beyond local oriented elements.

V1 receives center-surround afferents from LGN and uses them to generate selec-

tivity to local orientation. Analogously, because V2 neurons pool over V1 inputs, it is

tempting to imagine that V2 could have receptive fields that are selective to a combi-

nation of local edges, like angles or T-junctions. Perceptually, observers appear to be
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sensitive to image regions with either high curvature or conjunctions [24]. Attneave

[22] noted that the edges with high curvature in an image are especially salient to

observers, and simply connecting these regions with straight lines is enough to create

an object that is readily identifiable (Figure 8, left). Hedge & van Essen [25], in an

early V2 tuning experiment, found that some neurons responded selectively to angles

and curves. Later, Anzai et al. [23] probed single units in V1 and V2 with local drifting

sine-wave gratings and found a subset of neurons in V2, but not V1, that appeared

to be selective to nonlinear contours over space (Figure 8, right). One could theorize

that neurons of these kinds could be the link between V1 feature selectivity and object

perception. Yet, only a small proportion of cells in V2 show this kind of response

selectivity.

Another salient higher-order feature of images is texture boundaries. It is well

known that observers are capable of detecting first-order, luminance-defined edges in

images. However, observers are also very good at detecting second-order edges which

can be defined as a difference in texture over space [27], such as the bark of a tree

against background foliage (Figure 9). Von der Heydt & Peterson [26] found that

some neurons in V2, but not V1, are selective to both first-order and second-order

image features. For example, the neuron depicted in Figure 9 is selective for horizontal

line segments, but also for horizontal illusory contours. A population of invariant V2

neurons such as these could underly the perception of texture boundaries. But again,

only a small percentage of neurons display this type of interesting flexibility, and other

studies fail to show a large difference in V2 at all [28]. So what does the rest of V2

do?

Fitting receptive field models for V2 is a complementary scientific program to the

experiments described above. Those tuning experiments have a top-down design, first

13



2 seconds

Responses to drifting bar Responses to texture contour

Figure 9: Images contain a variety of cues for object boundaries. Luminance bound-
aries (purple) and texture boundaries (blue) are both salient signals. Feature conti-
nuity (yellow) can also indicate which contrast edges belong to which objects. Von
derHeydt and Peterhans [26] showed that some neurons in V2 are selective not only
to luminance-defined edge orientation (left), but also texture-defined edge orientation
(right). (Adapted from [26])

requiring a hypothesis about the set of visual or perceptual features that should selec-

tively drive V2. The physiologist must then hunt for neurons tuned to these features,

but all non-selective neurons remain outside the scope of understanding. Receptive

14



Input images Filter responses Weighting Sum Model PSTH

Power spectrum

BWT filters

Power spectrum

Figure 10: Willmore et al. [29] designed a hierarchical LN-L model to describe the firing
rate of V2 neurons. Images are first passed through a set of orthogonal filters that
are localized in space, but not frequency. A subset of filters are depicted at top. Two
filters are also depicted, enlarged, in the Fourier domain, left and right. To generate
a model response, the filter outputs are half-wave rectified, weighted, and summed
(bottom). By fitting the weights, hi, to spiking data for individual neurons they were
able to derive wavelet-based depictions of the neuronal receptive fields. (Adapted from
[29])

field modeling experiments usually have more of a bottom-up design. Starting from an

agnostic position, they seek to understand the mechanisms that convert the photons

that fall on the retina to firing rates in V2 before understanding the functionality. The
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ultimate goal is to find differences in the receptive fields of V1 and V2 neurons that

could support novel classes of response properties.

A good example of this approach is the Willmore hierarchical model for V2 neurons

[29]. Receptive fields are described as a linear combination of simple, half-rectified

filter responses, and weights to each filter are fit with a sparse regression algorithm

(Figure 10). The authors then try to determine if there is a difference in the type of

filters that are pooled together by V1 and V2 cells. They find that V2 cells are more

likely to have strong, tuned suppression than V1 cells. Yet, despite this success, the

model front-end filters were chosen for engineering considerations [30] rather than for

biological realism (Figure 10, top), which leaves the parameters of the model difficult

to connect to real physiological properties.

A related study by Bredfeldt et al. builds models for V2 that are sensitive to

disparity-defined depth edges [31]. Just as neurons in V1 and V2 are tuned to lu-

minance edges, some neurons in V2 show a preference for depth edges created by a

difference in horizontal disparity over space [32]. The Bredfeldt model pools over two

simulated V1 units with independent parameters for position and disparity preference

(Figure 11). These units receive their input from the stimulus parameters rather than

computing them directly from the raw stimulus images. Nevertheless, the model is ca-

pable of capturing the subtle tuning properties of some neurons in response to oriented

depth edges. In contrast to the Willmore model, the pooling function over V1 neurons

is designed to be realistic. In fact, in adjusting the parameters of their model, Bredfeldt

et al. describe how a purely linear pooling mechanism cannot explain the data as well

as a pooling rule that includes a half-squaring intermediate output nonlinearity.

Chapter 4 of this thesis presents a new model for V2 receptive fields that shares

some commonalities with the modeling approaches described above. Like Willmore et
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Figure 11: Many neurons in V2 are selective for horizontal disparity, and some are
selective for disparity-defined edges. Bredfeldt et al. posited that a V2 neuron could
generate this type of selectivity by pooling inputs from two V1 subunits (top), each with
a different disparity and spatial position. They probed a population of neurons with
a parameterized set of disparity-defined depth edges (bottom left) and fit a subunit
model to the responses (bottom right). They found that the model could only explain
the neuronal responses if the subunits were combined nonlinearly. Specifically, each
subunit had to have a half-squaring nonlinearity. (Adapted from [31])

al. we describe spatial properties of V2 neurons by building a model that is defined

by a sparse linear combination of simple LN units, and like Bredfeldt et al. we try to
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structure the model with realistic physiological elements. These insights allow us to

construct a model that performs markedly better than other V2 receptive fields models.

Because the parameters of the model are also easy to interpret in a biological context,

we are able to find examples of neurons in V2 that are tuned to complex nonlinear

spatial structure in images.
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Part I

Models for V1
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Chapter 1

Linear-Nonlinear cascade models for

V1 receptive fields

1.1 Introduction

Advances in sensory neuroscience rely on the development of testable functional

models for the encoding of sensory stimuli in neural responses. Such models require

procedures for fitting their parameters to data, and should be interpretable in terms

both of sensory function and of the biological elements from which they are made.

The most common models in the visual and auditory literature are based on linear-

nonlinear (LN) cascades, in which a linear stage serves to project the high-dimensional

stimulus down to a one-dimensional signal, where it is then nonlinearly transformed to

drive spiking. LN models are readily fit to data, and their linear operators specify the

stimulus selectivity and invariance of the cell. The weights of the linear stage may be

loosely interpreted as representing the efficacy of synapses, and the nonlinearity as a

transformation from membrane potential to firing rate.
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For many visual and auditory neurons, responses are not well described by projection

onto a single linear filter, but instead reflect a combination of several filters. In the cat

retina, the responses of Y cells have been described by linear pooling of shifted rectified

linear filters, dubbed “subunits” [33, 34]. Similar behaviors are seen in guinea pig [35]

and monkey retina [36]. In the auditory nerve, responses are described as computing

the envelope of the temporally filtered sound waveform, which can be computed via

summation of squared quadrature filter responses [37]. In primary visual cortex (V1),

simple cells are well described using LN models [14, 38], but complex cell responses are

more like a superposition of multiple spatially shifted simple cells [1], each with the same

orientation and spatial frequency preference [6]. Although the description of complex

cells is often reduced to a sum of two squared filters in quadrature [16], more recent

experiments indicate that these cells (and indeed most ’simple’ cells) require multiple

shifted filters to fully capture their responses [18, 39, 21]. Intermediate nonlinearities

are also required to describe the response properties of some neurons in V2 to stimuli

(e.g., angles [40] and depth edges [31]).

Each of these examples is consistent with a canonical but constrained LN-LN model,

in which the first linear stage consists of convolution with one (or a few) filters, and the

first nonlinear stage is point-wise and rectifying. The second linear stage then pools

the responses of these “subunits” using a weighted sum, and the final nonlinearity

converts this to a firing rate. Hierarchical stacks of this type of “generalized complex

cell” model have also been proposed for machine vision [41, 42]. What is lacking is a

method for validating this model by fitting it directly to spike data.

A widely used procedure for fitting a simple LN model to neural data is reverse

correlation [43, 44]. The spike-triggered average of a set of Gaussian white noise stimuli

provides an unbiased estimate of the linear kernel. In a subunit model, the initial linear
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stage projects the stimulus into a multi-dimensional subspace, which can be estimated

using spike-triggered covariance (STC) [45, 12]. This has been used successfully for

fly motion neurons [46], vertebrate retina [47], and primary visual cortex [48, 18]. But

this method relies on a Gaussian stimulus ensemble, requires a substantial amount of

data, and recovers only a set of orthogonal axes for the response subspace—not the

underlying biological filters. More general methods based on information maximization

alleviate some of the stimulus restrictions [19] but strongly limit the dimensionality of

the recoverable subspace and still produce only a basis for the subspace.

Here, we develop a specific subunit model and a maximum likelihood procedure to

estimate its parameters from spiking data. We fit the model to both simulated and

real V1 neuronal data, demonstrating that it is substantially more accurate for a given

amount of data than the current state-of-the-art V1 model which is based on STC

[18], and that it produces biologically interpretable filters.

1.2 The architecture of V1 receptive fields

We assume that neural responses are based on a linear summation of the responses

of a set of nonlinear subunits. Each subunit operates by filtering the input (which

can be either the raw stimulus, or the responses arising from a previous stage in a

hierarchical cascade), and transforming the filtered response into a firing rate using a

memoryless rectifying nonlinearity. The output at time t can be written as

r̂(t) =
∑
i

wi fΘ

(
kTi x

)
+ . . .+ b, (1.1)

where the k’s are the subunit filters, fΘ is a point-wise function parameterized by Θ
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(e.g. a polynomial function, or a piecewise function), wi are weights to the subunits,

b is an additive baseline, and bold fonts represent vectors. The ellipsis indicates that

we allow for multiple subunit channels, each with perhaps its own type of filter, non-

linearity, and pooling weights. Note that the nonlinearity, f , is not indexed by i, which

indicates that the most simplified model assumes that all subunits share the exact

same nonlinearity shape. We interpret r̂(t) as a ‘generator potential’, (e.g., time-

varying membrane voltage) which is converted to a firing rate by another rectifying

nonlinearity.

For the models that follow, we will fit parameters to data from reverse-correlation

experiments and we will assume that neuronal firing is measured as a rate, binned at

the same frequency as the stimulus. The response rate, r, is a vector of T time points.

The stimulus is a matrix in RT,P , with P stimulus parameters (such as pixels). For this

section, stimulus parameters are generally just screen pixels, but the model is flexible,

allowing for more abstract parameters derived from the stimulus if desired.

1.3 Linear-Nonlinear model

The subunit model defined in Eq. (1.1) may be seen as a general example of a

subspace model, in which the input is initially projected onto a linear multi-dimensional

subspace. In the simplest instantiation, there is only one subunit filter, leading to a

one-dimensional subspace. This model is known as the Linear-Nonlinear, or LN, model.

It produces a firing rate by filtering the stimulus with a linear kernel whose output is

then passed through a nonlinearity that converts the membrane generator potential to

a spike rate.

The standard approach to estimating the linear filter of the LN model uses Spike-
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Triggered Averaging (STA), in which each frame of the stimulus in a causal time

window is averaged with a weighted sum according to the observed spike count [44].

Under reasonable stimulus constraints and model assumptions, the STA filter will be

the unbiased estimate of the cell’s true linear component [15]. Unlike for the linear

stage, there is no widely accepted approach to estimating the model nonlinearity. This

is partly because there is no accepted canonical function for output nonlinearities, and

partly because there are many ways to fit a point-wise nonlinear function once it has

been described. We choose to define the function as piecewise-linear over 9 nodes

that are chosen to span the entire response distribution and estimate the parameters

with regularized least-squares regression. Specially, we encourage the nonlinearity to

be smooth by penalizing the function’s second derivative [49]. All three subsequent

models will follow this convention for fitting an output nonlinearity.

1.4 Energy model

The energy model is the canonical description of complex cells in primary visual

cortex [16]. It is another example of a subspace model, but projects the stimulus down

to a four dimensional subspsace rather than one (only two dimensions are required if

there is no suppressive channel). The responses of two direction-selective filters with

differing phase preferences (typically, odd-symmetric and even-symmetric) are squared

and summed to generate phase-invariant selectivity. Similarly, the summed and squared

responses of a second pair of filters can be subtracted to capture suppressive selectivity.

Although this model is the classic qualitative form for complex cells, there exists no

standard method for fitting it in reverse correlation experiments (though see Emerseon

et al. for a method that uses pairs of bar stimuli [17]). We develop a novel optimization
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procedure to fit such a model to spiking data which we describe in two dimensions (XT)

- the methodology readily generalizes to three dimensions (XYT). The idea is to first

find the single filter whose squared response best matches the observed firing rate in

terms of mean-square error (MSE). We then find the direction preference of this filter

and take the 2-dimensional Hilbert transform to obtain a paired quadrature filter.

The model response can be written as

r̂(t) =
[
(xTk)2 + (xTkH)2

]
−
[
(xT s)2 + (xT sH)2

]
, (1.2)

where k and s are the excitatory and inhibitory filters, and the subscript H denotes

a directional Hilbert transform. We wish to solve for the excitatory filter by gradient

descent in the Fourier domain, and so we use Parsevals Theorem to make the following

substitution: (
xTk

)2
=
(
x̃Tr k̃r + x̃Ti k̃i

)2

. (1.3)

Here, x̃ represents the Fourier transform of x, and the subscripts r and i refer to the

real or imaginary part respectively. Assuming a squared-error objective function, the

gradient of the objective function with respect to the excitatory kernel is

d

dk
= 4 (r̂ − r)

(
x̃Tr k̃r + x̃Ti k̃i

)
x̃. (1.4)

There is an analogous equation for the suppressive filter, s, and the optimization for

both is performed simultaneously. Because of symmetry in the Fourier domain, we

need only fit half of the coefficients.

To obtain the directional 2D quadrature filters, kH and sH , we first must estimate

the predominant orientation of each filter. The problem is formulated in the Fourier
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Figure 1.1: Spike-triggered covariance analysis for a hypothetical V1 complex cell. Left,
the model output is formed by summing the rectified responses of multiple linear filter
kernels which are shifted and scaled copies of a canonical form. Right, the shifted filters
lie along a manifold in stimulus space (four shown), and are not mutually orthogonal
in general. STC recovers an orthogonal basis for a low-dimensional subspace that
contains this manifold by finding the directions in stimulus space along which spikes
are elicited or suppressed.

domain as an orthogonal least-squares regression in which we seek the unit vector, u,

with the largest eigenvalue of the matrix MTM , where M is power-spectrum weighted

grid of Fourier frequencies. Specifically, each row of M is |F (ωx, ωy)| · [ωx, ωy]. Then,

the quadrature filter of k is F−1[k̃H], where H is 0 + 1i for positive values of ωx,yu

and 0− 1i for negative values of ωx,yu.

1.5 Spike-triggered covariance methods

Bialek and colleagues [45, 46] introduced spike-triggered covariance as a means of

recovering an arbitrarily large multi-dimensional subspace of Eq. 1.1. Specifically, a

generalized eigenvector analysis of the covariance matrix of the spike-triggered input
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ensemble exposes orthogonal axes for which the spike-triggered ensemble has a variance

that differs significantly from that of the raw ensemble. These axes define a subspace,

and may be separated into those along which variance is greater and those along which

variance is smaller (excitatory and suppressive).

Rust et al. took this very general analysis procedure and built a model to convert

stimulus images to firing rates [18]. The subspace axes are viewed as filters whose

responses are half-squared (STA) or fully squared (STC), and they are weighted and

added together into an excitatory channel, E, and a suppressive channel, S, depending

on their variance. We use cross-validated least-squares fits to determine how many

filters to use for each channel, and how to weight them. The two channels are then

combined with a joint Naka-Rushton nonlinearity,

r̂(t) = α +
βEρ − δSρ

γEρ + εSρ + 1
. (1.5)

The functional form allows for suppression to work in both a subtractive and a divisive

manner, and the parameters {α, β, δ, γ, ε, ρ} are fit to the data to minimize mean

squared error.

Figure 1.1 demonstrates the geometry of the Rust-STC model applied to a sim-

ulated complex cell with 15 spatially shifted subunits. The simulated response is

r̂(t) =
∑

ibwi (ki·x(t))c2, where the k’s are shifted filters, w weights filters by po-

sition, and x is the stimulus vector (for this example fΘ(·) is implicitly defined as

the half-squaring operation, b·c2). Note that the shifted filters are not orthogonal by

construction. As a result, the recovered axes, the quantity of which depends on the

amount of data collected, do not directly reflect the filters used to build the model

(Figure 1.2). This is not a surprise: the recovered axes are forced to be orthogonal,

and need only span the same subspace as the set of shifted model filters. This can be
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Figure 1.2: STC analysis of the simulated cell in Figure 1.1 returns a variable number of
filters dependent upon the amount of acquired data. A modest amount of data typically
reveals two strong STC eigenvalues (top), whose eigenvectors form a quadrature (90-
degree phase-shifted) pair and span the best-fitting plane for the set of shifted model
filters. These will generally have tuning properties (orientation, spatial frequency)
similar to the true model filters. However, the manifold does not generally lie in
a two-dimensional subspace [50], and a larger data set reveals additional eigenvectors
(bottom) that serve to capture the deviations from the ~e1,2 plane. Due to the constraint
of mutual orthogonality, these filters are usually not localized and they have tuning
properties that differ from true model filters.

seen in data from V1 [18, 39]. Although one may follow the STC analysis by indirectly

identifying a localized filter whose shifted copies span the recovered subspace [18, 21],

the underlying STC method remains limited by the stimulus and data requirements

discussed above.
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1.6 A direct subunit model

A generic subspace method like STC does not exploit the specific structure of the

subunit model. We therefore developed an estimation procedure explicitly tailored for

this type of computation.

A critical simplification is that the subunit filters are related by a fixed transforma-

tion; here, we assume that they are spatially translated copies of a common filter, and

the population of subunits can be viewed as computing a convolution. For example,

the subunits of a V1 complex cell could be simple cells in V1 that share the same

orientation and spatial frequency preference, but differ in spatial location, as originally

proposed by Hubel & Wiesel [1, 6]. We also assume that all subunits use the same

rectifying nonlinearity, further simplifying the model. We write the response to input

defined over two spatial dimensions and time, x(i, j, t), as,

r̂(t) =
∑
i,j,t

wi,j,t fΘ

(∑
m,n,τ

k(m,n, τ)·x(i−m, j − n, t− τ)

)
+ . . .+ b, (1.6)

where the m and n indices implement the convolution operation.

Next, we first introduce a piecewise-linear parameterization of the subunit nonlin-

earity. Piecewise-linear functions can be implemented on a 1-dimensional signal by first

decomposing the signal with a nonlinear basis set and then weighting the outputs of

each basis function. The nonlinear basis resembles a series of triangles, or ’tents’. This

parameterization of f is written as,

f(s) =
∑
l

αlTl(s), (1.7)
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Figure 1.3: Construction of a piecewise nonlinearity. A ’tent’ basis is a series of nonlin-
ear triangle functions that tile one another; they sum to a constant value. Individually
scaling these functions amounts to multiplying the tent basis by a series of α’s and al-
lows for the approximation of arbitrary nonlinearities with the resulting piecewise linear
function. For example, a squaring nonlinearity can be constructed with the series of
α’s depicted here.

where the α’s scale the small set of overlapping ‘tent’ functions, Tl(·), that represent

localized portions of f(·) (Figure 1.3). We find that a dozen or so basis functions are

typically sufficient to provide the needed flexibility. Incorporating this into the model

response of Eq. (1.6) allows us to fold the second linear pooling stage and the subunit

nonlinearity into a single sum:

r̂(t) =
∑
i,j,t,l

wi,j,tαl Tl

(∑
m,n,τ

k(m,n, τ)·x(i−m, j − n, t− τ)

)
+ ...+ b. (1.8)

The model is now partitioned into two linear stages, separated by the fixed nonlinear
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Figure 1.4: Subunit channels. The generic subunit model can accommodate an arbi-
trary number of channels. Each channel is composed of a bank of convolutional linear
filters and nonlinearities along with a spatial pooling function. In this thesis, each sub-
unit model that we build will have two channels: one excitatory and one suppressive.
The two channels are linearly combined and passed through an output nonlinearity.

functions Tl(·). In the first partition, the stimulus is convolved with k, and in the

second, the nonlinear responses are summed with a set of weights that are separable in

the indices l and n,m. This formulation motivates the use of an iterative coordinate

descent scheme: the linear weights of each portion are optimized in alternation, while

the other portion is held constant. For each step, we minimized the mean square

error between the observed firing rate of a cell and the firing rate predicted by the

model. For models that include two subunit channels we optimize over both channels

simultaneously (see section 1.7.4 for comments regarding two-channel initialization).

Schematics of the full subunit model are depicted in Figures 1.4 and 1.5. For

the purpose of this thesis, each subunit model will have two channels, one excitatory

and one suppressive, though in general the model can accommodate any number of

channels. Example computations of each stage of the model for a simulated complex

cell are shown in Figure 1.5, but for illustrative purposes we plot only a single, excitatory

channel.

We also show the fit for a representative 2-channel model for a cell from V1. Figure
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Figure 1.5: Subunit computations for a single channel. [Top] Diagram of a single
subunit channel. The stimulus is convolved with a linear filter and each point is passed
through an identical pointwise nonlinearity. The responses are weighted (here, over
space only) and added together, before running through a final output nonlinearity.
[Bottom] Computations performed by the model at each processing stage. Subsequent
to the stimulus, the gray-scale value of each ’pixel’ at each stage represents the activity
of one hypothetical neuron. The stimulus is first convolved with a linear subunit filter.
The output of each filter is then passed through the subunit nonlinearity. Finally, the
subunits are weighted spatially, summed together, and the output is passed through a
spiking nonlinearity.

1.6 illustrates the subunit kernels and their associated nonlinearities and spatial pooling

maps, for both the excitatory channel (top row) and the suppressive channel (bottom

row). The two channels show clear but opposing direction selectivity, starting at a

latency of 50 ms. The fact that this cell is complex is reflected in two aspects of the

model parameters. First, the model shows a symmetric, full-wave rectifying nonlinearity

for the excitatory channel. Second, the final linear pooling for this channel is diffuse

over space, eliciting a response that is invariant to the exact spatial position and phase

of the stimulus.
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1.7 Estimating the parameters of the subunit model

We optimized the parameters to minimize the mean square error between the ob-

served firing rate of a cell and the firing rate predicted by the model. This choice of

objective function implicitly assumes that the neural noise, or firing rate probability dis-

tribution, is Gaussian distributed. Write r̂Θ(xt) as the model prediction for the average

firing rate for a particular cell in response to a stimulus xt at time t (Θ is the vector

of model parameters in Eq. 1.8 that includes w,α,k, and b). Then the probability

of observing a vector of independent spike counts r over time is the product of the

probability of observing each individual spike count,

p(r | r̂Θ(x)) =
∏

t

exp

−
(
r̂Θ(xt)− r(t)

)2

2σ2

 . (1.9)

To estimate the model parameters Θ, we wish to maximize the probability of the

model parameters with respect to the data, X and r. To make this easier, we can take

the negative logarithm of Eq. 1.9.

− log p(r | r̂Θ(x)) =
1

2σ2

∑
t

(
r̂Θ(xt)− r(t)

)2

, (1.10)

leading us to the familiar metric of Mean-Squared Error (MSE). The argument that

minimizes the negative log-likelihood objective function in Eq. 1.10 is the same as the

argument that maximizes Eq. 1.9. Henceforth, we will drop the subscript Θ from r̂

for notational clarity, but it is to be understood that this value represents the estimate

of the firing rate given a set of specific model parameters.

To form the entire objective function, we substitute Eq. 1.8 into Eq. 1.10. We

minimize the function by coordinate descent, alternately fitting the convolutional sub-
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Figure 1.6: Two-channel subunit model fit to a representative cell in V1. Fitted
parameters for the excitatory (top row) and inhibitory (bottom row) channel, including
the space-time subunit filter (8 grayscale images correspond to different time frames),
a point piece-wise nonlinearity, and a weighting function wn,m that is used to pool the
subunit responses over space.

unit kernel and jointly fitting the subunit nonlinearity and the spatial pooling. These

two steps are iterated until convergence:

Algorithm 1 Estimating the parameters of the subunit model
Initialize the model parameters:
w ← w0, α← α0, k ← k0, b← b0

while − log p(r | r̂(x)) is decreasing do
Fix w and α. Optimize subunit kernels, k, with gradient descent
Fix k. Alternately update w and α in closed-form with Ordinary Least Squares

end while
Fit an output nonlinearity to the entire function: g(r̂)

For models that include two subunit channels we optimize over both channels simul-

taneously.

34



At this point It is worth noting that real neurons do not exhibit Gaussian-distributed

neural noise. For one, neurons cannot fire with a negative rate, and Gaussian distri-

butions have infinite tails that include a prediction for negative firing. Moreover, there

is much evidence that neuronal noise is better described as a Poisson distribution,

and it may be still more complicated [51, 52]. Why then do we insist on using Mean

Squared Error as our objective function? The subunit estimation algorithm hints at

why this choice is advantageous; updating w and α with Ordinary Least Squares (OLS)

only makes sense with a squared error loss function, and the ability to solve for these

two parameters in closed-form is extremely attractive from an algorithmic standpoint.

OLS is both less susceptible to local minima than comparable algorithms and faster

to compute. We have experimented with other objective functions, such as one that

assumes Poisson-distributed spike noise, but the resulting model fits are nearly identi-

cal to those computed with the MSE objective function, and it thus fails to justify the

more complicated estimation process.

1.7.1 Estimating the convolutional subunit kernel

The first coordinate descent leg optimizes the convolutional subunit kernel, k,

using gradient descent while fixing the subunit nonlinearity and the final linear pooling.

We write the convolution operation between the stimulus and the kernel as a matrix

multiplication of the stimulus with a circulant matrix and restrict this operation to the

valid convolution region.

To optimize the convolutional kernel we perform gradient descent on the objective

function (Eq. 1.10). Because we parameterize the nonlinearity as a linear combination

of nonlinear basis functions, and this ’tent’ basis is fixed, we can propagate the gradient
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easily. If we let S be the matrix of linear subunit responses at each time point,

Si,j,t =
∑
m,n,τ

k(m,n, τ)·x(i−m, j − n, t− τ), (1.11)

then df/dS is the derivative of the subunit nonlinearity with respect to the linear

subunit responses. Calculating this derivative is trivial, as it only involves finding the

slope of each line segment that composes f . With the chain rule,

d

dkm,n,τ
= 2 (r̂ − r)

(∑
m,n

wi,j,t ·
df

dSi,j,t
· x(i−m, j − n, t− τ)

)
. (1.12)

This property also ensures that gradient descent is locally convex: assuming that

updating k does not cause any of the the linear subunit responses to jump between

the nodes of the tent functions representing f , then the derivative is linear and the

objective function is quadratic. In practice, the full gradient descent path does cause

the linear subunit responses to move slowly across bins of the piecewise nonlinearity.

However, we include a regularization term to impose smoothness on the nonlinearity

(see below) and this yields a well-behaved minimization problem for k.

1.7.2 Estimating the subunit nonlinearities and linear subunit

pooling

The second leg of coordinate descent optimizes the subunit nonlinearity (more

specifically, the weights on the tent functions, αl), and the subunit pooling, wi,j,t. As

described above, the objective is bilinear in αl and wi,j,t when k is fixed. Given that we

assume the output noise of r̂(t) is Gaussian, standard bilinear estimation procedures

can be used. Estimating both αl and wi,j,t can be accomplished with Alternating Least
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Squares (ALS), which assures convergence to a (local) minimum. In this coordinate

descent procedure, we alternately and iteratively solve for w and then α in closed form

with Ordinary Least Squares (OLS). Ahrens et al. [49] have described and discussed

this procedure in great detail in the context of estimating input nonlinearities to one-

dimensional time-varying signals.

The matrix of linear subunit responses S, in Ri,j,t, is first passed through the fixed

tent basis, T . This embedding creates a new matrix F of higher dimensionality, in

Ri,j,t,l. The advantage of this fixed nonlinear embedding is that the parameters of the

nonlinearity, α, can now be applied linearly. In fact, w and α are combined within a

single linear sum,

r̂(t) =
∑
i,j,t,l

wi,j,tαlFi,j,t,l, (1.13)

and we can alternately solve for the remaining parameters by simply combining the

linear functions. For example, if we want to optimize w, we can fold α into F to form

a new matrix A:

=
∑
i,j,t

wi,j,t

(∑
l

αlFi,j,t,l

)

=
∑
i,j,t

wi,j,tAi,j,t. (1.14)

We then use Ordinary Least Squares to solve for w, which is fast, efficient, and

amenable to regularization.

Alternate Least Squares is an example of a coordinate-descent optimization proce-

dure, and it is not guaranteed to obtain a global minimum. Ahrens et al. [49] report

that for their simulations of input nonlinearities in auditory neurons, it is rare to ob-
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serve multiple local minima. Although one cannot be sure that a result is a global

minimum, the optimization procedure at multiple starting points should generate the

same solution. We use this method with our data in primate visual cortex and find a

similar insensitivity to model initialization.

1.7.3 Regularization

There is no guarantee that the full coordinate descent algorithm will reach a global

minimum, though we can ensure reasonable solutions through a variety of regularization

methods. The subunit kernels, nonlinearities, and pooling functions can be regularized

separately. We find that the most important regularizer is a prior for smoothness in

the nonlinearity.

The subunit nonlinearity f is encouraged to be smooth by penalizing the second

derivative of the function in the least-squares fit [49]. This smoothness helps to guar-

antee that the optimization of k is well behaved, even where finite data sets leave the

function poorly constrained. Recall that the optimization of w requires the propagation

of the gradient through the subunit nonlinearity. If the nonlinearity is jagged, the gra-

dient steps will cause this value to careen wildly at each iteration, but if it is smooth,

w is less sensitive to gradient steps that push the function between the nodes of the

nonlinearity.

We also include a cross-validated ridge prior for the pooling weights to bias wi,j,t

toward zero. The subunit responses are correlated because the subunit filters overlap

one another in space and time. The Ridge prior helps to keep the pooling weights

smooth over space by reducing the high-frequency terms that come from the inversion

of the subunit covariance matrix in OLS. The filter kernel k can also be regularized

to ensure smoothness, but for the examples shown here we did not find the need to
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include such a term.

1.7.4 Model initialization

Our objective function is non-convex and contains local minima, so the selection of

initial parameters may affect the value of the solution and the rapidity of convergence.

We found that initializing our two-channel subunit model to have a positive pooling

function for one channel and a negative pooling function for the second channel allowed

the optimization of the second channel to proceed much more quickly. This is probably

due in part to a suppressive channel that is much weaker than the excitatory channel

in general. We initialized the nonlinearity to halfwave-rectification for the excitatory

channel and fullwave-rectification for the suppressive channel.

To initialize the convolutional filter we use a novel technique that we term ‘convo-

lutional STC’. The subunit model describes a receptive field as the linear combination

of nonlinear kernel responses that spatially tile the stimulus. Thus, the contribution of

each localized patch of stimulus (of a size equal to the subunit kernel) is the same, up

to a scale factor set by the weighting used in the subsequent pooling stage. As such, we

compute an STC analysis on the union of all localized patches of stimuli. Ignoring time

for simplicity, for each subunit location, {i, j}, we extract the local stimulus values in

a window, gi,j(m,n), the size of the convolutional kernel and append them vertically

in a ’local’ stimulus matrix. As an initial guess for the pooling weights, we weight

each of these blocks by a Gaussian spatial profile, chosen to roughly match the size of

the receptive field. We also generate a vector containing the vertical concatenation of
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copies of the measured spike train, ~r (one copy for each subunit location).


w1,1Xg1,1(m,n)

w1,2Xg1,2(m,n)

...

→ Xloc ;


~r

~r

...

→ ~rloc.

(1.15)

After performing STC analysis on the localized stimulus matrix, we use the first (largest

variance) eigenvector to initialize the subunit kernel of the excitatory channel, and the

last (lowest variance) eigenvector to initialize the kernel of the suppressive channel. In

practice, we find that this initialization greatly reduces the number of iterations, and

thus the run time, of the optimization procedure.

1.8 Model validation

We estimate each model on training data and validate each model with testing

data. It is important to perform this second step because the spiking data that is used

to fit the model contains both a stimulus-driven component (the signal) and random

fluctuations (the noise). Models that are under-constrained (i.e. they have too many

parameters for the amount of collected data) tend to find the noise as well as the

signal, showing high accuracy for the training data but failing to generalize to the

testing data.

For models trained and validated on XT data we perform 5-fold cross-validation.

That is, we take 4/5 ths of the data and use it to train the model and then test the fit

on the remaining 1/5 th of the data. We do this five times and average the results over

all five sets (the tranches of data are taken randomly over time and do not correspond
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to the first fifth of data in time, etc). Performance is measured as the correlation

coefficient between the actual firing rate and the predicted firing rate, and over-fitting

can be assessed by comparing the training performance to the test performance; the

former should never exceed the later. Though valuable for this data set, this form of

cross-validation is relatively cumbersome because the model must be estimated five

times in succession.

For models trained and validated on the XYT data we perform a different kind of

validation that is more efficient. For a subset of cells we collected responses to 20

repeats of a novel, 25-second stimulus. We then test the fitted model on each repeat

and take the average correlation coefficient over all 20 trials.

These validation methods are valuable because they allow us to compare perfor-

mance across models and they give us an idea of how much each model is over-fitting,

but they cannot tell us how well the models are performing on an absolute scale.

Each recorded spike rate includes many sources of noise (Poisson-like spiking statis-

tics, input-noise, measurement-noise, etc), and this noise creates a performance ceiling

above which no stimulus-driven model could hope to achieve. We estimate this ceiling

and compare our models to this theoretical maximum.

We call the ceiling on stimulus-driven model performance the oracle prediction, and

it works by seeking to minimize the effects of noise. Because our measure of model

performance is the correlation coefficient, or mean-square error, we are sensitive only

to errors of the first and second moments: bias and variance. In order to perform

well, an oracle prediction needs to average out the trial-by-trial noise and arrive at the

best prediction for the response mean. Specifically, to predict the response to trial

n, we average together the responses of all of the other trials. Many neurons are

very unreliable, and their trial-to-trial variability is high. For these neurons, the oracle
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is expected to perform poorly, and so is every stimulus-driven model. By comparing

our models to this theoretical maximum, we can get a sense for how much of the

explainable variance each model is capturing.

1.9 Simulations

Initially, we use simulated V1 cells to compare the performance of the subunit model

to that of the Rust-STC model [18], which is based upon STC analysis. We simulated

the responses of canonical V1 simple cells and complex cells in response to white noise

stimuli. Stimuli consisted of a 16x16 spatial array of pixels whose luminance values

were set to independent ternary white noise sequences, updated every 25 ms (i.e. 40

Hz). The simulated cells use spatiotemporally oriented Gabor filters: The simple cell

has one even-phase filter and a half-squaring output nonlinearity while the complex cell

has two filters (one even and one odd) whose squared responses are combined to give

a firing rate. Spike counts are drawn from a Poisson distribution, and overall rates are

scaled so as to yield an average of 40 ips (i.e. one spike per time bin).

For consistency with the analysis of the physiological data (XYT), we fit the sim-

ulated data using a subunit model with two subunit channels (even though the sim-

ulated cells only possess an excitatory channel). When fitting the Rust-STC model,

we followed the procedure described in [18]. Briefly, after the STA and STC filters

are estimated, they are weighted according to their predictive power and combined in

excitatory and suppressive pools, E and S (we use cross-validation to determine the

number of filters to use for each pool). These two pooled responses are then com-

bined using a joint output nonlinearity: r̂(t)Rust = α+ (βEρ− δSρ)/(γEρ + εSρ + 1).

Parameters {α, β, δ, γ, ε, ρ} are optimized to minimizing mean squared error between
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Figure 1.7: Model fitting performance for simulated V1 simple cell with Poisson spike
noise. Shaded regions are ± 1 s.d. for 5 random stimulus ensembles. The time scales
are derived from a simulated presentation rate of 40 Hz. Simulated simple cell was
constructed from a single oriented filter with a half-squaring output nonlinearity that
averaged 40 spikes per second (e.g. one spike per simulated time bin).

observed spike counts and the model rate.

Model performances, measured as the correlation between the model rate and spike

count, for an example simple cell is shown in Figure 1.7. In low data regimes, both

models perform nearly perfectly on the training data, but poorly on separate test data

not used for fitting, a clear indication of over-fitting. But as the data set increases in

size, the subunit model rapidly improves, reaching near-perfect performance for modest

spike counts. The Rust-STC model also improves, but much more slowly; It requires

more than an order of magnitude more data to achieve the same performance as the

subunit model.

This inefficiency is more pronounced for the complex cell. Figure 1.8 shows how
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Figure 1.8: Figure details are as in 1.7. The complex cell was constructed from a sum
of squared Gabor filters arranged in (sine and cosine) spatial quadrature and averaged
40 spikes per second. Image insets show the parameters for the subunit and Rust-STC
model with two amounts of data.

the subunit model and the Rust-STC model improve as a function of data size for a

simulated complex cell. The rate of improvement for the simple cell and the complex

cell is largely the same for the subunit model. However, the Rust-STC model is more

sluggish to improve for the complex cell. This is because the simple cell is fully explained

by the STA filter, which can be estimated much more reliably than the STC filters for

small amounts of data.

The asymmetry in performance for the Rust-STC between cell types suggest that

the model fits will be biased under normal experimental conditions. Real experiments

are constrained by the need to maintain cell isolation over an extended period of time;

under average experimental conditions, a recording only lasts for about an hour or two.

Simple cells are more likely to be accurately characterized by the Rust-STC model, and
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the model fits for complex cells will be biased towards phase-sensitive versions for short

physiological recordings. We conclude that directly fitting the subunit model is much

more efficient in the use of data than using STC to estimate a subspace model.
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Chapter 2

Spatiotemporal subunit models (XT)

2.1 Introduction

The response properties of neurons in primary visual cortex (V1) are generally de-

scribed using orientation-selective linear filters. Simple cells combine ON and OFF

afferents arriving from the lateral geniculate nucleus (LGN) [1, 11]; the resulting be-

havior can be captured using a cascade of a linear filter and a rectifying nonlinearity in

an LN cascade [14, 53]. Complex cell responses can be described by summing the re-

sponses of a set of simple cells with identical orientation tuning, but differing in spatial

position or phase [1, 16].

This simple-complex dichotomy has been recently brought into question [54], and

use of new ”subspace” characterization methodologies [45, 19, 20] have shown that

the responses of individual V1 cells may be fit by a number of linear filters that can

vary from one to more than a dozen [18, 39]. Although such models provide a useful
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generalization of the conventional simple and complex cell descriptions, the large set

of free parameters makes the corresponding estimation procedures particularly noise

sensitive. An additional effect of these methods is that the extracted filters are forced

by the procedure to be orthogonal, and as a result they generally do not resemble shifted

copies of one another. Although the resulting orthogonal set can be transformed into

an equivalent shifted set [18, 21], this transformation can further exacerbate the noise

sensitivity of the solution.

Here, we use the general model for V1 neurons along with a direct method for fitting

this model to spiking data that was developed in Chapter 1. The model is composed

of two channels (one excitatory, one suppressive), each formed by summing a set of

LN subunits, as has been used in modeling the so-called Y ganglion cells in rabbit and

cat retina [33, 55], and similar in concept to Hubel and Wiesels original description

of complex cell responses as resulting from a spatial combination of simple cells. To

constrain the model complexity, we assume that the subunit filters of each channel

differ only in spatial position, and that their nonlinearities are identical. The responses

of the two channels are computed as weighted sum of their associated subunits, and

the difference between them is then passed through a final rectifying nonlinearity to

determine the firing rate of the neuron. We develop a method for directly and efficiently

estimating all parameters of the model and we test this on responses of V1 neurons

to white noise stimuli, demonstrating that the fitted model outperforms previously

published LN, energy, and STC-based models on all cells.

2.2 Methods

(See chapter 1 for methods relating to the models discussed in the current chapter)
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2.2.1 Physiology experiments

Flickering bar (XT) data are taken from Rust et al. [18]. The recording methods are

similar to those described in section 3.1.1 of this thesis. Briefly, data was collected from

primary visual area (V1) in adult macaque monkeys (Macaca nemistrina and Macaca

fasciularis). Single units (n = 52) were isolated on microelectrodes that were lowered

through a craniotomy and durotomy centered over V1. Units were determined with a

dual-window discriminator.

Stimuli were white bar-noise, displayed by a Silicon graphics octane 2 workstation

at 100 Hz. Each frame contained a 1-D white, binary stimulus array that varied across

the receptive field orthogonal to the preferred direction. Thus, the stimulus appeared as

flickering bars in which each bar was aligned to the optimal receptive field orientation.

We refer to this class of stimuli as XT noise, referring to the two relevant dimensions

of space (X) and time (T).

2.2.2 Measuring properties of the fitted models

Accuracy of each model is determined by how well it predicts the responses to data

not used in model fitting. We perform 5-fold cross-validation by randomly breaking

the data into 5 tranches, and iteratively fitting the model with 4 fifths of the data and

testing with the holdout fifth. Performance is summarized by the average correlation

coefficient between the actual firing rate and the model-predicted firing rate over the

5 tranches. Training performance is the average correlation for the 4 fifths of training

data.

The structure of the subunit model is convenient for dissociating the spatiotemporal

position of the receptive field from its tuning properties. We measure the spatial and
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temporal extent of the subunit filter and linear pooling for the XT models by fitting a

2-dimensional Gaussians with 6 parameters (1 for amplitude, 2 for spatial position, and

3 for the covariance matrix in a Cholesky decomposition [?]). Fitting a Guassian to the

pooling maps is straight forward because the shapes closely match Gaussian bumps.

The subunit filters are bandpass and contain both positive and negative components,

so we first compute spatial power envelope before fitting a Gaussian. First, we find

the 2-dimensional Hilbert transform in the direction of the subunit filters preferred

orientation. The power envelope is then the square-root of the sum of squares of the

original subunit filter and its Hilbert transform. We compute the relative influence of

the excitatory channel and the suppressive channel by comparing the standard deviation

of the model responses with the other channel removed.

2.3 Standard models for V1 neurons (XT)

The linear-nonlinear (LN) cascade model is the simplest and most well-known de-

scriptive model for sensory neuron responses. At each moment in time, the linear stage

computes a weighted sum (or integral, if the stimulus space is continuous) of the re-

cent stimuli. The weights determine the stimulus selectivity of the model cell, and the

linear operation can be interpreted as passive dendritic combination of incoming sig-

nals weighted by their associated synaptic efficacies. This response is then transformed

with a rectifying nonlinear function, that can be interpreted as transforming membrane

voltage to firing rate. When applied to neurons from area V1, this framework is only

practical for simple cells, which are known to have a monotonic contrast-polarity re-

sponse functions. An example fit to a simple cell is shown in Figure 2.1 (left). The

sharp, rectifying, piecewise-linear output function shows that the cell will be strongly
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Figure 2.1: The Linear-Nonlinear (LN) model fit to an example simple cell and complex
cell. The model fits the simple cell well. The linear filter shows a clear preference
for direction selectivity because it is tilted in space-time, and the deep, rectifying
nonlinearity shows that the cell’s firing rate will be significantly modulated as a function
of stimuli and contrast. However, the model does not do a good job at fitting the
complex cell. The weak output nonlinearity is indicative of a model that cannot produce
strong response variance, and thus cannot capture the real neuron’s output range.

modulated by preferred stimuli. In terms of cross-validated performance (i.e. averaged

over 5-fold cross-validated data tranches), the model performs relatively well for this

cell with an r-value of 0.52.

Complex cells, which respond equally well to stimuli of opposite contrast polarity,

are not well fit by these types of models. Figure 2.1 (right) shows an example com-

plex cell fit with an LN model. The linear filter is weak and oddly structured with a

multimodal spatiotemporal envelope, and the nonlinearity provides for very little modu-

lation with stimulus drive. Indeed, the model poorly accounts for the cellular response,

with cross-validated accuracy of r = 0.28. Higher-dimensional, nonlinear models are

required for these neurons.

Adelson & Bergen [16] proposed the ”energy” model as a means of computing

directionally-selective complex cell responses in order to explain a variety of observations

on human motion perception (see Figure 4 in the Background section). The model

computes the sum of squares of two space-time oriented linear filters, chosen as a

quadrature pair that have the same frequency response but different symmetry (one

is even-symmetric, the other odd-symmetric). This Linear-Nonlinear-Linear (LN-L)
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construction is an instantiation of the qualitative description given by Hubel and Wiesel

[1], and can be thought of as combining the responses of four simple cells with identical

retinotopic location, orientation, and frequency selectivity, but differing in the precise

spatial arrangement of excitatory and inhibitory lobes. The response of this model to

sinusoidal gratings is phase insensitive, but retainis selectivity for spatial orientation and

direction. The model is extended to include suppression by subtracting the responses

of an energy unit tuned for opposite directions.

Though not typically fit to data in reverse correlation experiments, we develop a

gradient method to estimate the parameters of an opponent energy model for spiking

data (see Chapter 1). The procedure returns two quadrature filter pairs that correspond

to excitatory and suppressive pairs described above. Because the model is designed

to produce phase-invariance, it is only able to reproduce the example complex cell

responses and fails to fit the simple cell (Figure 2.2; rsimple = 0.08, rcomplex = 0.41).

Neurons in V1 have been traditionally categorized as simple or complex [1], but

recent analyses suggest that their properties may lie on a continuum [54]. The model

developed by Rust et al. [18] combines aspects of the LN and energy models into a single

common framework, in which a set of LN and energy responses are additively combined

into two channels that are classified as excitatory or suppressive. The channels are

then combined using a spiking nonlinearity that includes both subtractive and divisive

interactions. The filters for the LN and energy units are obtained from spike-triggered

average (STA) and covariance (STC) analyses, respectively. Unlike either the LN

or energy models alone, the combination of elements allows the Rust-STC model to

accommodate both extremes of simple and complex cells (Figures 2.3 and 2.4; rsimple =

0.56, rcomplex = 0.47 for the example cells).

A drawback of the Rust model is that the parameters are difficult to interpret
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Figure 2.2: The Energy model fit to an example simple cell and complex cell (same
cells as in Figure 2.1). Pairs of quadrature filters are squared and added together.
The excitatory pairs are depicted at top and the suppressive pairs are depicted at the
bottom. The suppressive filters for both cells show tuning for motion direction that
is opposite of the excitatory filters. Although the simple cell has well defined filters,
the squaring operation embodies the model with phase invariance, which is a poor
description for these types of cells.

in a biologically meaningful way, primarily because the STC filters are forced to be

orthogonal by construction. As a consequence, pairs of filters beyond the first pair

are delocalized in both space-time and spatiotemporal frequency (Figure 2.4), which

are properties that are not generally observed in real cells [18, 56]. Furthermore, the

Rust model has many more degrees of freedom in its parameterization than the other

models. This makes it difficult to obtain clean and unbiased model fits for individual

neurons given the limits of data acquisition in real experiments [18]. Note that the two

example cells shown were fit to data from two of the longer recordings in the dataset,

each lasting more than one hour.
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Figure 2.3: The Rust-STC model fit to the example simple cell. The responses of the
excitatory filters are squared, weighted and pooled along with the STA response. The
suppressive filters are similarly combined. Images are scaled to represent how the model
weights each component before summation. Note that the predominant component
of this cell is the STA filter; the STC filters contribute very little information. The
excitatory and suppressive channels are combined with a joint nonlinearity to generate
a firing rate, which for this cell shows both subtractive and divisive inhibition.

2.4 The generalized subunit model in primary visual

cortex (XT)

We have developed a subunit model that retains many of the advantages of the

Rust model, but with an architecture that has a more natural biological interpretation,

and requiring far less data to achieve a satisfactory fit [56]. The model sums over two

channels, one excitatory and one inhibitory; each channel is constructed from a bank

of LN ’subunits’ with identical receptive field structure but differing in their spatial and
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Figure 2.4: The Rust-STC model fit to the example complex cell. Figure conventions
follow Figure 2.3. Note that the STC filters are much strong for the complex cell,
and that the STA filter contributes very little drive. Also notice the structure of the
higher-order STC filters, which are not well localized in space.

temporal position (in other words, the set of linear filters perform a convolution). For

each channel, the set of linear filter responses are passed through a common output

nonlinearity before they are linearly weighted and summed to generate the channel

response. The model framework, along with examples of the computation performed

at each stage, is depicted in Figure 1.5. We fit the linear subunit filter, the subunit

nonlinearity, and the spatial pooling functions (weights) of both the excitatory and

suppressive channels for each cell (see Chapter 1).

The parameters of the subunit model can be interpreted in terms of hypothetical

biological components. The field of LN subunits can be viewed as a population of
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afferents from upstream visual areas or layers, and the channel response arises from a

linear combination of these afferents, weighted by their associated synaptic efficacies.

We find that the fitted subunit filters are tightly localized in space and time, a widely-

observed feature of real receptive fields in visual cortex [1]. Moreover, the model can

easily be configured to produce cells with a continuum of response properties, ranging

from simple to complex and beyond. For example, if the subunit nonlinearity is half-

rectifying and the spatial pooling is punctate, the model will exhibit phase selectivity

and would be classified as simple. Conversely, if the subunit nonlinearity is full-rectifying

and/or the spatial pooling is broad, relative to the size and/or preferred spatial period

of the subunits, the model will be selective to the feature expressed by the subunit filter

but invariant to exact spatial position. Fitted model parameters for the example simple

and complex cell are plotted in Figure 2.5, for which they exhibit good cross-validated

performance (rsimple = 0.55, rcomplex = 0.42).

On average the subunit model produces the most accurate cross-validated fits of

all the tested models (< rLN >= 0.18, < rEnergy >= 0.17, < rSTC >= 0.26,

< rsubunit >= 0.29; Figure 2.6, filled circles). Through the Rust model performs

reasonably well, it is highly susceptible to overfitting, due to the large number of

parameters. This is demonstrated by comparing the cross-validated performance to

that on training data (Figure 2.6, open circles). On training data, the Rust model

outperforms the subunit model, but it underperforms on a held-out test set, a standard

indication of ”overfitting”, in which the model is explaining noise along with signal. In

comparison, the pure LN model and the energy model each have many fewer parameters

than the Rust model and do not exhibit this telltale signs of overfitting. Rather, these

models (with dimensionality that is on par with the subunit model) fail because they

are insufficiently flexible to account for the behaviors of all neurons.
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Figure 2.5: Subunit model fit to example simple cell and complex cell (same cells as in
Figure 2.1). For each model, the top left box represents the excitatory LN convolutional
subunits (linear filter and output nonlinearity), and the bottom left box represents the
suppressive channel. The subunits are weighted in space and time with the pooling
maps in the right box before being added and passed through an output nonlinearity.
The excitatory pooling map for the simple cell is small and punctate. The excitatory
pooling map for the complex cell is broad, summing subunits over a wide swath of
space and time, indicating spatiotemporal invariance.

The number of parameters needed to estimate each model is substantially different.

For a cell presented with a 16 x 16 spatiotemporal stimulus grid, the Rust model requires

the estimation of about 32,000 parameters (162 x 162 / 2 for the covariance matrix, and

about 10 for the filter weighting and output nonlinearity), while a two-channel subunit

model with an 8 x 8 convolutional subunit filter requires only about 300 parameters (2

· [8 x 8] for the subunit filters, 2 · 9 for the subunit nonlinearities, 2 · [9 x 9] for the

spatial pooling functions, and 9 for the final output nonlinearity).

It is also worth noting that while both the subunit and Rust models are able to
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Figure 2.6: Comparison between the four models for both testing and training data.
The subunit model outperforms all other models on test (cross-validated) data. All
models except the Rust-STC model perform similarly well on test and training data,
but the Rust-STC model overfits, giving a substantially better result on training data
than test data.

accommodate cells along the entire spectrum of simple to complex (Figure 2.7), they

have a philosophically different manner of doing so. The Rust model is flexible because

it blends the LN model with an energy-like model in proportions that are relevant to

each cell; in this view, every cell is composed of both a linear part and a quadratic

part, and each part performs a very different type of computation. The subunit model
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EnergyLN complexsimple

Figure 2.7: Comparing the Rust-STC model (left) and the subunit model (right) across
the simple-complex response spectrum. Both models are able to accommodate the full
range of response types. In the triplot on the left, the distribution of points is not
horizontal because for simple cells the LN model performs nearly as well as the Rust-
STC model. This is because the LN model is a subset of the Rust-STC model, and
both use the STA to compute their linear response. STA is a very efficient analysis
technique and is much less susceptible to noise than STC. In comparison, on average,
the subunit model outperforms even the LN model for simple cells because it uses the
available data more efficiently.

is flexible across cell type with a different approach; a simple cell is built from a single

subunit, and the response can become gradually more complex by incorporating more

subunits, each constructed from a filter with the same selectivity, and an identical

nonlinearity.

Regardless of how well the Rust-STC model can be fit to individual cells, there is

a noted curiosity regarding the shape of the STC filters. Real cells in V1 are expected

to have localized receptive fields in both the spatial and spectral domains [57]. STA

filters for real cells are mostly well localized, as are the first two (quadrature) pairs of

STC filters. However, subsequent pairs of quadratic filters are usually multimodal in

space and frequency [18], shown for the example complex cell in Figure 2.8 (left). This

property is due to an artifact of the analysis rather than real afferents into the complex
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Figure 2.8: Performing STC on a fitted subunit model reproduces the finding in Rust
et al. that complex cells have multiple quadratic filters, and these higher-order filters
have unlocalized, bimodal spatial and spectral envelopes. On the left is the STA (top)
and STC (bottom) filters for the example complex cell (for clarity, each STC filter
has been normalized to have the same contrast). To the far left is show the spatial
envelope of pairs of excitatory STC filters, which is simply their sum of squares. We
then fit the subunit model to the same cell and simulate a spike rate from the model for
a white-noise input. The STC components of this simulated cell closely match those
of the real cell, including the bimodal spatial envelope of the higher-order filters.
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cell. If we fit a subunit model to the real cell (Figure 2.5, bottom), simulate responses

of the model to Gaussian noise, and then fit the Rust-STC model to the simulated

rates, we obtain STC filters that are qualitatively similar to the real STC filters (Figure

2.8, right). Thus, the subunit model is capable of capturing similar receptive field

information as the Rust-STC model, but it’s interpretation is much easier to connect

to a biology: namely, spatiotemporally and spectrally localized afferents.

The subunit model also has the advantage that it’s structure allows for a dissociation

between receptive field position and spatial extent, and stimulus tuning properties.

Imagine a simple cell and a complex cell with identical subunit filters, and thus identical

tuning properties, but that differ in the number of subunits that they pool together.

The complex cell should pool over comparatively more subunits, arranged broadly over

space, to generate position invariance. We measured the spatial and temporal extent

of the subunit filter and pooling map for each cell (see Methods, section 2.2.2). Indeed,

our data shows that most complex cells pool over a larger spatial region than simple

cells (Figure 2.9, top left), in both the excitatory channel and the suppressive channel

(rexcitatory = 0.42, p < 0.05; rsuppressive = 0.39, p < 0.05). The extent of pooling

over time is not correlated with cell type (Figure 2.9, top right), but the suppressive

channel tends to sum over time more broadly than the excitatory channel (p < 0.05,

t-test).

The smaller spatiotemporal pooling envelope for simple cells is not because simple

cells have less suppression. For each cell we calculate a ’channel strength’ index that is

0 if excitation and suppression are balanced and near 1 if excitation is much stronger

than suppression. Though it has previously been reported that simple cells and complex

cells have equal amounts of inhibition [58, 59], our data with white-noise stimuli show

a tendency for simple cells to be more balanced and for complex cells to have a stronger
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Figure 2.9: Subunit pooling over space and time. We fit a Gaussian to the subunit
filter envelope and the spatiotemporal pooling function and compare the sizes of these
elements. The abscissa for each plot is an index that compares model performance for
the LN and Energy models ((rEnergy− rLN)/(rEnergy + rLN)), and can thus be viewed
as an estimate of cell complexity. Complex cells (i.e. the right end of each graph) pool
over a larger area in space than simple cells, but not in time. Complex cells tend to
have less suppression than simple cells.

excitatory drive (Figure 2.9, bottom; r = 0.38; p < 0.05), though the correlation is

weak.
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Chapter 3

3D spatiotemporal subunit models

(XYT)

3.1 Methods

3.1.1 Electrophysiology

Flickering pixel (XYT) data were recorded from primary visual area (V1) in adult

macaque monkeys (Macaca nemistrina and Macaca fasciularis; 6 animals). Typical ex-

periments spanned 5-7 days during which animals were maintained in an anesthetized

and paralyzed state through a continuous intravenous infusion of sufentanil citrate

and vercronium bromide. Core temperature was kept fixed within the physiological

range and vital signs were continuously measured (e.g. heart rate, end-tidal pCO2

levels, blood pressure, EEG activity, and urine quantity and specific gravity). Eyes

were treated with topical gentamicin, dilated with topical atropine, and protected with

gas-permeable hard contact lenses. Subsequent corrective lenses were chosen via direct

ophthalmoscopy to make the retinas conjugate to the experimental monitor. All exper-
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imental processes and animal care were performed in accordance to protocols approved

by the New York University Animal Welfare Committee, and are in compliance with

the National Institute of Healths Guide for the Care and Use of Laboratory Animals.

Single units were isolated on quartzplatinumtungsten microelectrodes (Thomas

Recording) that were lowered through a craniotomy and durotomy centered between

10 and 16 mm lateral to the midline and roughly 4-6 mm behind the lunate sulcus.

We collected units across all cortical depths with receptive fields that were located

parafoveally, at about 5-10 degrees from the center of gaze. The amplified signal from

the electrode was bandpassed (300 Hz to 8 kHz) and routed through a dual window

time-amplitude discriminator (EXPO) from which single-unit spike times were recorded

at a resolution of 0.1 ms.

3.1.2 Visual Stimulation

XYT pixel-noise stimuli were presented on a gamma-corrected CRT monitor (Eizo

T966; mean luminance around 35 cd/m2). The resolution of the display was 1280

x 960 pixels, set to refresh at 120 Hz. We generated stimuli pseudorandomly using

Expo software on an Apple Macintosh computer (http://corevision.cns.nyu.edu). The

stimulus was a spatial pixel array (usually of dimensions 16 x 16) of white, ternary

noise that was continuously refreshed at 40 Hz. The size of the array was chosen to be

roughly double that of the receptive field as measured with optimal moving gratings

while still maintaining adequate pixel resolution with respect the the receptive field

features. For a subset of cells we also presented a repeated noise stimuli to act as

cross-validation. These stimuli had identical statistics to the main white-noise stimuli,

but lasted 25 s each and were repeated 20 times in succession.
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3.1.3 Orientation tuning experiments

We also collected direction tuning curves to drifting grating stimuli for each cell.

Most direction tuning curves were collected at the preferred spatial frequency (SF) and

temporal frequency (TF) determined by hand, though many cells were then also run at

their preferred spatiotemporal frequency as determined by their separable SF-TF tuning

curves. Model-predicted direction tuning curves were obtained by generating drifting

sinusoidal images near the model-optimal SF and TF and presenting them to each

fitted model. For the models, the sinusoidal images have a higher effective contrast

than the noise images to which the models were fit because gratings are a closer match

to each receptive field. As a result, we fit a new output nonlinearity for each model and

each cell so account for the output scaling. In addition, the subunit nonlinearities must

also be able to extrapolate to higher effective contrasts, because the subunit outputs

for grating stimuli is often outside the support of the nonlinearity defined with noise

stimuli. Thus, we fit each subunit nonlinearity with a piecewise power-law function;

the nonlinearity for each channel is split at zero and both the positive and negative

side are fit with an independent nonlinearity of the form xp − b, where b is an offset

and p is a power between 0 and 5. This allows us to describe nonlinearities that are

either half-wave or full-wave rectifying.

3.2 The subunit model in XYT

The subunit model is easily extended to handle stimuli with two spatial dimensions

in addition to the temporal dimension. We presented 38 cells with ternary pixel noise

presented at 40 Hz on a spatial grid with a typical extent of 16 x16 pixels (we looked

back 8 frames in time yielding an embedded stimulus matrix of 2048 dimensions). Due
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Figure 3.1: LN model for example V1 complex cell probed with 3 dimensional XYT
stimuli. The linear filter is presented as a stack of spatial maps at different slices of
time, preceding a spike. Three time slices at the optimal delay are highlighted at left.
The stimulus is projected onto the filter and the response is passed through the output
nonlinearity at right.

to the relatively slow frame rate we fit a subunit model for each cell that is convolutional

in space but not in time - in principle, temporally shifted subunits could also be included

if the stimulus frame rate were increased.

Unlike for the XT stimuli, we cross-validated models for a subset of neurons against

responses to a novel 25 second stimulus, which was repeated 20 times. Test perfor-

mance is measured as the average correlation (r-value) between the actual binned

firing rate and the model-predicted firing rate. For these same cells we also calculate

training performance as the correlation between these values for the stimuli on which

the models were trained (see Figure 3.6). We test the LN, energy, Rust-STC, and

subunit models.

The four model fits for an example directional cell are shown in Figures 3.1 – 3.4.

The filters for each model are now three-dimensional; they are plotted as 25 ms slices

through time over a range of 200 ms preceding spikes. The LN model filter for this cell

shows a preference for horizontal features that drift upwards over time (Figure 3.1).

This preference is apparent in all models: the energy model filters (Figure 3.2), the
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Figure 3.2: Energy model for example V1 complex cell. Conventions follow Figure
3.1. The outputs of two excitatory filters are squared and summed into an excitatory
channel (top). A suppressive channel (bottom) is subtracted, and the output is passed
through an output nonlinearity.

Rust model second-order filters (Figure 3.3), and the subunit kernels (Figure 3.4). The

Rust model filters for this cell are much noisier than than the filters for any of the other

models, stemming from large sample covariance matrix that must be estimated from

the stimulus. For this example cell, the subunit model exhibits best cross-validated

performance (rsubunit = 0.54, rSTC = 0.43, renergy = 0.28, rLN = 0.16).

Like the models fit to the XT data, on average the subunit model outperforms the

other models in cross-validated tests across all cells (< rsubunit> = 0.27, < rSTC >=

0.16, < renergy >= 0.12, <rLN>= 0.12; Figure 8). For these high-dimensional stimuli,

the difference in model performance is more substantial than for the XT stimuli: here,

the subunit model performs about 70% better than the Rust model on average. The
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Figure 3.3: Rust-STC model for example V1 cell. Conventions follow Figure 3.1. An
excitatory channel is computed by combining the responses of an LN unit and multiple
excitatory STC units (only two depicted). A suppressive channel is also formed in an
analogous manner. The two channels are combined with a joint nonlinearity (right)
that includes subtractive and divisive suppression.

Rust model also shows a larger gap between training and testing performance than for

the other models (Figure 3.5, open and closed circles).

We can also compare the performance of the subunit model to that of an estimated

upper bound, which we refer to as the ‘oracle’ prediction. The oracle uses the mean

response over 19 repeated presentations to predict the firing rate for the 20th pre-

sentation (Figure 3.6). Predictably, the oracle outperforms the subunit model (Figure

3.7; two-tailed t-test, p << 0.05), but by only a modest amount. On average, the
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Figure 3.4: Subunit model for example V1 cell. Conventions follow Figure 3.1. A
convolutional subunit filter is applied to the stimulus image and passed through a
pointwise, rectifying nonlinearity for both an excitatory and suppressive channel. The
subunits for both channels are separately pooled over space and then combined. Finally,
the response is passed through an output nonlinearity. Note the clear selectivity for
upward motion (left), and suppression by low-frequency downward motion.

subunit model performs 76% as well as the oracle model, while the Rust model only

performs 49% as well as the oracle. In summary, the subunit model is able to capture

a significant percentage of the explainable variance in each cells stimulus-modulated

firing rate, and can do so much more efficiently (i.e., with less training data) than the

Rust model.

Each model can also be used to predict direction tuning curves for each cell in

response to drifting grating stimuli. We measured responses to synthetic sine-wave

gratings at the optimal spatial and temporal frequency for each cell, and use each

model, with parameters fitted to the white noise training data, to predict the grating

responses averaged across phase (i.e. the DC response). The grating stimuli have

higher effective contrast than the white noise stimuli that are used to estimate the
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Figure 3.5: Subunit model performance is compared against the LN, Energy, and Rust-
STC model performances. Given the large dimensionality of the stimulus, there is a
tendency for most models to overfit, depicted as the difference between the performance
for training data and test data. The Rust-STC model overfits the most of the four
models.

model parameters, and so we allow for the estimation of a new output nonlinearity

that maps the model drive (sum of excitatory and inhibitory channels) to the observed

firing rate. We then compare these model-predicted direction tuning curves to the

actual measured tuning curves (Figure 3.8 shows this for an example cell).
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Figure 3.6: For a subset of cells we collected neuronal responses to repeated stimulus
trials. The subunit model accuracy is the average of the correlation between the subunit
model prediction and all twenty trials. We also compute an oracle prediction which
attains the best possible performance that any stimulus-driven model could hope to
attain. The oracle for trial n is computed by summing the responses to all other
nineteen trials. This value is averaged for all twenty trials.

The subunit model is consistently more accurate than the others in predicting the

direction tuning curves, as measured by correlation coefficient (Figure 3.9, top). The

superior performance of the subunit model comes both from a estimation of direction

preference (Figure 3.9, left) as well as tuning width (Figure 3.9, right). In general, each

model predicts broader tuning curves than the real cell exhibits, though the subunit

model is the most accurate in this regard. Of note is that the cells for which the model

provides accurate tuning curve estimates are also the cells for which the subunit model

predicts novel white-noise stimuli well (r = 0.49, p = 0.025; Pearson r-value, data not

shown). These cells are also the cells with the highest average firing rate (r = 0.57,

p = 0.007; Pearson r-value) and the highest number of total recorded spikes (r =

0.59, p = 0.005; Pearson r-value).
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Figure 3.7: The oracle performance is compared to the subunit model (orange) and
the Rust-STC model (purple). Cells would fall along the identity line if the model was
capturing all of the explainable variance. The subunit model comes closer to reaching
this upper bound of performance (76%) than does the Rust-STC model (49%) on
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Figure 3.8: Direction tuning curve for an example cell. Black dots show the tuning
curve for drifting gratings over 16 directions. This neuron was direction tuned because
the tuning curve is unimodal. We also simulate the response of each model drifting
gratings and normalize the response range to match the amplitude of the measured
tuning curve. The subunit model provides the best fit to the actual tuning curves.
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Figure 3.9: We quantify tuning curve prediction as the correlation between the actual
tuning curve and the model-predicted tuning curve. The Subunit model performs the
best. Part of this performance increase comes from smaller errors in predicting the
preferred orientation (bottom left), and part comes from smaller errors in predicting
the circular variance (bottom right; the black and blue curves are cartoons of the actual
and model predicted tuning curves, showing that at the right end of the plot the model
is less tuned to gratings than the actual cell). All models tend to predict flatter tuning
curves than predicted from drifting gratings. Error bars (horizontal lines) are standard
deviation. (n=52)

3.3 Discussion

We’ve developed a generalized subunit model for neurons in primary visual cortex,

along with a method to directly and efficiently estimate the parameters of this model
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from measured firing rates. The model includes the LN model, widely used for simple

cells, and the energy model, used for complex cells, as a special cases. When fit to

relatively short segments of white noise stimuli responses, the new method significantly

outperforms both classic models in terms of cross-validated accuracy in macaque pri-

mary visual cortex. We also compared the model to that of Rust et al. [18], which

has previously been shown to provide good qualitative fits regardless of cell type; the

subunit model performs significantly better on validation data because it is more com-

pactly parameterized, and thus less susceptible to noise. The parameters of the subunit

model are also easy to interpret as the hypothetical building blocks of a biologically-

instantiated receptive field. Our results indicate a continuum of pooling behaviors

across V1 populations, from cells that are extremely localized (simple cells) to complex

cells that gather rectified responses over far larger regions than those predicted by the

energy model.

Subunit models have a long history and date back to the work of Hubel and Wiesel,

who proposed that the lack of distinctive excitatory and suppressive subregions in

complex cell receptive fields could be explained by combining the response of a set of

spatially distributed simple cells, each with identical orientation and spatial frequency

tuning [1]. In the retina of the cat, Hochstein and Shapley showed that spatial frequency

responses of Y cells arose from spatial filters that were significantly smaller than the

receptive field size; the authors proposed a model for these responses based on a sum

of nonlinear subunits, and this appears to be the first use of the nomenclature [34].

Adelson and Bergen introduced the spatio-temporal energy model as a simplification

of the Hubel and Wiesel model that used only two filters in quadrature phase and

whose responses were squared and summed [16]. Fukishima suggested that the spatial

pooling of rectified filter responses is a canonical operation that is repeated in all
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visual cortical areas to allow translation-invariance in the representations [41], a notion

that was generalized to include pooling over other dimensions by Perrett and Oram

[60] and is widely used in object recognition systems [61, 62, 63, 64, 65, 42]. It has

also been proposed as a means of representing statistical quantities (local variances or

covariances), which can support the representation and recognition of visual texture

[66].

Methods for fitting V1 models directly to physiological recordings originate with

the work of Jones and Palmer, who used reverse-correlation methods [43, 67] to obtain

spatial or spatiotemporal receptive fields for simple cells [14]. Emerson and colleagues

introduced a sparse noise methodology for fitting the energy model to complex cell

responses [17]. Lau and colleagues fit complex cell responses using an artificial neural

network model that included multiple unconstrained filters [68], revealing families of

oriented receptive fields of differing phase similar to the energy model. Parallel work

by Touryan et. al. used spike-triggered covariance analysis [45] to estimate orthogo-

nal pairs of oriented filters underlying complex cell responses [48], and later work by

Rust et al. extended this analysis to reveal larger sets of orthogonal filters underly-

ing most complex cells [18]. This generality engenders experimental limitations: STC

methods generally require Gaussian stimulus ensembles, and recording durations that

strain existing experimental capabilities (although Park and Pillow have recently in-

troduced regularization methods for STC that partially alleviate these problems [57]).

Information-theoretic methods have also been introduced to find orthogonal filters that

capture the subspace of stimuli responsible for neural responses [15, 19]. Compared

with STC, these methods are less restrictive in terms of the stimuli (for example, they

have been used with natural movies), but the estimation of information generally makes

them even more data intensive.

74



The method introduced here greatly reduces the data requirements of the sub-

space methods, by exploiting the simplified parameterization that results from banks

of spatially shifted (convolutional) filters. Analogous advantages have been realized in

training artificial neural networks for pattern classification [62]. One can approximate

this approach by first finding a response subspace (e.g. with methods described in the

previous paragraph such as STC) and then solving for a filter whose shifted copies span

that same subspace [18, 21]. However, such a two-step procedure does not generally

realize the gains in accuracy that should accompany the reduction in dimensionality,

because the second step does not take into account the estimation errors of the first.

There are also several related analysis techniques in recent literature that incorporate

the concept of subunits without building an explicit receptive field model. Local Spec-

tral Reverse Correlation (LSRC) computes a spike-triggered local Fourier spectrum over

localized, stimulus windows [69]. The method computes both localized spectral tuning

profiles (which can be linked to squared responses of spectrally-tuned filters), as well as

a position map. But as with the subspace methods, spectral responses are estimated

independently, and so it requires substantial amounts of data to achieve clean results.

In addition, the spectral characterization of local regions does not allow for a separa-

tion of excitatory and suppressive influences, complicating any biological interpretation.

Similar benefits and drawbacks may be attributed to the method of Sasaki & Ohzawa,

which estimates local second-order subunit kernels that respond in a contrast invariant

manner to windowed stimulus regions [70].

Perhaps the closest published method to our own is that of Eickenberg and col-

leagues, who used an information-theoretic objective function to fit a model constructed

from an OR-like combination of shifted LN subunits [71]. As in our results, the authors

find that model-fitting is substantially more data-efficient than for a general subspace
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model. The model differs from ours in a number of aspects, including the use of a

different combination rule (Or-like product, instead of a sum), a general nonlinear com-

bination of the responses of multiple filter outputs (instead of the linear combination

of nonlinear channels used in our model), and lack of a final nonlinearity. The authors

find that the model works best for complex cells, necessitating the use of a separate

model to handle simple cells.

The model and methods presented here offer a number of possibilities for extension

and generalization. In particular, our current fitting procedure optimizes squared error

between model response and observed spike counts. Incorporating a spike generation

stage, even a simple one such as a Poisson model, would more accurately capture the

precision associated with different spike count observations. Incorporating other known

nonlinear properties, such as gain control and adaptation, would also be of interest,

though it is likely to greatly increase the complexity of the fitting procedure. Other,

additions could include the responses of other neurons in an array recording (such as

in recent retinal modeling work [?]) or explicitly modeling feedback from the spike-rate

output (i.e. adaptation) or from downstream cortical areas.

The list of possible extensions to the current subunit model derive from an important

principle; no quantitative model of a neural process will ever be perfect. It is easy to

enumerate the deficiencies of a model just by noting the common components that

are not included. More fundamentally, a model should be falsifiable, because not

all of the components that are included will be correct, and we would like to know

how incorrect they are and how they can be improved. The two largest assumptions

of the subunit model are that the subunits of a cell are well localized and that their

tuning properties and nonlinearities are identical. Testing these assumptions will require

further experimentation with non-white datasets, as correlated inputs will be more likely
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to independently activate the putative subunits of the cell.

Finally, though the subunit model is at its core a functional model and not a detailed

biophysical model, we believe its general structure reflects computations throughout

the early stages of visual computation. The retina has long been described with similar

mechanisms [34, 55], but later stages, such as V2 or MT (V5), are also likely to use

a similar computation. There are current explorations of the subunit models to data

from such areas [72, 73, 56].
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Chapter 4

Sparse afferent models

4.1 Introduction

Models of neurons in areas V1 and V2, the largest cortical regions in the brain,

are particularly important in neuroscience because they give insights into the types of

transformations and abstractions that occur in the visual stream from sensory periphery

to cortex. Hubel & Wiesel provided a qualitative model that describes how V1 simple

cells could combine a series of LGN afferents to generate their emergent property

of orientation tuning [1]. Because V2 neurons receive their predominant input from

neurons in V1, there is a general expectation that the selective pooling of V1 neurons

may yield V2 receptive fields with higher-order selectivities and invariances [42, 74, 75].

Some neurons in V2 are responsive to the mid-to-high level visual features that make

up natural images. Subpopulations of V2 neurons are selective for the conjunction

of local oriented features [23] and curvature [25]. Other neurons are modulated by

scene context such as figure-ground labelling or border ownership [76] and anomalous

contours [26, 77]. Freeman et al. also recently demonstrated that neurons in V2 can
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distinguish naturalistic image properties from spectrum-matched controls, while V1

neurons cannot [73]. Yet, despite these experiments based upon tuning preferences,

most models for V2 neurons yield receptive fields that are largely indistinguishable from

V1, and there are few functional models that are specifically designed to work in both

V1 and V2.

Receptive field models are an important tool for understanding how visual infor-

mation is transformed through the cortical hierarchy. All receptive field analysis tech-

niques implicitly assume some family of functional models, and not all models are

appropriate for all neurons. For example, Spike-Triggered Averaging (STA) assumes a

linear-nonlinear cascade model [15] and is incapable of capturing the phase-invariant

responses of V1 complex cells [16]. Other models, such as those based on filters derived

from Spike-Triggered Covariance (STC, [12]), are too flexible because they do not in-

corporate enough constraints to be interpretable, making them unreliable with realistic

amounts of experimental data [56]. To be both pragmatic and accurate, receptive field

models should assume a meaningful architecture. For example, many neurons in V2 are

selective for the orientation and position of stereoscopic edges [78], but a recent study

found that only a receptive field model that combined V1-like responses with realistic

output nonlinearities could describe the tuning properties of these neurons [31].

In this chapter we describe a hierarchical receptive field model that can account

for response properties in both V1 and V2. The model selectively sums over a bank

of simulated V1 simple cells that are tuned to local orientation, phase, position, and

spatial frequency, and it is fit to individual neurons in both V1 and V2 cells. Neurons

are probed with a complex stimulus and the spiking response is recorded. We then

estimate the parameters of the model by finding the sparse set of the simulated V1

afferents that, when pooled together, represent the receptive field structure of the
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recorded neuron. We find that this model is able to accurately describe the receptive

fields of most neurons in V1 and V2. The receptive fields of V2 neurons cover a diverse

array of selectivity to form, and we are able to discriminate cells in V1 and V2 based

upon these properties.

4.2 Methods

4.2.1 Electrophysiology

All recordings are from the first two areas of visual cortical processing, V1 and V2,

in the adult macaque monkey (Macaca nemistrina and Macaca fasciularis; 8 animals).

Experiments spanned 5-7 days and animals were maintained in an anesthetized and

paralyzed state throughout via a continuous intravenous infusion of sufentanil citrate

and vercronium bromide. Core temperature and vital signs (e.g. heart rate, end-tidal

pCO2 levels, blood pressure, EEG activity, and urine quantity and specific gravity) were

kept within the physiological range. Topical gentamicin was applied to the eyes and

they were dilated with topical atropine. Gas-permeable hard contact lenses served to

protect the eyes. Corrective lenses were then chosen via direct ophthalmoscopy to

make the retinas conjugate to the experimental monitor. Experimental processes and

animal care were all performed in accordance to protocols that were approved by the

New York University Animal Welfare Committee, and they are in compliance with the

National Institute of Healths Guide for the Care and Use of Laboratory Animals.

Quartzplatinumtungsten microelectrodes (Thomas Recording) were used to isolate

single-units. The amplified signal from the electrode was bandpassed (300 Hz to 8 kHz)

and routed through a dual window time-amplitude discriminator (EXPO) from which

single-unit spike times were recorded at a resolution of 0.1 ms. For V1 recordings,
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electrodes were lowered through a craniotomy and durotomy centered between 10 and

16 mm lateral to the midline and roughly 2-6 mm behind the lunate sulcus. For V2

recordings, we extended the electrodes through the output layers (5,6) of V1, and the

subsequent tract of white matter, to reach the output layers of V2. We collected units

across all cortical depths for both areas, and found receptive fields that were located

parafoveally, at about 5-10 degrees from the center of gaze.

4.2.2 Visual stimulation

XYT pixel-noise stimuli were presented on a gamma-corrected CRT monitor (Eizo

T966; mean luminance around 35 cd/m2). The resolution of the display was 1280 x 960

pixels, set to refresh at 120 Hz. We displayed stimuli pseudorandomly at 10 Hz using

Expo software on an Apple Macintosh computer (http://corevision.cns.nyu.edu), at

custom sizes for each cell intended to capture both the center and part of the surround

for each receptive field. The stimuli were generated as AVI movie files using MATLAB

computing software (Mathworks, Natick, MA).

Stimulus frames were generated as droplet noise images. 19 droplets were spatially

arranged in a hexagonal grid, where the envelope of each droplet was a two-dimensional

raised-cosine, corrected so that the entire stimulus envelope had a flat-top contrast

profile. White pixel-noise stimuli (usually 64 x 64) were decomposed into oriented-

noise images by filtering with 4 oriented filters (orientation filters tiled frequency space

in wedges of 45 degrees each), and then randomly recombined within each droplet to

give a stimulus with independent local contrast and orientation content (which could

include multiple orientations). Effectively, each droplet independently drew a selection

of orientations and a contrast and were recombined into a global stimulus image. An

example of the stimulus design is shown in Figure 4.1.
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Figure 4.1: Stimuli for the V2 experiment consist of local regions with independent
orientation and contrast content. Specifically, there are 19 circular locations arranged
in a hexagonal grid, each with a flat-topped contrast envelope that together evenly tile
space.

4.2.3 V1 filter bank

We model a population of V1 simple cells as an over-complete basis of locally ori-

ented bandpass filters, augmented with a basis of low-pass Gaussian-envelope filters.

The bandpass filters are computed with the complex-valued steerable pyramid wavelet

basis [79] that generates both an odd and an even filter for each location and orien-

tation. Each filter has an orientation bandwidth of 53 degrees, a spatial frequency

bandwidth of 1.33 or 1.23 octaves (for the low- and high-frequency units), and an

aspect ratio of 0.74 (Figure 4.2). We use two spatial scales of filters that together

span the narrow-band frequency content of the stimulus. The high frequency filters

tile space evenly on a 16 x 16 square grid, and the low frequency filters tile on an 8 x

8 grid. We use each bandpass filter to model two separate cells, one that captures the
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negative response and one that captures the positive response, by passing the output of

each filter through two half-squaring nonlinearities (b−xc2 and bxc2). If the output of

these two half-rectified filters are summed together along with their quadrature-phase

counterparts, the result is a nonlinear unit that is invariant to local phase, identical to

the energy model for V1 complex cells [16].

We use our model to characterize both V1 and V2 cells, and so we also included

low-pass Gaussian filters in our simulated population of V1 afferents. These filters

tile the stimulus on a 16 x 16 grid and approximate LGN neurons or layer-4 ’input’

neurons in V1. We believe that a realistic V1 filter bank is important for studies

such as ours that build hierarchical models. Filters that are designed for compression

or reconstruction (such as orthogonal wavelet bases) are good for maximizing the

explainable variance for a given model class, but they are prone to artifacts. Orthogonal

filters generally do not resemble real V1 units, often meaning that multiple filters must

be weighted toghether, both positively and negatively, to approximate a single, smooth

linear simple cell. Such bimodal weighting schemes are difficult to interpret, as there

need be no real inhibitory inputs to a neuron in order to produce model fits with

suppressive components. Our filter basis, in comparison, is specifically designed for

analysis. Because they are overcomplete and steerable, simple linear additions of filters

can reproduce simple cell filters oriented in arbitrary directions without the need for

negative weights.

4.2.4 Sparse-afferent model

V1 and V2 cells are modeled as a linear combination of fixed V1 afferents (see

Methods: V1 filter bank), where each afferent is composed of a linear filter and an

output nonlinearity. The output of this model is a binned firing rate, calculated at an
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Figure 4.2: The first stage of the V2 model is a bank of V1-like simple cells at two
scales, in addition to a set of Gaussian-windowed units (not depicted). [Top left]
Odd an even example filters from the high-frequency scale. All distribution widths are
measured at half-maximum. [Top right] Spatial envelope of the filters in length and
width. [Bottom left] Spatial frequency profile of the bandpass filters. [Bottom right]
Orientation tuning of bandpass filters from both scales.

optimal delay (the delay is calculated by fitting a reduced model at 5 ms delay intervals

and choosing the delay with the best prediction accuracy) and can be written as

r = f (Aw) , (4.1)

where w is the vector of linear pooling weights, f(·) is the output nonlinearity, and A

is a matrix of simulated V1 afferent responses. We first fit w, then subsequently fit
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f as a sigmoidal function. If Bhigh, Blow, and G are the bases for the high-frequency

bandpass, low-frequency bandpass, and Gaussian afferent filters, A is computed from

a stimulus image, x, as

A =

(
bxBhighc2 bxBlowc2 xG

)
. (4.2)

By design, the afferent responses, A, are correlated because the stimulus has spatial

correlations and because the filter bank is over-complete. Unconstrained Ordinary Least

Squares (OLS) is not an appropriate method to estimate the linear model weights

for this type of experimental design because its computation involves inverting the

covariance matrix of the V1 afferents:

ŵ = arg min
w

|r− ATw|2

= (ATA)−1AT r, (4.3)

which is highly sensitive to corruption by underrepresented directions in the stimulus

matrix (i.e. eigenvectors of ATA with very small eigenvalues). We mitigate this

problem with a regularization term that biases towards sparse solutions. Specifically,

we include both a Ridge (L2) and Lasso (L1) term in the Least Squares objective

function which forms an Elastic Net penalty [80]:

ŵ = arg min
w

|r− ATw|2 + λ1|w|1 + λ2|w|2

≡ arg min
k
|r− ATw|2, subject to [α|w|1 + (1− α)|w|2] < t for some t

(4.4)
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In the later representation, t serves to set the overall strength of the regularization, and

α governs the relative contribution of Ridge [81] and Lasso [82] penalties (see [83]).

We fit both hyper-parameters by trying a fixed set within a relevant operating range

and comparing their cross-validated accuracy (reported accuracy is computed on yet

another holdout set).

In a stimulus matrix such as ours, with bandpass image content and low-frequency

correlations, the Ridge penalty acts to keep the solution smooth and grouped over

space and orientation, and the Lasso penalty acts to keep the solution sparse. In

practice, both of these effects tend to decrease the prevalence of overfitting and they

allow for good performance on novel holdout data. These constraints also have a clear

biological interpretation – we expect that each downstream neuron should only pool

over a small subset of similarly tuned afferents.

4.2.5 Validating the sparse model with a playback experiment

We perform a playback experiment on a subset of cells to ensure that the estimated

model parameters are meaningful. The experiment is designed to generate a series of

images from the model that should maximally excite or suppress the cell, and then

we show these images back to the cell and record the response. To build the model

we first measure the response to a stimulus that is 30 minutes long (18,000 frames).

This data is used to estimate a simplified receptive field model that pools only over

a fixed set of V1 complex cells (i.e. each model V1 afferent is phase invariant [16],

unlike the full model described above that includes phase-selective responses). We

simulate the response of the model to white, Gaussian noise and then use Spike-

Triggered Covariance to determine the 10 images (5 excitatory, 5 suppressive) that

will most excite or suppress the model. The relative order of the covariance matrix
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eigenvalues determines the relative strength in which the images should modulate the

cellular response. Assuming that throughout this analysis procedure the isolation of

the cell is maintained, we then ’play back’ these images to the cell and record the

firing rate. There should be good agreement in the rank order of the stimuli and the

neuronal firing rate if the model is a good fit for the cell.

Besides showing each individual image by itself, we also show pairs of images to

assess interaction terms. The design matrix for the experiment is 10 x 10, because

each image is also superimposed on every other image, where the diagonal of this

matrix represents each image in isolation. We randomize the phase of each image

presentation, whether presented in isolation or in pairs. Each stimulus condition is

sampled 48 times.

4.2.6 Calculating statistics of the receptive field models

A model for cortical receptive fields is constructed from the linear summation of

V1-like afferents. These afferents are local in both space and frequency and are charac-

terized by spatial position, orientation, and phase. We can compute a set of informative

statistics for each cell by examining the set of afferents that the model selectively pools.

For example, we can examine the relative influence of excitatory drive to suppressive

drive by summing the magnitude of the positive weights and the negative weights into

two separate pools (E for excitation, S for suppression) and computing an index of

their relative contribution:

excitation index =
E − S
E + S

. (4.5)

A cell with an equal balance of excitation and suppression will have an excitation index
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of 0, while one that has no suppression will have a value of 1.

Local statistics characterize the average tuning properties of afferents at each loca-

tion in space. In each discretized receptive field location there are 32 possible afferents

from which to pool (8 orientations at intervals of π/8, and 4 phases), and there are

thus 32 estimated weights to these afferents, w. We can estimate how tuned the cell

is for local orientation by measure the orientation selectivity at each location in space,

which is computed as the circular variance of the weights, averaged over phase [84],

CV = 1− |Σkwke
i2Θk |

Σk|wk|
. (4.6)

A value of 1 indicates a flat, non-selective orientation tuning profile and a value near

0 indicates a highly tuned location. (Note that this particular definition of circular

variance ignores phase and treats negative weights as identical to an excitatory weight

for the orthogonal orientation). Average local circular variance is a summary over the

entire receptive field by taking the weighted average over all spatial locations. Similarly,

local phase selectivity can be computed as a the circular variance of local phase weights,

with a weighted average over local orientation and spatial position.

Global statistics consider receptive field tuning across the entirety of the receptive

field. Global orientation homogeneity is computed in a similar manner to local orienta-

tion tuning, but it computes tuning over the entire receptive field at once. Specifically,

we compute the circular variance of the entire receptive field regardless of spatial po-

sition. We find that this measure of global orientation homogeneity is qualitatively

similar to a method that first computes the local orientation of each receptive field

location and then calculates circular variance over these summary values.

Receptive field curvature is another informative measure of global structure. Imag-
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Figure 4.3: We measure curvature tuning by fitting concentric circles (gray) to the
local orientation of the receptive field (red). We find the best locus of the concentric
circles for each receptive field by trying all possible locations. The distance between
the locus of the curves and the receptive field center-of-mass defines the preferred
curvature radius. Cells with a co-radial arrangement will not be fit well by curves.
Parallel receptive fields will also be well fit by concentric circles, but the radius will be
near-infinite.

ine a series of concentric circles emanating from a particular locus somewhere near a

receptive field (Figure 4.3). We can determine how well the receptive field is fit by

these circles by angular difference between each receptive field segment (i.e. oriented

afferent) and the local tangent of the circles at each point. Goodness of fit is defined

as the weighted average of the angular correlation over all locations and determines

how well the field conforms to that particular type of curvature (1 is the best, 0 is

random). We find the best locus for each receptive field by trying all possible locations

of the concentric circles and report this value as the curvature index. This also gives

us an estimate of the curvature radius of the receptive field by computing the distance

between the receptive field center-of-mass and the best concentric circle locus (to

compare between cells, we normalize this metric to be in units of stimulus diameters).

Note that cells that prefer a parallel edges will also be fit well by curves, but the radius

will be nearly infinite. We fit a similar Parralelism index by determining how well each

receptive field matches a parallel field of afferents.
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The envelope of a receptive field provides information about how the receptive

field is distributed over space. We measure the envelope as average of the weight

magnitudes at each location, and it can be parametrically summarized with fit to a

Gaussian distribution (see section 2.2.2). The goodness-of-fit tells us something about

the complexity of the receptive field shape. Receptive fields that are well fit can be

described as roughly circular or elliptical. We can also measure the aspect ratio, which

is the ratio of the length of the receptive field to it’s width (i.e. the major and minor

axes of the Gaussian covariance ellipse).

4.2.7 Discriminating V1 and V2 receptive fields

We would like to know if V1 receptive fields are different than V2 receptive fields.

The general procedure is to determine if the distribution of receptive fields statistics

(see the previous section) is different for V1 and V2 neurons. We start by constructing

a matrix of receptive field statistics that has as many rows as there are neurons and

as many columns as the number of statistics that we choose. A simple, unsupervised

method to visualize this space is to perform Principle Component Analysis (PCA) on

the normalized distribution matrix (i.e. zero mean and unit variance) to reduce the

dimensionality and then see if there is clustering by cell type. PCA serves to find the

linear combinations of statistics that vary together the most, and does not require

any prior knowledge about which statistics belong with which cell type. We project

the statistics distribution onto the first two principle components and measure the

difference between V1 and V2 cells.

We can also take a supervised approach to distinguishing V1 and V2. By using

the labels for each data point (i.e. V1 or V2), we can find a projection in the multi-

dimensional statistics distribution that optimally discriminates V1 and V2. This linear
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projection is known as the Fisher Linear Discriminant, and is calculated as

FLD = C−1
w (µV 2 − µV 1). (4.7)

Cw describes the average within-class covariance matrix and µ is the mean of the

statistics distribution for V1 or V2. We can then find an optimal boundary along the

discriminant by trying all possible boundaries between the data points. Percent correct

is defined as the average correct classifications for V1 and V2.

As the dimensionality of the statistics distribution grows, it becomes easier to find

a linear projection that can optimally discriminate two subpopulations. We construct a

null hypothesis through permutation to get an idea of how well we are doing compared

to chance. Specifically, we shuffle the data labels (V1 or V2) for all data points

and construct an optimal discriminator for this altered distribution. We perform this

procedure 10,000 times and generate a null distribution of percent-correct estimates.

We then determine whether or not our test statistic, measured with the un-shuffled

data, is greater than 95% of the null estimates.

4.3 A hierarchical model for neurons in V1 and V2

We analyze the activity of 144 neurons in visual cortex (43 in V1 and 101 in V2) in

response to images with random local orientation and contrast content (Figure 4.1; see

Methods: Visual stimulation). Stimuli were presented at 10 frames per second and the

measured spike times were binned at this same frequency, but with an optimal delay.

We then fit a hierarchical model for each cell whose goal was to take the stimulus as

an input and use it to reproduce the observed firing rate. The model consisted of a

fixed V1-like stage that filtered the stimulus with locally oriented neural units, and a

92



Stimulus Bank of V1 cells Model firing rate

r(t)>

wi

Figure 4.4: Sparse-afferent V2 model. A stimulus is decomposed into the responses of
a set of V1-like afferents. The overcomplete basis for the afferent’s linear filters come in
three families: high-frequency bandpass (top), low-frequency bandpass (middle), and
Gaussian (bottom). The bandpass filter responses are half-squared. These afferent
units are combined together with a sparse weighting scheme to generate a model
output.

second stage that took sparse linear combinations of these afferents.

Neurons in V2 receive their predominant feedforward input from V1 neurons, yet

while the basic properties of V1 receptive fields are well known, the characteristics of

V2 receptive fields remain enigmatic. V1 simple cells possess oriented, narrowband

linear filters that are localized in space [6]. V1 complex cells combine multiple simple

cells of different phases and positions to generate responses that are invariant to precise

feature location [16, 56]. This well defined architecture provides a convenient substrate

for modeling neurons downstream of V1; first, model a fixed bank of V1 filters, along
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V1 Neuron

V2 Neuron

Figure 4.5: Example cells. Each cell is defined as the overlap of three set of V1-like
afferents (separated for illustration purposes), where the large circles indicate the rough
location of the stimulus in space and oriented line segments and pixels represent simu-
lated afferents. The left column corresponds to the high-frequency bandpass afferents,
the middle column represents the low-frequency band-pass units, and the right column
represents the low-pass Gaussian units. Red colors are positively weighted and blue
colors are subtractive. The V1 neuron prefers oblique orientations with a small amount
of linear suppression. The V2 neuron has a different orientation preference for high-
and low-frequency image content.

with a standard output nonlinearity, and then determine which afferents are selectivity

pooled together to generate the observed firing rate of a neuron in V2.

For the model to perform well, the V1 filter bank should be complete or over-

complete to ensure no loss of stimulus information. Furthermore, each filter should

match the general properties of V1 neurons as closely as possible. The most prominent

features of real V1 cells are that they are well localized in both space and frequency

preference, and they are tuned to orientation. We use two scales of a well known

wavelet basis (the Complex Steerable Pyramid; [79]) to capture these basic properties,
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providing a set of even- and odd-phase filters that evenly tile space and frequency

(Figure 4.2; the outputs of these bandpass filters are half-squared to create realistic

V1 unit responses). This basis is augmented with a set of unimodal Gaussian filters to

also capture the LGN-like input into V1 cells. A diagram of the model is depicted in

Figure 4.4. The generality of this framework provides flexibility and ensures that the

model is capable of describing both V1 neurons and V2 neurons; degenerate models

that pool over only one or a few afferents can approximate simple or complex cells.

Because the V1 stage of the model is a fixed set of linear-nonlinear (LN) compu-

tations, and the V1 unit responses are fixed given a particular stimulus, fitting the full

hierarchical model simply amounts to fitting the linear pooling function from the V1

units to the output firing rate. We use the Elastic Net to solve this linear regression

([80]; see Methods). This algorithm finds sparse solutions with the minimal amount

of V1 unit afferents needed to explain the output firing rate by assuming that most

input units are not weighted at all. We cross-validate the afferent weights and the

hyper-parameters that control sparsity to avoid overfitting.

The model parameters fit to an example V1 cell and V2 cell are presented in

Figure 4.5. The parameters that correspond to each type of afferent unit are plotted

separately (left, high-frequency bandpass V1 units; middle, low-frequency bandpass V1

units; right, low-pass Gaussian units). Each large circle corresponds to the approximate

location of the stimulus in space, and each line segment or pixel represents an afferent

unit from the model V1 filter bank. The orientation of the line segment depicts the

orientation preference of the V1 unit and its color indicates how heavily it is weighted

by the model (red is positive, blue is negative). Thus, the V1 neuron (top) is selective

for stimuli that have a local orientation of 45 degrees. The V2 neuron (bottom) shows

selectivity for horizontal orientations at high spatial frequencies, but oblique orientations
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Figure 4.6: Model performance for each cell is defined as the correlation between the
measured firing rate and the model predicted rate (r). V1 cells (n = 43) are are fit
better than V2 cells (n = 101) on average (top). In this and following figures, arrows
indicate the mean of each distribution and the dotted lines indicate the median. In both
V1 and V2, cell sensitivity to phase, as measured by the F1/F0 ratio at the optimal
orientation, is not correlated with model fit (bottom).

at lower spatial frequencies.

We measure cross-validated model performance, or accuracy, as the correlation

coefficient between the observed firing rate and the model-predicted firing rate on
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Figure 4.7: Playback experiment procedure. For an example V2 cell, we estimate the
parameters of a reduced model that pools over phase-invariant afferent neurons (top
left). This cell appears to be tuned for curves, which we confirm by binning the cell’s
firing rate according to the local stimulus orientation at two different locations. The
two locations have tuning curves with different preferred orientations (top right; error
bars are SEM). We generate rank-order stimuli for the playback experiment by passing
white-noise into the model and computing the STC filters from the response.

holdout data. On average, this model obtains higher accuracy for V1 neurons than V2

neurons (< rV1 >= 0.27 is greater than < rV2 >= 0.22, p < 0.05 , t-test), but there

is no correlation with cell phase selectivity as measured by F1/F0 (r = -0.04, p > 0.05;

Figure 4.6). We note that these r-values are considerably lower than those reported

by other groups, particularly Willmore et al. who used the Berkeley Wavelet Transform
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(BWT) to decompose their images rather than a realistic model V1 population [29].

However, the accuracy values for these two models are not directly comparable because

of a difference in cross-validation methodology. Willmore et al. take the mean of ten

responses to a set of novel images to obtain a noise-reduced validation set. Our model

is validated on a noisy single-trial images, similar in kind to the training data (if as a

control, we use the BWT in place of our Gabor-like V1 units within our model, accuracy

decreases significantly by 30%; p << 0.05, t-test; see section 4.5).

4.4 Validating the sparse-afferent with playback and

tuning experiments

We validated our experimental paradigm with a playback experiment (see section

4.2.5). For a subset of V2 cells (n=19) we estimated the parameters of a simplified

model and and used the model to generate a set of rank-order images that should

uniquely drive or suppress each cell. We measured the tuning to these stimuli by

presenting the images back to the same cell at various phases and in various pairwise

combinations (see Methods). We demonstrate this procedure with an example cell in

Figure 4.7.

The example cell, fit with a phase-insensitive, one-scale model, appears to show a

preference for curves. Indeed, local tuning functions, triggered on the stimulus orienta-

tion at two independent locations, show a distinct difference in orientation preference

as a function of position (Figure 4.7, top right), where local stimulus orientation is

computed from the vector average of Steerable Pyramid filter activity. The playback

stimuli for this cell, which are five excitatory and five suppressive image sets, are created

by performing spike-triggered covariance [12] on simulated responses from the model
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Figure 4.8: We show the playback images (Figure 4.7) to the example cell and measure
the firing rate (left). The five suppressive images (blue) tend to suppress firing below
baseline, and the five excitatory images (red) generate increased firing in the same
magnitude order as predicted by the model (error bars are SEM). Next, we pair each
image with the most excitatory image (right). This has the effect of raising the baseline
firing rate and uncovering the strong suppressive effects of the first two stimuli. The
excitatory stimuli weakly facilitate the response.

to white noise stimuli. The eigenvalues of the STC matrix determine the rank order in

which these images should drive and suppress the cell; for this example cell there is a

strong correlation between the cells firing rate and the image rank order (rSpearman =

0.98, p << 0.05; Figure 4.8, left). In isolation it is difficult to assess how strongly the

suppressive images affect a cells response because cells cannot fire less than zero spikes

per second. If we look at the neuronal response to each image in combination with the

cells preferred image, we can get a more complete picture of cellular suppression. The

rank-order response to the playback images in the paired paradigm for the example cell

is well preserved (rSpearman = 0.97, p << 0.05; Figure 4.8, right).

Over all cells, the playback experiment confirms that sparse afferent models cap-

tured relevant spatial features of V2 cells. The average rank-order correlation between

the ten test images and the observed firing rate was 0.85 (Figure 4.9, top left). The

average rank-order correlation for each image paired with the most excitatory image
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Figure 4.9: Average playback performance for 19 V2 cells. [Top] Average Spearman
rank-order correlation for images presented alone (left) and images paired with the most
excitatory stimuli (right). [Bottom] Performance among the solitary stimuli is best for
the excitatory images (left) because they are not obscured by sub-threshold membrane
potentials. For the paired stimuli, suppressive images are the most correlated with
observed firing rate (right), and we see little correlated facilitation.

was 0.72 (Figure 4.9, top right). We can also examine these two measures for only

the excitatory images and only the suppressive images (Figure 4.9, bottom). Again,

there is a positive correlation between cell response and image rank order, but for the

solitary stimuli, the excitatory images provide the best correlation (rexcitatory = 0.69

versus rsuppressive = 0.11), and for the paired stimuli, the suppressive images provide

the best correlation (rexcitatory = 0.26 versus rsuppressive = 0.35).

For each cell we also measured direction tuning curves with drifting sine wave

gratings. The DC response (F0) and phase-tuned response (F1) are plotted for an
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Figure 4.10: We use the receptive field model for an example V2 cell (top) to predict
the direction tuning curve (bottom, solid lines). There is good agreement with the
tuning curve as measured with drifting gratings (dots). Black points and the gray
line depict average tuned response (F0), while the yellow points and line depict the
phase-tuned response (F1). Error bars are SEM.

example complex V2 cell in Figure 4.10 (F1/F0: 0.019). The model for this cell can

be used to generate a predicted orientation tuning curve and it shows good agreement

with actual tuning (the model does not include time-varying responses and thus it

cannot differentiate drift direction. We allow for independent scaling and offset of the

model-predicted tuning curve for illustration purposes). Across all cells, the model is

capable of reliably predicting preferred orientation tuning (Circular correlation = 0.53;

Figure 4.11). The models also predict the circular variance of the tuning curves (r =

0.71, p << 0.05), but they do less well at predicting their phase selectivity (r = 0.26,

p < 0.05; not shown). There is no bias in predicting orientation tuning (n.s., p = 0.88,
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Figure 4.11: Over all cells in V1 and V2, actual orientation preference as measured with
drifting gratings matches the direction preference predicted from the model. There is
no systematic bias in the error. The circular variance of the model also closely matches
the circular variance of the actual tuning curve, but tends to predict slightly flatter
tuning curves on average.

t-test; Figure 4.11, bottom), but the model tends to predict a flatter tuning curve than

observed in tuning to drifting gratings (p << 0.05, t-test).

4.5 Sensitivity to design aspects of the sparse-afferent

model

The sparse-afferent model captures important tuning properties of cells in V1 and

V2, but a number of design choices were made in the construction of the model. For
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Figure 4.12: [Left] A model with only the high-frequency bandpass V1 filters (abscissa)
underperforms the full model that includes low-frequency bandpass and low-pass filters
(ordinate). This is pronounced for only a subset of cells. [Right] The improvement
gained by using the 3-scale afferent bank is similar between V1 and V2.

example, the model uses a multi-scale bank of V1-like afferents that are constructed to

resemble the local, oriented filters found in V1, and their output is half-squared. How

sensitive is the model to these parameters?

We test model sensitivity to scale by constructing a reduced model that pools over

only a single scale of V1 afferents. Specifically, we remove the low frequency bandpass

filters and the low-pass Gaussian filters and refit the model. Because the single-scale

model is a subset of the multi-scale model, we predict that the multi-scale model will

perform better, but we are interested to see for how many cells this is true and if there is

a difference between V1 and V2. We find that while the multi-scale model does improve

the fit quality for most cells, substantial improvement is found for only a subset of cells

(Figure 4.12). We calculate an improvement index as (rmulti−rsingle)/(rmulti+rsingle)

and find no significant difference between in V1 and V2 (p = 0.11, Figure 4.12, right).

We also consider the model parameters chosen by Willmore et al. in their sparse

model of V2 receptive fields [29]. The Willmore model is conceptually similar to
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pressive, and 0 if there is an equal balance between the two. Models that use the
BWT filters have an increased amount of suppressive weights for both V1 and V2 cells.

ours because they both find a sparse weighting function over a series of LN afferents.

However, their model uses LN filters from the hard-edged BWT (Berkeley Wavelet

Transform [30]), and a hard half-rectifying nonlinearity. In contrast, our model uses

a half-squaring nonlinearity, and filters from the SPWT (Steerable Pyramid Wavelet

Transform [79]) that are well localized in space and frequency.

If we replace the afferent filters in our model with the BWT filters, we find that
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model performance significantly decreases (-30%, p << 0.05; Figure 4.13). Some of

the difference in performance is due to overfitting, because the models with the BWT

filters overfit more than our models (fitting performance on training data for the BWT

model increases the r-value by 42% over the cross-validated data, versus 32% for our

model). Willmore et al. also find that there is more suppression in V2 cells versus

V1 cells, which is quantified by constructing a channel balance index that compares

the sum of the excitatory weights and inhibitory weights (see Methods, section 4.2.6).

With our model on our data, we find much less suppression for both V1 and V2 cells

than Willmore et al. report. However, if we construct a model with BWT afferents

on our data instead, we find significantly more suppression than in our model with

Gabor-like SPWT filters (p < 0.05, t-test; Figure 4.13, right bottom). To us, this

suggests that the real afferents being pooled by V2 cells do not resemble the BWT

filters, and so the model with these afferents requires a greater number of suppressive

inputs to adequately ’shape’ the receptive field.

Finally, we investigate model sensitivity to the choice of V1 afferent output nonlin-

earity. We chose to implement a half-squaring nonlinearity so that cells that are truly

phase invariant could be modeled as a linear sum of phase-quadrature filters (from

the identity cos(x)2 + sin(x)2 = 1; see [16]). If we substitute half-wave rectification

for an example cell we find that though the basic tuning appears to remain constant,

the hard rectification model exhibits much stronger suppression than the half-squaring

model (Figure 4.14). Over all cells, the percentage of non-zero weights for each model

averaged about 12% and is not significantly different between the models (p = 0.64;

t-test), but the half-wave rectified afferent stage yields significantly more suppressive

weights on average (Figure 4.15).
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V1-stage with halfwave rectification

V1-stage with half-squaring

Figure 4.14: An example cell plotted for two models with different afferent nonlineari-
ties. The model with half-wave rectification has many more suppressive weights than
the half-squaring model, though the overall tuning is similar.

4.6 Properties of V1 and V2 receptive fields

Receptive fields in V1 and V2 range in complexity, from those that possess homoge-

neous tuning over a well localized region of space, to those that demonstrate selectivity

for a conjunction of simple features. Most cells in V1 prefer images with homogeneous

tuning properties over space (Figure 4.5). These are reminiscent of the classic simple

cells and complex cells that were originally described by Hubel & Wiesel. Like in V1,

many V2 cells show selectivity for a single orientation, but others show a preference

for curves (Figure 4.16, top), multi-scale patterns (Figure 4.16, bottom), T-junctions

(Figure 4.17, top), and other types of contour or texture-like patterns (Figure 4.17,
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Figure 4.15: Models with half-wave rectification have roughly comparable performance
to models with half-squaring nonlinearities. However, half-wave rectified models have
significantly more suppression than half-squaring models.

bottom). We summarize model receptive fields with a series of shape statistics (see

Methods, section 4.2.6) and examine the difference between neurons in V1 and V2.

V2 neurons do not pool over model afferents in the same way as V1 neurons. A

simple observation is that V2 neurons sum over more afferents than V1. The model

contains 6432 V1-like afferents, and V2 cells require a significantly greater percentage

of these units to describe their receptive fields (p << 0.05; t-test; Figure 4.18, left).

On average, V1 cells pool over 7.7% of the afferents and V2 cells pool over 13.5%.
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Figure 4.16: Example V2 receptive fields (I). Plotting conventions follow Figure 4.5
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0.

Figure 4.17: Example V2 receptive fields (II). Plotting conventions follow Figure 4.5
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Figure 4.18: V2 cells pool over significantly more afferents, as measured by the per-
centage of V1-like units with non-zero weights in receptive field models (left). The
spatial profile of V2 receptive fields are also less likely to be well described by a simple
2 dimensional Gaussian profile (right).

The two areas also differ in the spatial profile of their receptive fields. For each cell we

sum the afferent weights at each spatial position to create an envelope of the receptive

field in space. We then fit a 2 dimensional Gaussian to this distribution. V2 cells are

significantly less well described by a Gaussian envelope (p < 0.05, t-test; Figure 4.18,

right).

V2 neurons also tend to be less tuned to oriented features than V1 cells, though

the differences are not significant. We can measure orientation tuning for the model

parameters in an analogous procedure to measuring orientation tuning to drifting grat-

ings. Circular variance captures the width of the tuning curve, with higher values

indicating broader tuning and less selectivity. The (weighted) average circular variance

over all locations in a receptive field describes how strongly each cell is tuned to local

orientation. V1 cells tend to be slightly more tuned that V2 cells with a mean local

circular variance of 0.23 versus 0.26 (p = n.s., t-test; Figure 4.19, left). Computing

circular variance simultaneously over the entire receptive field returns a global mea-

sure of orientation homogeneity over space. V2 cells are also more heterogenous over
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Figure 4.19: Orientation tuning can be measured with circular variance, where flat
tuning curves have high variance. As measured from the model, V2 cells tend to have
broader average orientation selectivity at each local position in their receptive field
(left). Globally across all position in the receptive field, V2 cells also tend to be less
homogeneous in their orientation selectivity (right). Neither of these differences are
significant.

space, but again the difference in not significant (p = n.s., t-test; Figure 4.19, right).

Local and global tuning measures are heavily correlated with each other (r = 0.84,

p << 0.05; t-test), and are both correlated with the circular variance measured from

drifting-grating tuning curves (rlocal = 0.52, p << 0.05; rglobal = 0.55, p << 0.05;

t-test).

Sitting in the middle of the ventral stream, V2 is often considered as a potential hub

for early form processing. Human observers are sensitive to image regions with second-

order statistics such as high curvature [22, 24] and texture boundaries [27], and some

neurons in V2 appear to be capable of signaling these forms [23, 25, 26]. We measure

a spatial index for parallelism and curvature for each cell by determining how well their

receptive fields conform to a set of idealized curves (see section 4.2.6). V1 cells tend

to be better fit by both parallel features and curved features (Figure 4.20, top), though

the difference is not significant. While this may be surprising, remember that V1 cells
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Figure 4.20: Spatial linearity and curvature indices are computed by measuring the best
set of curves or lines that conform to the receptive field. V1 cells are better fit by both
linear features and curves (top), but V2 cells show a preference for curves of smaller
radii (bottom). The ’normalized radius’ measure is defined in units of the diameter of
the stimulus, and cells after the break have a curvature radius of greater than 3 times
the stimulus diameter. None of the differences between V1 and V2 are significant.

tend to be more uniform over space in general, and note that curved features with

very large radii can approximate linear features to a first-order comparison. Comparing

curvature radius reveals that there is a trend for V2 cells to be selective for features with

tighter curvature (Figure 4.20, bottom), though the difference is also not significant.
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4.7 Discriminating V1 and V2 receptive fields

There are small differences between receptive fields in V1 and V2, but it is difficult

to distinguish the two areas from individual statistics alone. This may be because there

are many different ways that a V2 cell could differ from the canonical model of a V1

cells, and each statistic can only capture one aspect of these differences. In order to

determine if V1 and V2 cells are genuinely different in quality, we must either consider

new sets of discriminating stimuli, or we must look for combinations of statistics that

can differentiate the two areas. (For much of this section we use only the cells that

were fit well by the model, excluding the 13% of cells with r < 0.1 to yield nV 1 = 36

and nV 2 = 89).

A recent study by Freeman et al. show that V2 cells have a clear preference for

’naturalistic’ images over spectrum-matched noise images, a selectivity that is not

shared by V1 neurons [73]. Naturalistic images are stimuli that are generate from a

seed of Gaussian white- noise, but the stimuli are adjusted until they share the same

high-order texture statistics as a referential natural texture image [85]. The texture

parameters are marginal and joint statistics of Gabor-like wavelet responses. Noise

images start with the same natural texture image but only seek to match the marginal

statistics of the wavelet response, which is equivalent to matching the texture image

power spectrum. The logic of the Freeman study is similar to our own; if V1 filters

are Gabor-like, they should not be sensitive to joint statistics of several filters, unlike

V2, which may combines a select set of afferents from V1 to generate novel types of

selectivity or invariance.

We tested whether our model of V2 cells were able to distinguish between natu-

ralistic and noise images as the physiological evidence suggests that they should. We
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Figure 4.21: [Bottom] We present the model V1 and V2 cells with the same naturalistic
and noise images (i.e. texture-parameter matched and spectrum-matched) that were
presented to real cells in an experiment by Freeman et al. [73]. Top and bottom image
pairs were generated from the same reference texture. [Top] Both V1 and V2 cells
showed little difference in response to the two classes of stimuli.

presented the images from Freeman et al. to the model cells in V1 and V2 and mea-

sured the difference in the firing rate output (Figure 4.21). In general, both V1 and

V2 cells respond with similar firing rates to each class of images. However, though

the difference is small, there is a slight trend for V2 cells to show a larger response

to naturalistic images than noise images, a trend that is statistically significant if we

exclude the cells that were not fit well by our model (p < 0.05; t-test). The lack of

a strong difference with our model could be due to a number of factors. First, our

model linearly combines V1-like afferents. It’s possible that more complicated models

with nonlinear interactions are required to capture the higher-order texture statistics.
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Second, the stimuli that we used in our experiment were designed to elucidate recep-

tive field shape and are narrow-band in spatial frequency. Freeman et al. find that

cross-scale interactions often appear to drive V2 cell differentiation, which would be

difficult for us to detect.

A more natural way to distinguish V1 and V2 cells within the context of our exper-

iment is to look for a combination of receptive field statistics that discriminate the two

areas. We take both an unsupervised and a supervised approach to looking for these

combinations in a hand-selected set of statistics. The statistics we chose are the 7

from the histograms plotted in section 4.6, along with the envelope aspect ratio, and a

curvature tuning index which measures the difference in tuning to the preferred curve

and a curve in the opposite direction.

In the unsupervised method we use Principle Component Analysis (PCA) to reduce

the dimensionality of the statistics from 9 dimensions to 2 without knowledge of cell

type. We first normalize each statistic to have zero mean and unit variance over all

cells and then compute the eigenvectors of the covariance of this matrix. The first two

principle components, plotted in Figure 4.22, describe the combinations of statistics

that vary the most over all cells, and capture over 70% of the overall variance. Plotting

the data projected onto these components for both V1 and V2 shows overlapping but

distinct distributions. We also display a discriminant, which is the vector of PCA

eigenvalues, [λ1 λ2]. V1 and V2 projected onto this discriminant are significantly

different from one another (p < 0.05, t-test), suggesting an intrinsic difference between

V1 and V2 receptive fields.

To get an idea of how different V1 and V2 are, we also build a discriminant that

is designed to maximally separate the distributions of V1 and V2 statistics. Linear

Discriminant Analysis (LDA), unlike PCA, uses the label of each cell to find the statistics
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Figure 4.22: The principle components (left) describe the statistics combinations that
capture the most variance across cells. When the data is projected onto the two
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The black line indicates the discriminant, which is simply a vector of the eigenvalues of
the PCA decomposition. When the data is again projected onto this vector and split
between V1 and V2 (bottom right) there is a clear difference between the two areas.

matrix projection that optimally discriminates V2 from V1 (see section 4.2.6). The

linear discriminant, plotted in Figure 4.23, is not as easy to interpret as the principle

components because the weights to each statistic are affected by the in-class covariance

structure. For example, the curvature tuning parameter is higher for V2 on average

but shows up as a negative weight in the linear discriminant. This is because curvature

tuning is strongly correlated with some of the other statistics, like global orientation
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each individual receptive field statistic (left). When V1 and V2 are projected onto this
discriminant (bottom right) the two distributions are significantly different. An optimal
discriminator can split cells from the two areas with 77% accuracy. We permute the
cell labels 10,000 times and perform a Linear Discriminant Analysis (LDA) to obtain a
null distribution for classification accuracy (top right).

homogeneity (r = 0.51), and negatively correlated with others such as the parallelism

index (r = -0.65). However, as an optimal discriminator, we can use the discrimination

performance to determine how different V1 is from V2.

Projecting the statistics onto the linear discriminant shows that V1 is significantly

different than V2 (p << 0.05, t-test; Figure 4.23, bottom right). An optimal decision

boundary can discriminate the two cell types with 77% accuracy. LDA can be prone to
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overfitting in high dimensions, and so we test the hypothesis that this discrimination

can occur by chance. The null hypothesis of discrimination accuracy is constructed

by permuting the data labels 10,000 times and constructing a classifier for each new

data set. The distribution of accuracy values is shown in Figure 4.23 (top right). The

actual performance for discriminating V1 and V2 falls well outside this null distribution,

indicating statistical significance by any reasonable criterion.

4.8 Discussion

We describe a hierarchical model for V2 neurons that combines specific sets of V1

afferents to generate form-selective receptive fields. The model is validated with a

playback experiment, and with orientation tuning data, to ensure that it is capturing

relevant tuning information. Many cells in V2 are difficult to distinguish from large

V1 simple or complex cells, but some V2 cells show spatially heterogenous tuning that

resembles a preference for curves, angles, or complex forms. Though it is difficult to

discriminate V1 and V2 cells based on solitary receptive fields statistics, the aggregate

of many statistics can reliably determine cell type with up to 77% accuracy.

In section 4.5 we show that model performance is sensitive to the alteration of some

aspects of it’s design. For example, replacing the linear afferent filters with blocky BWT

filters, or changing the nonlinearity from half-squaring to half-wave linear, can have a

profound affect on model performance and interpretation. The goal of each model

from the vantage of its objective function is to accurately reproduce the observed

firing rate while using as few afferents as possible. This can be best accomplished if

the simulated afferents closely match the properties of the real afferents. Otherwise, it

is likely that a less parsimonious solution with many more afferents, and with diverse
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tuning properties and a bimodal weight distribution, will be required to successively

approximate the receptive field. This observation, though subtle, is a key difference

between our study and previous modeling experiments in V2 (e.g. [30]).

Building receptive models is one way of learning about the properties of sensory area

neurons, but it is not the only method. Tuning experiments, that look for selectivity (or

invariance) over a select set of sensory attributes, are a complementary approach. For

example, previous V2 experiments have found tuning for stereoscopic edges [78], illusory

contours [26], and texture parameters [73]. Tuning experiments can be relatively easy

to perform, but they require a strong hypothesis about cellular computation at the

outset; an experiment seeking to elucidate color tuning properties would not also vary

orientation or disparity, and combinations of properties are rarely presented or explored.

This means that a great deal of statistical power can be leveraged onto the property

of interest because no other properties are varied. The disadvantage is that, because

these types of experiments are mostly agnostic to computational mechanism, it can

be difficult to generalize results to the full population of recorded cells. Typical tuning

experiments generally find interesting tuning properties in only a subset of cells. What

do the rest of the cells do, and how do they do it?

Receptive field model experiments try to work from the opposite direction, building

mechanistic descriptions of information processing that are largely blind to the purpose

of the computation. Though fitting these models can be difficult, progress can occur

incrementally. Model complexity can be increased until reaching a desired performance

criterion, over generations of models and generations of scientists. However, model

failure can be difficult to interpret because it is often not known if it should be attributed

to the model structure, or to the model estimation procedure. The lack of a functional

hypothesis can also be limiting. For example, in this study, concise summaries can be
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elusive because there is a variety of ways that V2 neurons can differ from V1 neurons.

Many receptive field models for V2 neurons in our experiment show selectivity

for shapes that are very different than the Gabor-like receptive fields of V1 neurons.

Curvature, angles, and other contours are are visually striking examples, but other,

less structured forms are also common. Without a clear hypothesis of what these

neurons are computing, interpreting these receptive fields can be difficult. Karklin

& Lewicki analyzed the covariance structure of natural images and predicted that

some higher-order visual neurons should be selective to complex image features [86].

Many of the types of units that they predicted possessed texture-like elements, and

qualitatively resemble some of our V2 receptive fields. We find that our models are

not able to differentiate between naturalistic textures and noise, which seems like a

necessary condition in order to claim true selectivity, but perhaps the addition of simple

nonlinearities to the model may be able to add this functionality.

Nonlinear interactions between receptive field elements may be an important aspect

of V2 functionality. In a computational analogy to V1, the V2 model presented in this

chapter characterizes ’simple’ V2 cells because afferents are added together linearly. In

V1, many of the interesting computations are performed in a stage subsequent to the

simple cells. Complex cells pool together many such cells which generates the novel

property of position invariance. Similarly, there may be ’complex’ V2 cells that pool

together the outputs of the simpler V2 units, and these cells could be the substrate for

robust contour and texture discrimination.

Part I of this thesis describes how an LN-LN subunit operation can yield position

invariance in complex cells. Similar models, working from a bank of simulated V1

afferents rather than stimulus pixels, may be useful to describe the properties of some

V2 neurons. For example, cells that combine curve-selective subunits with broad spatial
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pooling profile could implement position-invariant curve detection. Subunit models can

also be designed to be invariant to different types of transformations. Though position

invariance is the clear choice for V1 cells that operate on pixels, it is possible to imagine

that some V2 neurons are ’convolutional’ over scale or orientation. For example, such

a neuron could be invariant to the precise orientation of a stimulus, but selective for

the particular combination of elements that generate acute angles.
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General Discussion

This thesis presented two new functional models of single neurons in V1 and V2.

The common thread that connects these models is they are hierarchical, and both are

designed to match the general architecture of their respective area. The earliest cortical

neurons receive inputs that are closely tied to the stimulus and are relatively easy to

fit. For example, V1 simple cells receive afferents from a population of LGN neurons,

which is largely linear under white-noise stimulus conditions. However, neurons further

downstream receive afferents that are more nonlinear, and this can make receptive field

fitting difficult. By explicitly incorporating the hierarchical structure of the early visual

system, our models are more accurate and efficient than the standard models for these

types of neurons. Moreover, the parameters of the models are easy to interpret because

they represent the qualities of hypothetical afferents.

The subunit model for V1 receptive fields is a quantitative instantiation of the

classic qualitative model. Each neuron in V1 receives a series of subunit inputs. For

complex cells, there are many subunits that each represent a simple cell afferent, but

for a simple cell there is only a single subunit (in this case, the model devolves into

a classic LN computation). Neurons that are neither simple nor complex fit neatly

within this paradigm because their receptive fields can be modeled as the sum of an

intermediate number of simple-cell subunits. We find that for fixed amounts of data
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the subunit model is more accurate and efficient than alternative models, such as the

Rust-STC (Spike Triggered Covariance) model. In the limit of infinite amounts of data,

it is likely that both models would be able to fit the data with similar accuracy, but

given the constraints on physiological experimentation, the subunit model better able

to make use of data collected during realistic studies.

The subunit model owes its efficiency to its parameterization. We expect that all

the afferents to a single V1 cell will have similar tuning properties. This expectation is

enforced by computing the field of afferents with a convolution, which is very efficient

to calculate. This assumed structure also makes the model easy to interpret. A salient

feature of receptive fields in visual cortex is that they are well localized in both space

and time. The convolutional structure of the afferent pool ensures this feature, unlike

orthogonal subspace methods. Though we do not claim that the subunits from the

model are the true subunits of the cell, the model afferents should be a close match

to the tuning properties of the actual subunits.

The sparse-afferent V2 model is also accurate and efficient. By combining together

a set of plausible V1 afferents we can explain receptive field shape selectivity, and we

can also capture both the phase-selective and phase-invariant aspects of the neuronal

responses. It is important that model afferents match the properties of the true affer-

ents as closely as possible. As with the V1 subunit model, this design principle allows

the model to be accurate and efficient because only a few afferents need to be pooled

together. Perhaps more importantly, it also allows the results to be interpretable. Each

afferent is well localized and can be visualized by its spatial position and tuning prop-

erties (for orientation, spatial frequency, and phase). Thus, we can create a map of

the receptive preference over space by simply plotting the relevant afferents. If, by

counter-example, the model afferents were not localized and came from a set of global
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basis functions, it would be exceedingly difficult to summarize the estimated receptive

field properties and understand how they could generate tuning to shape.

We judge our models on accuracy, efficiency, and interpretability, but these three

measures are not independent. Rather, they interact in interesting ways. For a given

model, accuracy and efficiency can trade off during estimation; models that are more

accurate are less likely to be fit efficiently, and efficient models are less likely to be ac-

curate. However, if we are allowed to choose between models with different structures,

it may be possible to find a model class that is both more accurate and more efficient

than its rivals. We generally assume that the data we collect comes from a real, physi-

cal generating process. For neurons, this deterministic process includes the biophysical

elements and synaptic connections that turn stimulus inputs into firing rate outputs.

When we model of this process, we are performing a regression analysis by trying to

explain the dependent data (firing rates) through its connection to the independent

data (stimuli). The regression will be easier and more accurate when the model closely

matches the generating process of the true physical system. This property also allows

for simple models, which decreases the probability that they will overfit. The subunit

and sparse-afferent model presented in this thesis are designed to match the expected

neural architecture of each area, and this allows them to be accurate and efficient in

their descriptions.

124



Bibliography

[1] D. Hubel and T. Wiesel. Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–

154, 1962.

[2] J. Robson. Spatial and temporal contrast-sensitivity functions of the visual system.

JOSA, 56(8):1141–1142, 1966.

[3] F. Campbell, B. Cleland, G. Cooper, and C. Enroth-Cugell. The angular selectivity

of visual cortical cells to moving gratings. The Journal of Physiology, 198(1):237–

250, 1968.

[4] F. W. Campbell, G. F. Cooper, and C. Enroth-Cugell. The spatial selectivity of

the visual cells of the cat. The Journal of Physiology, 203(1):223, July 1969.

[5] J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Spatial summation in the

receptive fields of simple cells in the cat’s striate cortex. The Journal of Physiology,

283(1):53–77, 1978.

[6] J. A. Movshon, I. D. Thompson, and D. J. Tolhurst. Receptive field organization of

complex cells in the cat’s striate cortex. The Journal of Physiology, 283(1):79–99,

1978.

125



[7] R. A. Linsenmeier, L. J. Frishman, H. G. Jakiela, and C. Enroth-Cugell. Receptive

field properties of X and Y cells in the cat retina derived from contrast sensitivity

measurements. Vision Research, 22(9):1173–1183, 1982.

[8] Y. T. So and R. Shapley. Spatial tuning of cells in and around lateral geniculate

nucleus of the cat: X and Y relay cells and perigeniculate interneurons. Journal

of neurophysiology, 45(1):107–120, 1981.

[9] R. Shapley and P. Lennie. Spatial frequency analysis in the visual system. Annual

review of neuroscience, 8(1):547–581, 1985.

[10] J. G. Daugman. Two-dimensional spectral analysis of cortical receptive field pro-

files. Vision Research, 20(10):847–856, 1980.

[11] J.-M. Alonso, W. M. Usrey, and R. C. Reid. Rules of connectivity between genicu-

late cells and simple cells in cat primary visual cortex. The Journal of neuroscience,

21(11):4002–4015, 2001.

[12] O. Schwartz, J. W. Pillow, N. Rust, and E. Simoncelli. Spike-triggered neural

characterization. Journal of Vision, 6(4):13–13, Feb. 2006.

[13] E. De Boer and P. Kuyper. Triggered Correlation. IEEE Transactions on Biomed-

ical Engineering, BME-15(3):169–179, July 1968.

[14] J. P. Jones and L. A. Palmer. The two-dimensional spatial structure of simple

receptive fields in cat striate cortex. Journal of neurophysiology, 58(6):1187–1211,

1987.

[15] L. Paninski. Maximum likelihood estimation of cascade point-process neural en-

coding models. Network: Computation in Neural Systems, 15(4):243–262, 2004.

126



[16] E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the perception

of motion. Journal of the Optical Society of America A, 2(2):284, 1985.

[17] R. C. Emerson, J. R. Bergen, and E. H. Adelson. Directionally selective complex

cells and the computation of motion energy in cat visual cortex. Vision Research,

32(2):203–218, Feb. 1992.

[18] N. C. Rust, O. Schwartz, J. A. Movshon, and E. P. Simoncelli. Spatiotemporal

Elements of Macaque V1 Receptive Fields. Neuron, 46(6):945–956, June 2005.

[19] T. Sharpee, N. Rust, and W. Bialek. Analyzing neural responses to natural signals:

maximally informative dimensions. Neural computation, 16(2):223–250, 2004.

[20] J. W. Pillow and E. Simoncelli. Dimensionality reduction in neural models:

An information-theoretic generalization of spike-triggered average and covariance

analysis. Journal of Vision, 6(4):9–9, 2006.

[21] T. Lochmann, T. Blanche, and D. Butts. Construction of direction selectivity

in V1: from simple to complex cells. Computational and Systems Neuroscience

(CoSyNe), 2011.

[22] F. Attneave. Some informational aspects of visual perception. Psychological

Review, 61(3), 1954.

[23] A. Anzai, X. Peng, and D. C. Van Essen. Neurons in monkey visual area V2 encode

combinations of orientations. Nature neuroscience, 10(10):1313–1321, 2007.

[24] I. Biederman. Human image understanding: Recent research and a theory. Com-

puter vision, graphics, and image processing, 32(1):29–73, 1985.

127



[25] J. Hegde and D. C. Van Essen. Strategies of shape representation in macaque

visual area V2. Visual Neuroscience, 20(03):313–328, 2003.

[26] R. von der Heydt and E. Peterhans. Mechanisms of contour perception in mon-

key visual cortex. I. Lines of pattern discontinuity. The Journal of neuroscience,

9(5):1731–1748, 1989.

[27] M. S. Landy and N. Graham. Visual perception of texture. The visual neuro-

sciences, 2:1106–1118, 2004.

[28] Y. El-Shamayleh and J. A. Movshon. Neuronal responses to texture-defined form

in macaque visual area V2. The Journal of neuroscience, 31(23):8543–8555, 2011.

[29] B. D. Willmore, R. J. Prenger, and J. L. Gallant. Neural representation of natural

images in visual area V2. The Journal of neuroscience, 30(6):2102–2114, 2010.

[30] B. Willmore, R. J. Prenger, M. C. K. Wu, and J. L. Gallant. The berkeley

wavelet transform: a biologically inspired orthogonal wavelet transform. Neural

computation, 20(6):1537–1564, 2008.

[31] C. Bredfeldt, J. Read, and B. Cumming. A quantitative explanation of responses to

disparity-defined edges in macaque V2. Journal of neurophysiology, 101(2):701–

713, 2009.

[32] C. E. Bredfeldt and B. G. Cumming. A simple account of cyclopean edge responses

in macaque V2. The Journal of neuroscience, 26(29):7581–7596, 2006.

[33] H. B. Barlow and W. R. Levick. The mechanism of directionally selective units in

rabbit’s retina. The Journal of Physiology, 178(3):477, 1965.

128



[34] S. Hochstein and R. Shapley. Linear and nonlinear spatial subunits in Y cat retinal

ganglion cells. The Journal of Physiology, 262(2):265–284, 1976.

[35] J. Demb, K. Zaghloul, L. Haarsma, and P. Sterling. Bipolar cells contribute to

nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian

retina. The Journal of neuroscience, 21(19):7447–7454, 2001.

[36] J. Crook, B. Peterson, O. Packer, F. Robinson, J. Troy, and D. Dacey. Y-cell

receptive field and collicular projection of parasol ganglion cells in macaque monkey

retina. The Journal of neuroscience, 28(44):11277–11291, 2008.

[37] P. Joris, C. Schreiner, and A. Rees. Neural processing of amplitude-modulated

sounds. Physiol. Rev., 84:541–577, 2004.

[38] G. C. DeAngelis, I. Ohzawa, and R. Freeman. Spatiotemporal organization of

simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and

postnatal development. Journal of neurophysiology, 69(4):1091–1117, 1993.

[39] X. Chen, F. Han, M. m. Poo, and Y. Dan. Excitatory and suppressive receptive

field subunits in awake monkey primary visual cortex (V1). Proceedings of the

National Academy of Sciences, 104(48):19120–19125, 2007.

[40] M. Ito and H. Komatsu. Representation of angles embedded within contour stimuli

in area V2 of macaque monkeys. The Journal of neuroscience, 24(13):3313–3324,

2004.

[41] K. Fukushima. Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position. Biological cybernetics,

36(4):193–202, 1980.

129



[42] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.

Nature neuroscience, 2:1019–1025, 1999.

[43] E. De Boer. Reverse correlation I. A heuristic introduction to the technique of

triggered correlation with application to the analysis of compound systems. Proc.

Kon. Nederl. Akad. Wet, 1968.

[44] E. Chichilnisky. A simple white noise analysis of neuronal light responses. Network:

Computation in Neural Systems, 12(2):199–213, 2001.

[45] R. D. R. V. Steveninck and W. Bialek. Real-Time Performance of a Movement-

Sensitive Neuron in the Blowfly Visual System: Coding and Information Transfer

in Short Spike Sequences. Proceedings of the Royal Society B: Biological Sciences,

234(1277):379–414, Sept. 1988.

[46] N. Brenner, W. Bialek, and R. de Ruyter van Steveninck. Adaptive Rescaling

Maximizes Information Transmission. Neuron, 26(3):695–702, June 2000.

[47] O. Schwartz, E. Chichilnisky, and E. Simoncelli. Characterizing neural gain con-

trol using spike-triggered covariance. Advances in neural information processing

systems, 1:269–276, 2002.

[48] J. Touryan, B. Lau, and Y. Dan. Isolation of relevant visual features from random

stimuli for cortical complex cells. The Journal of neuroscience, 22(24):10811–

10818, 2002.

[49] M. Ahrens, L. Paninski, and M. Sahani. Inferring input nonlinearities in neural

encoding models. Network: Computation in Neural Systems, 19(1):35–67, 2008.

130



[50] C. Ekanadham, D. Tranchina, and E. Simoncelli. Recovery of sparse translation-

invariant signals with continuous basis pursuit. IEEE Trans Signal Processing,

59(10):4735–4744, 2011.

[51] R. Goris, E. P. Simoncelli, and J. A. Movshon. Using a doubly-stochastic model

to analyze neuronal activity in the visual cortex. In Computational and Systems

Neuroscience (CoSyNe), Salt Lake City, UT, Feb. 2012.

[52] J. Pillow and J. Scott. Fully Bayesian inference for neural models with negative-

binomial spiking. Advances in neural information processing systems, pages 1907–

1915, 2012.

[53] D. J. Heeger. Half-squaring in responses of cat striate cells. Visual Neuroscience,

9(05):427, 2009.

[54] F. Mechler and D. L. Ringach. On the classification of simple and complex cells.

Vision Research, 42(8):1017–1033, 2002.

[55] J. D. Victor and R. M. Shapley. The nonlinear pathway of Y ganglion cells in the

cat retina. The Journal of General Physiology, 74(6):671–689, Dec. 1979.

[56] B. Vintch, A. Zaharia, J. Movshon, and E. P. Simoncelli. Efficient and direct

estimation of a neural subunit model for sensory coding. Advances in neural

information processing systems, 2012.

[57] M. Park and J. W. Pillow. Receptive field inference with localized priors. PLoS

computational biology, 7(10):e1002219, 2011.

[58] M. P. Sceniak, M. J. Hawken, and R. Shapley. Visual spatial characterization of

macaque V1 neurons. Journal of neurophysiology, 85(5):1873–1887, 2001.

131



[59] G. A. Walker, I. Ohzawa, and R. D. Freeman. Suppression outside the classical

cortical receptive field. Visual Neuroscience, 17(3):369–379, 2000.

[60] D. I. Perrett and M. W. Oram. Neurophysiology of shape processing. Image and

Vision Computing, 11(6):317–333, July 1993.

[61] T. Poggio and S. Edelman. A network that learns to recognize 3D objects. Nature,

343(6255):263–266, 1990.

[62] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361, 1995.

[63] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What is the best

multi-stage architecture for object recognition? In IEEE International Conference

on Computer Vision (ICCV), pages 2146–2153. IEEE, 2009.

[64] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010,

pages 2528–2535, 2010.

[65] G. Wallis and E. T. Rolls. Invariant face and object recognition in the visual

system. Progress in neurobiology, 51(2):167–194, 1997.

[66] J. Freeman and E. P. Simoncelli. Metamers of the ventral stream. Nature neuro-

science, 14(9):1195–1201, Aug. 2011.

[67] P. Z. Marmarelis, V. Z. Marmarelis, P. Z. Marmarelis, and V. Z. Marmarelis.

Analysis of Physiological Systems. Springer US, Boston, MA, 1978.

[68] B. Lau. Computational subunits of visual cortical neurons revealed by artificial

neural networks. Proceedings of the National Academy of Sciences, June 2002.

132



[69] S. Nishimoto, T. Ishida, and I. Ohzawa. Receptive field properties of neurons in

the early visual cortex revealed by local spectral reverse correlation. The Journal

of neuroscience, 26(12):3269–3280, 2006.

[70] K. S. Sasaki and I. Ohzawa. Internal spatial organization of receptive fields of

complex cells in the early visual cortex. Journal of neurophysiology, 98(3):1194–

1212, 2007.

[71] M. Eickenberg, R. J. Rowekamp, M. Kouh, and T. O. Sharpee. Characterizing

Responses of Translation-Invariant Neurons to Natural Stimuli: Maximally Infor-

mative Invariant Dimensions. Neural computation, 24(9):2384–2421, Sept. 2012.

[72] J. Freeman, G. Field, P. Li, M. Greschner, L. Jepson, N. Rabinowitz, E. Pnev-

matikakis, D. Gunning, K. Mathieson, A. Litke, E. J. Chichilnisky, and E. Simon-

celli. Spatial structure and organization of nonlinear subunits in primate retina.

In Computational and Systems Neuroscience (CoSyNe), Salt Lake City, UT, Feb.

2013.

[73] J. Freeman, C. Ziemba, J. A. Movshon, and E. P. Simoncelli. A functional and

perceptual signature of the second visual area in primates. Nature Neuroscience,

accepted for publication, 2013.

[74] H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net models for visual area

V2. Advances in neural information processing systems, 2008.

[75] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object

recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 29(3):411–426, 2007.

133



[76] R. Baumann, R. Zwan, and E. Peterhans. Figure-Ground Segregation at Contours:

a Neural Mechanism in the Visual Cortex of the Alert Monkey. European Journal

of Neuroscience, 9(6):1290–1303, 1997.

[77] E. Peterhans and R. von der Heydt. Mechanisms of contour perception in monkey

visual cortex. II. Contours bridging gaps. The Journal of neuroscience, 9(5):1749–

1763, 1989.

[78] F. T. Qiu and R. von der Heydt. Figure and Ground in the Visual Cortex: V2

Combines Stereoscopic Cues with Gestalt Rules. Neuron, 47(1):155–166, 2005.

[79] E. Simoncelli and W. Freeman. The steerable pyramid: A flexible architecture

for multi-scale derivative computation. Image Processing, 1995. Proceedings.,

International Conference on, 3:444–447 vol. 3, 1995.

[80] H. Zou and T. Hastie. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(2):301–320, 2005.

[81] A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation for

Nonorthogonal Problems. Technometrics, 12(1):55–67, Feb. 1970.

[82] R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the

Royal Statistical Society. Series B (Methodological), 58(1):267–288, Jan. 1996.

[83] T. J. Hastie, R. J. Tibshirani, and J. J. H. Friedman. The elements of statistical

learning. Springer, 2009.

[84] D. L. Ringach, M. J. Hawken, and R. Shapley. Dynamics of orientation tuning in

macaque primary visual cortex. Nature, 387(6630):281–284, 1997.

134



[85] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statis-

tics of complex wavelet coefficients. International Journal of Computer Vision,

40(1):49–70, 2000.

[86] Y. Karklin and M. S. Lewicki. Emergence of complex cell properties by learning

to generalize in natural scenes. Nature, 457(7225):83–86, Nov. 2008.

135


