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Abstract

A deep convolutional neural network has been developed to denoise atomic-resolution transmission electron microscope image datasets of
nanoparticles acquired using direct electron counting detectors, for applications where the image signal is severely limited by shot noise. The
network was applied to a model system of CeO2-supported Pt nanoparticles. We leverage multislice image simulations to generate a large
and flexible dataset for training the network. The proposed network outperforms state-of-the-art denoising methods on both simulated and
experimental test data. Factors contributing to the performance are identified, including (a) the geometry of the images used during training
and (b) the size of the network’s receptive field. Through a gradient-based analysis, we investigate the mechanisms learned by the network to
denoise experimental images. This shows that the network exploits both extended and local information in the noisy measurements, for
example, by adapting its filtering approach when it encounters atomic-level defects at the nanoparticle surface. Extensive analysis has
been done to characterize the network’s ability to correctly predict the exact atomic structure at the nanoparticle surface. Finally, we develop
an approach based on the log-likelihood ratio test that provides a quantitative measure of the agreement between the noisy observation and
the atomic-level structure in the network-denoised image.
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Introduction

Even with a perfect electron detector, Poisson noise degrades the
information content of a transmission electron microscope
(TEM) image. The Poisson statistics of the image signal can be
improved by counting for longer times or by increasing the elec-
tron beam current, although this is not always possible. In beam-
sensitive systems such as organic materials or liquids, extended
electron irradiation induces undesirable changes in the structure
and composition of the sample. Additionally, for the investigation
of dynamic processes with time-resolved in situ microscopy, the
short exposure time per frame may result in a very low signal-
to-noise ratio (SNR). One approach to address this SNR challenge
is to develop denoising techniques, which effectively estimate and
partially restore some of the information missing from the exper-
imental image. The details and effectiveness of such approaches to
atomic-resolution electron microscopy images have not been well

explored. Here, we develop and evaluate deep learning methods
for denoising the images of nanoparticle surfaces recorded from
an aberration-corrected TEM. Our primary motivation is hetero-
geneous catalysis; however, the approaches developed here may be
applicable to a wider range of electron microscopy imaging appli-
cations that are characterized by ultra-low SNR.

Heterogeneous catalysts are an important class of materials
where dynamic processes may strongly influence functionality.
Aberration-corrected in situ environmental transmission electron
microscopy (ETEM) can provide atomic-scale information from tech-
nical catalysts under reaction conditions (Crozier & Hansen, 2015;
Tao & Crozier, 2016; Dai et al., 2017; He et al., 2020). Recent
advances in the realization of highly efficient direct electron detectors
now enable atomically resolved ETEM image time series to be
acquired with a temporal resolution in the millisecond (ms) regime
(Faruqi &McMullan, 2018; Ciston et al., 2019). Many catalysts exhibit
chemical reaction turnover frequencies on the order of 100–102 s−1.
So, the opportunity to visualize dynamic structural behavior with
high temporal resolution holds much promise for understanding
chemical transformation processes on catalytic surfaces.

Although there is potentially much to be gained from applying
these new detectors to catalytic nanomaterials characterization,
acquiring in situ TEM image time series with high temporal
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resolution produces datasets that can be severely degraded by
noise (Lawrence et al., 2020). Cutting-edge sensors offer detective
quantum efficiencies approaching the theoretical maximum of
unity, largely by eliminating readout noise and employing elec-
tron counting to significantly improve the modulation transfer
function (Ruskin et al., 2013; Faruqi & McMullan, 2018). Even
so, especially at high speeds, where the average dose is often
<1 e− per pixel per frame, the information content of the image sig-
nal still remains limited by fundamental Poisson shot noise that is
associated with the electron emission and scattering processes.

Following Poisson statistics, counted images with an average
dose of <1 e−/pixel have SNRs on the order of unity. In this ultra-
low SNR regime, ascertaining the underlying structure in the
image becomes a major obstacle to scientific processing. By care-
fully selecting and summing frames in a time series, precise struc-
tural information can be obtained due to the improved SNR.
Averaging consecutive frames can also reveal dynamic behavior,
provided the lifetime of the metastable state is longer than the
averaging time. However, precise information on short-lived,
intermediate states may be effectively lost as a weak contribution
to the averaged image signal over such an extended temporal res-
olution. Thus, there is a pressing need for sophisticated noise
reduction techniques that preserve the temporal resolution of
the image series and facilitate the retrieval of features at the cata-
lyst surface.

Convolutional neural networks (CNNs) achieve state-of-the-
art denoising performance on natural images (Zhang et al.,
2017; Liu & Liu, 2019; Tian et al., 2019) and are an emerging
tool in various fields of scientific imaging, for example, in fluores-
cence light microscopy (Belthangady & Royer, 2019; Zhang et al.,
2019) and in medical diagnostics (Yang et al., 2017; Jifara et al.,
2019). In electron microscopy, deep CNNs are rapidly being
developed for denoising in a variety of applications, including
structural biology (Buchholz et al., 2019; Bepler et al., 2020), semi-
conductor metrology (Chaudhary et al., 2019; Giannatou et al.,
2019), and drift correction (Vasudevan & Jesse, 2019), among
others (Ede & Beanland, 2019; Lee et al., 2020; Wang et al.,
2020; Lin et al., 2021; Spurgeon et al., 2021), as highlighted in a
recent review (Ede, 2020). CNNs trained for segmentation have
also been used to locate the position of atomic columns (Lin
et al., 2021) as well as to estimate their occupancy (Madsen
et al., 2018) in relatively high SNR (S)TEM images (i.e., SNR
=∼10). It is not immediately obvious that the networks which
perform well for segmentation on images with high SNR will
also work well on images with ultra-low SNR. An alternative
approach could involve using two separate and sequential net-
works, the first of which denoises the ultra-low SNR image and
the second of which segments it to locate the regions of interest.
The primary aim of the present paper is to develop suitable meth-
odologies to handle the first part of this process, either for stand-
alone denoising or for subsequent segmentation.

To our knowledge, deep neural networks have not yet been
developed to denoise ultra-low SNR TEM images of catalyst
nanoparticles with an emphasis on atomic-scale surface structure.
As the potentially fluctuating atomic-scale structure at the catalyst
surface is of principal scientific interest in this application, it is
critical to establish methods for evaluating the agreement between
the noisy observation and the structure that appears in the
network-denoised image. As far as we are aware, such analysis
is not found in the previous literature on CNNs for
electron-micrograph denoising. Moreover, the mechanisms by
which trained networks successfully denoise are often treated as

a “black box”. Revealing and studying these mechanisms is, how-
ever, a key step towards further improving this methodology and
understanding its potential and limitations.

In this paper, we develop a supervised deep CNN to denoise
atomic-resolution TEM images of nanoparticles acquired in appli-
cations where the image signal is severely limited by shot noise,
resulting in an ultra-low SNR. The network was trained on a data-
set of simulated images and then applied to experimentally
acquired images of a model system, which consists of
CeO2-supported Pt nanoparticles. In this work, we focus on
data acquired on a direct electron detector operated in counting
mode, but, in principle, the proposed network can be applied to
data acquired in any mode, so long as the noise content can be
modeled. We perform an extensive analysis to characterize the
network’s ability to recover the exact atomic-scale structure at
the Pt nanoparticle surface. We also establish an approach to
assess the agreement between the noisy observation and the
atomic structure in the network-denoised image, without access
to ground truth reference images. Finally, we investigate the
mechanisms used by the network to denoise experimental images
and present a visualization of these mechanisms in the form of
equivalent linear filters, which reveal how the network adapts to
the presence of nonperiodic atomic-level defects at the nanopar-
ticle surface.

Materials and Methods

Experimental Data Acquisition

Atomic-resolution image time series of CeO2-supported Pt nano-
particles were acquired to provide experimental data for testing
and developing the denoising network. Acquiring image time
series at high speed is one application that results in ultra-low
SNR images and is thus an appropriate focus for the methodolog-
ical development described here. The nanoparticles were synthe-
sized through standard hydrothermal and metal deposition
methods that have been described previously (Vincent &
Crozier, 2019). Time-resolved series of images were acquired on
an aberration-corrected FEI Titan ETEM operated at 300 kV.
The third-order spherical aberration coefficient (C3) of the aber-
ration corrector was tuned to a slightly negative value of approx-
imately −13 μm, yielding a white-column contrast for the atomic
columns in the resultant images. The measured fifth order spher-
ical aberration coefficient (C5) was 5 mm. Lower-order aberra-
tions, e.g., astigmatism and coma were continuously tuned to be
as close to 0 nm as possible and thus considered to be negligible.
TEM samples were prepared by dispersing the Pt/CeO2 powder
onto a windowed micro electro-mechanical system-based Si3N4

chip. After loading the sample into the ETEM, nitrogen gas was
leaked into the cell until an ambient pressure of 5 × 10−3 Torr
N2 was achieved; the temperature was maintained at 20 °C. It is
briefly mentioned that this dataset is part of a larger series of
images of the same catalyst imaged in N2 and under a CO oxida-
tion gas atmosphere, wherein the catalyst exhibits very rapid
structural dynamics that present considerable modeling chal-
lenges (Vincent & Crozier, 2020). Hence, for this work, the
image time series of the catalyst in an N2 atmosphere was chosen
to provide a practicable starting point for developing the network,
as well as for assessing its performance. Time-resolved image
series were acquired using a Gatan K2 IS direct electron detector.
Images were taken at a speed of 40 frames per second (fps), yield-
ing a time resolution of 25 milliseconds (ms) per frame. An
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incident electron beam dose rate of 5,000 e−/Å2/s was used; for
the pixel size employed during the experiment (i.e., 0.061 Å
/pixel), these conditions resulted in an average dose of 0.45 e−/
pixel/frame. The frames of the time series were aligned without
interpolation after acquisition. The electron beam was blanked
when images were not being acquired.

Atomic Model Generation and Multislice TEM Image Simulation

A crucial step to achieve effective denoising performance with the
supervised deep CNN is to carefully design the training dataset.
Here, a wide range of structural configurations and imaging con-
ditions were pursued (a) to encompass potential variations that
could occur experimentally and (b) to explore the effect of train-
ing and testing the network on various subsets of images gener-
ated under different conditions. In all, we have produced 17,955
image simulations of Pt/CeO2 models by systematically varying
multiple imaging parameters and specimen structural configura-
tions, e.g., defocus, tilt, thickness, the presence of surface defects,
Pt nanoparticle size, etc. The 3D atomic structural models utilized
in this work consist of Pt nanoparticles that are oriented in a
[110] zone axis and that are supported on a CeO2 (111) surface
which is itself oriented in the [110] zone axis. This crystallo-
graphic configuration corresponds to that which is often observed
experimentally and is thus the focus of the current work. The
models have been constructed with the freely available Rhodius
software (Bernal et al., 1998). The faceting and shape of the sup-
ported Pt nanoparticle was informed by surface energies reported
by McCrum et al. (2017). AWulff construction based on these val-
ues was built in the MPInterfaces Python package (Mathew et al.,
2016) and iteratively adjusted in size until a qualitative match in
dimension was achieved with the experimentally observed shape.

A total of 855 atomic-scale structural models of Pt/CeO2 sys-
tems were created. Each model represents Pt nanoparticles of var-
ious sizes, shapes, and atomic structures (e.g., small, medium, or
large size, with either faceted or defected surfaces, or some com-
bination of both), supported on CeO2, which itself may present
either a faceted surface or one characterized by surface defects.
Extended details on the modeled structures are given in
Supplemental Appendix A. Each model consists of a supercell
having x and y dimensions of 5 nm × 5 nm. The support thick-
ness was systematically varied between 3 nm and 6 nm in 1 nm
increments, so the supercell’s z-dimension varies depending on
the thickness of the particular model. The orientation of the struc-
ture with respect to the incident electron beam was also systemati-
cally varied from 0° to 4° about the x and y axes independently in
increments of 1°. Thus, variations from 0° in x and 0° in y, to 4° in x
and 0° in y, or 0° in x and 4° in y were considered.

Simulated HRTEM images were generated using the multislice
image simulation method, as implemented in the Dr. Probe soft-
ware package (Barthel, 2018). Given the low pressure of gas pre-
sent during the experimental image acquisition (i.e., <1 Pa), the
presence of N2 was ignored during the image calculation, which
is supported by experimental measurements done by Hansen &
Wagner (2012). All of the simulations were performed using an
accelerating voltage of 300 kV, a beam convergence angle of
0.2 mrad, and a focal spread of 4 nm. A slice thickness of
0.167 Å was used. Following the experimental conditions, the
third-order spherical aberration coefficient (Cs) was set to be
−13 μm. The fifth-order spherical aberration coefficient (C5)
was set to be 5 mm. All other aberrations (e.g., twofold and three-
fold astigmatism, coma, star aberration, etc.) were set to 0 nm,

since these aberrations were continuously tuned during the exper-
imental image acquisition to a near-zero value, with little influ-
ence on the observed contrast. Image simulations performed
with negligible lower-order aberrations result in a good agreement
with the experimentally acquired image when the defocus, thick-
ness, and crystal tilt are adjusted appropriately, supporting the
decision to neglect them. To make the process of computing
nearly 18,000 image simulations tractable, the calculations were
performed in a parallel fashion on a supercomputing cluster
(Agave cluster at ASU).

To explore the effect of defocus on the training and testing of
the network, the defocus value (C1) was varied from 0 nm to
20 nm in increments of 1 nm. Image calculations were computed
using a nonlinear model including partial temporal coherence by
explicit averaging and partial spatial coherence, which is treated
by a quasi-coherent approach with a dampening envelope applied
to the wave function. An isotropic vibration envelope of 50 pm
was applied during the image calculation. Images were simulated
with a size of 1,024 × 1,024 pixels and then later binned with
cubic interpolation to desired sizes to match the pixel size of
the experimentally acquired image series. Finally, to equate the
intensity range of the simulated images with those acquired exper-
imentally, the intensities of the simulated images were scaled by a
factor that equalized the vacuum intensity in a single simulation
to the average intensity measured over a large area of the vacuum
in a single 25 ms experimental frame (i.e., 0.45 counts per pixel in
the vacuum region).

To exemplify the variation incorporated into the overall train-
ing dataset, Figure 1a depicts a representative subset of four Pt/
CeO2 atomic structural models, along with (Fig. 1b) three ran-
domly selected multislice TEM image simulations generated
from each model. The structural models are shown in two per-
spectives: a tilted view to emphasize 3D structure (first column)
and a projected view along the electron beam direction (second
column). Note the variation in Pt particle size, shape, and surface
defect structure, as well as the changes to the CeO2 support sur-
face character, with the bottom model displaying a Pt particle
with a single atom surface site along with a CeO2 support having
multiple step-edge defects. Accounting for the remaining particle
and support structures, in addition to the variations in crystal ori-
entation and CeO2 support thickness, a total of 855 such models
were constructed. These structures were each used to calculate
multislice simulations with 21 defocus values incremented from
0 to 20 nm in 1 nm intervals, which results in the calculation of
855 × 21 = 17,955 total images. Simulations randomly selected
from each model and shown in Figure 1b demonstrate the large
variety of signal contrast and specimen structure available for
training and testing the neural network.

CNN Training and Testing

Before application to the experimental data, the networks were
trained and evaluated on various subsets of simulated images.
As will be discussed below, typically around 5,500 simulated
images were used to train the network, with 550 other images ran-
domly selected for validation and testing. Noisy data for training
and evaluating the network were generated from clean simulated
images by artificially corrupting the clean simulations with
Poisson shot noise. That is, a noisy simulated image was produced
pixel-wise by randomly sampling a Poisson distribution with a
mean value equal to the intensity in the corresponding pixel of
the clean ground truth image. We have verified that the noise
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in the experimental counted TEM image time series follows a
Poisson distribution (see Supplemental Appendix B and
Fig. S15), which is expected given the physical origin of the
shot noise in the electron counted image acquisition process.

The network training process involves (1) applying artificial
Poisson shot noise to a clean ground truth simulation, (2) denois-
ing the noisy image with the neural network, (3) comparing the
network-denoised image to the clean ground truth through a
quantitative loss function, and (4) adjusting the parameters of
the network iteratively to achieve better performance. The param-
eters are adjusted via back-propagation using the stochastic gradi-
ent descent algorithm (Goodfellow et al., 2016). Periodically, the
network is evaluated on a validation set of images not included
in the training set. We chose to quantify the difference between
the output and the ground truth by computing the L2 norm or

mean squared error (MSE) of the two images, as is standard in
the denoising literature. The magnitude of this value is conve-
niently represented by a related quantity known as the peak
signal-to-noise ratio, or PSNR, which can be calculated from
the MSE by the following equation:

PSNR = 10 × log10
MAX2

I

MSE

( )
(1)

Here, MAXI is the maximum intensity value in the clean ground
truth image. The PSNR is essentially a decibel-scale quantity that
is inversely proportional to the MSE: a very noisy image will have
a low PSNR. The PSNR for the noisy images in this work is
around 3 dB. As is standard in the denoising literature, we choose

Fig. 1. Generating a large training dataset through multislice image simulation. Under (a) four (of 855) models are shown in a tilted view to emphasize the 3D
structure (far left) and in a projected view along the electron beam direction (second column). Pt atoms are shown in gray, O atoms in red, and Ce atoms in yellow-
green. A simulated image of every structure was generated for defocus values spanning 0–20 nm, resulting in 17,955 total images. Beneath (b), a representative
subset of simulated images from each model is shown, with imaging conditions given in the figure inset (see text for more details). Scale bars in (b) correspond to
1.0 nm.
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to compare the denoising performance using the PSNR (which is
derived from the MSE) rather than the MSE itself, in order to nor-
malize against the range of the signal and provide a metric that is
meaningful to the broader community.

It is desirable to investigate the performance of the network
when applied to images that differ from the training data. We
evaluated this so-called generalization ability along three different
criteria: (1) the character of the atomic column contrast, (2) the
structure/size of the supported Pt nanoparticle, and (3) the non-
periodic defects present in the Pt surface. To do so, the entire
training dataset was divided into subsets based on the different
categories of the three criteria. For example, for the atomic col-
umn contrast, the entire training dataset was split into three cat-
egories: white, black, and intermediate/mixed, largely based on
the Pt and Ce atomic column intensities (see, e.g., Supplemental
Fig. S1). After splitting the dataset into these subsets, the network
was trained on one of them, and then systematically evaluated on
the rest. So, for example, the network was trained on images from
the white contrast category and then evaluated on images from
either the black or intermediate/mixed contrast category. In
these cases, the number of images in each training subset was
set equal to establish a fair assessment. Additionally, the nanopar-
ticle structures were classified into four categories, “PtNp1”
through “PtNp4”, each with different size and shape, in accor-
dance with the models displayed in Supplemental Figure S11.
Finally, the defects were divided into five categories: “D0”,
“D1”, “D2”, “Dh”, and “Ds”, in accordance with the models pre-
sented in Supplemental Figure S12.

All networks (e.g., the proposed architecture as well as those
used in the baseline evaluation methods described below) were
trained on 400 × 400 pixel-sized patches extracted from the train-
ing images and augmented with horizontal flipping, vertical flip-
ping, random rotations between −45° and +45°, as well as random
resizing by a factor of 0.955–1.055. The models were trained using
the Adam optimizer (Kingma & Ba, 2015), with a default starting
learning rate of 1 × 10−3, which was reduced by a factor of two each
time the validation PSNR plateaued. Training was terminated via
early stopping, based on validation PSNR (Goodfellow et al., 2016).

The proposed network architecture is a modified version of
U-Net (Ronneberger et al., 2015) with six scales to achieve a
large field of view (roughly 900 × 900 pixels). Each convolutional
layer contains 128 base channels (i.e., filters). Alternative architec-
tures with differing numbers of scales and base channels were
investigated. Increasing the number of base channels has a weak
impact on performance—the number of scales (i.e., the number
of down-sampling layers, which largely determines the network’s
receptive field) is much more important to obtaining good
denoising performance, as discussed in Performance of Trained
Network on Validation Dataset of Simulated Images section.
The proposed network consists of six scales, each consisting of
a down-block and an up-block. A down-block consists of a max-
pooling layer, which reduces the spatial dimension by half, fol-
lowed by a convolutional-block (conv-block). Similarly, an
up-block consists of bilinear up-sampling, which enlarges the
size of the feature map by a factor of two, followed by a conv-
block. Each conv-block itself consists of conv–BN–ReLU–conv–
BN–ReLU, where conv represents a convolutional layer, BN rep-
resents a batch normalization process (Ioffe & Szegedy, 2015), and
ReLU represents a nonlinear activation by a rectified linear unit.
Further details on the alternative architectures tested, as well as
a discussion on the associated design choices, are given in
Mohan et al. (2020b).

Baseline Methods for Denoising Performance Evaluation

A number of other methods, including other trained denoising
neural networks that are typically applied to natural images,
were also applied both to the simulated and the real data in
order to establish a baseline for evaluating the performance of
the proposed network. A brief overview of the methods will be
given here. The performance of the methods was compared quan-
titatively in terms of PSNR and structural similarity index mea-
sure (SSIM), which is a perceptually relevant metric for
determining the similarity of two images based on the degrada-
tion of structural information, as explained in further detail in
Wang et al. (2004).

(a) Adaptive Wiener filter (WF): An adaptive low-pass Wiener
filter was applied to perform smoothing. The mean and var-
iance of each pixel were estimated from a local circular neigh-
borhood with a radius equal to 13 pixels.

(b) Low-pass filter (LPF): A linear low-pass filter with cut-off
spatial frequency of 1.35 Å−1 was applied to preserve infor-
mation within the ETEM instrumental resolution while dis-
carding high-frequency noise.

(c) Variance stabilizing transformation (VST) + nonlocal
means (NLM), or block-matching and 3D filtering
(BM3D): NLM and BM3D are commonly used denoising
routines for natural images with additive Gaussian noise
(Buades et al., 2005; Makitalo & Foi, 2013). Here, a nonlinear
VST (the Anscombe transformation) was used to convert the
Poisson denoising problem into a Gaussian denoising prob-
lem (Zhang et al., 2019). After applying the Anscombe trans-
formation, we apply BM3D or NLM to the transformed
image and finally use the inverse Anscombe transformation
to recover the denoised image.

(d) Poisson unbiased risk estimator + linear expansion of
thresholds (PURE-LET): PURE-LET is a transform-domain
thresholding algorithm adapted to mixed Poisson–Gaussian
noise (Luisier et al., 2011). The method requires the input
image to have dimensions of the form (2n, 2n). To apply
this method here, 128 × 128 pixel-sized overlapping patches
were extracted from the image of interest, denoised individu-
ally, and finally stitched back together by averaging the over-
lapping pixels.

(e) Blind-spot denoising: We trained a blind-spot network
based on U-net, as developed by Laine et al. (2019). Here,
training was done using 600 × 600 pixel-sized patches from
the images of interest. The Adam optimizer was used with
a starting learning rate of 1 × 10−4, which was reduced by a
factor of two every 2,000 epochs. Overall, the training pro-
ceeded for a total of 5,000 epochs.

(f) Denoising convolutional neural network (DnCNN):
Following the protocol outlined in the Convolutional Neural
Network Training and Testing section, we trained the
DnCNN model as described previously by Zhang et al. (2017).

(g) Small U-Net from dynamically unfolding recurrent
restorer (DURR): Following the protocol outlined in the
Convolutional Neural Network Training and Testing section,
we trained a U-Net architecture implemented in the DURR
denoiser proposed by Zhang et al. (2018).

Aside from these methods, standard filtering techniques
including Gaussian blurring, median filtering, and Fourier trans-
form (FT) spot-mask filtering were applied using routines built-in
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to the ImageJ analysis software (Schneider et al., 2012). Where rel-
evant, additional details will be given to aid in understanding.

Results and Discussion

Need for Improved Denoising Methods and Overview of
CNN-Based Deep Learning Denoiser

A single 25 ms exposure counted frame of a CeO2-supported Pt
nanoparticle from an experimentally acquired time-resolved in
situ TEM image series is presented in Figures 2a1 and a2. The
Pt particle is in a [110] zone axis on a [111] CeO2 surface that
is itself in a [110] zone axis orientation. These orientation
relationships and particle/support zone axes were commonly
encountered during the experiment. Even though a relatively
high dose rate of 5 × 103 e−/Å2/s was used to acquire the image
series, for time-resolved frame rates on the order of ms, many
of the pixel values are zero. In the present case, the average
electron dose counted in the vacuum region of the image is
0.45 e−/pixel/frame. Following Poisson statistics, wherein the

variance of the signal is equal to the mean value, and assuming
the intensity in the vacuum region is uniform, the signal-to-
noise ratio (SNR) of the incident beam is only SNR =
0.45/

�����
0.45

√ = �����
0.45

√ = 0.67 , 1. Hence, the image is severely
degraded by shot noise. The impact of the shot noise limitation
is emphasized by magnifying the region marked by the dashed
white box, which is presented in Figure 2a2. Here, the quality
of the signal is appreciably low, and the Pt atomic columns at
the nanoparticle surface are hardly discernible.

One common approach to improving the SNR of time-
resolved image series involves aligning and then summing
together nonoverlapping groups of sequential frames, yielding a
so-called time-averaged or summed image. Figure 2b1 presents
a 1.000 s time-averaged image produced from adding together
40 sequential 0.025 s frames. The pronounced improvement in
SNR, which has increased by a factor of

���
40

√ = 6.32 to SNR =
4.24, is readily evident, as seen by the well-defined and bright
atomic columns that appear in Figure 2b2.

Increasing the SNR without time-averaging can be accom-
plished by applying linear or nonlinear filters that act on variously

Fig. 2. Comparison of typical processing techniques applied to an ultra-low SNR experimental TEM image of a CeO2-supported Pt nanoparticle. In (a1), an indi-
vidual 0.025 s counted frame is shown along with (a2) a zoom-in image taken from the region designated by the dashed box. In (b), a 1.000 s time-averaged image
is shown; (c) displays the result of filtering the frame with a 3 × 3 pixel median filter; (d) displays the result of filtering the frame with a Gaussian blur with standard
deviation equal to 1 pixel; (e) shows a Fourier reconstruction of the individual frame after applying a low-pass filter up to the 0.74 Å information limit, with the FT
given in the inset along with a 1 Å−1 scale bar; and (f) displays another Fourier reconstruction acquired through masking the Bragg beams in the diffractogram, as
shown in the figure inset.
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sized and/or distributed domains in real or frequency space to
remove sharp features arising from high noise content. The result
of applying a nonlinear median filter with a 3 × 3 pixel-sized ker-
nel to the noisy single frame is presented in Figure 2c. The appli-
cation of a linear Gaussian blur with a kernel that has a standard
deviation equal to 1 pixel yields the filtered image presented in
Figure 2d. Applying kernels of these sizes and characters pro-
duced the best improvement in image quality for each filter.
Although the filtered images appear smoother and offer an
enhanced visualization of the atomic columns in comparison to
the raw image, the action of the filters also introduces artifacts
to the signal, which can complicate a precise analysis of the
atomic column position and/or intensity.

Working in reciprocal space through the application of an FT
allows one to consider spatial frequency filters that exclude compo-
nents attributable to noise, with a subsequent reconstruction of the
image using the desired domains from the filtered FT. Figure 2e1 pre-
sents a Fourier reconstruction of the individual frame after applying a
linear low-pass filter that excludes components with spatial frequen-
cies beyond the instrument’s 1.35 Å−1 information limit. After elim-
inating the high-frequency information corresponding to noise, the
contrast in the image exhibits an unusual texture that hinders feature
identification, as seen in Figure 2e2. Figure 2f displays another
Fourier reconstruction produced by spot-masking the regions corre-
sponding to Bragg beams in the FT, as presented in the figure inset.

Although this reconstructed image offers an improved SNR com-
pared to the raw frame and even to the other filtering techniques,
the procedure introduces severe ringing lattice-fringe artifacts into
the vacuum region and at the nanoparticle surface, making it unac-
ceptable for use in the study of defects or aperiodic structures.

There is a pressing need for improved denoising techniques
that both preserve the high time resolution of the original data
and also facilitate the retrieval of nonperiodic structural features,
e.g., nanoparticle surfaces and atomic-level defects. Toward this
end, we develop a deep CNN that is trained on a big dataset of
simulated TEM images before being applied to real data.

A schematic overview of the deep CNN training, application,
and evaluation process is provided in Figure 3. During training
(top), a large dataset of noisy simulated images is given to the net-
work. Noisy images were generated from clean simulated images
by corrupting them with Poisson shot noise. For each noisy
image, the network produces a prediction of the underlying sig-
nal, effectively denoising the image. The denoised prediction is
compared to the original clean simulation by computing the L2
norm between the two images. Better denoising performance is
achieved by iteratively adjusting the parameters within the net-
work in order to minimize the difference between the denoised
output and the original simulation.

After successfully training the network, it may be applied to
real data (bottom). The denoised experimental 25 ms frame

Fig. 3. Overview of the deep CNN training, application, and evaluation process. (Top) The network is trained on a large dataset of noisy multislice TEM image
simulations; the denoised prediction output by the network is compared to the original clean image simulation through a loss function based on the L2 norm
(i.e., mean squared error). The parameters in the network are iteratively adjusted to minimize the magnitude of the loss function. (bottom) The network trained
on simulated images is then applied to real experimental data taken under similar imaging conditions. The performance of the network on real images lacking
noise-free counterparts can be evaluated through a statistical likelihood analysis, which allows one to quantify the agreement between the denoised image and the
noisy experimental observation. All scale bars correspond to 1.0 nm.
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produced by the network presents a significant improvement in
SNR without temporal averaging and without making sacrifices
to the study of nonperiodic structural features. However, given
the high level of noise present in the raw data, caution must none-
theless be exercised when performing analysis on the network-
denoised output. As will be shown, we have established an
approach for quantifying the degree of agreement between the
network estimated output and the noisy raw input, which takes
the form of a statistical likelihood map.

Performance of Trained Network on Validation Dataset of
Simulated Images

Before applying the trained network to real data, it is important to
assess and validate the network’s performance on noisy simulated
data that it has not seen before. Figure 4 presents a representative

comparison of the surveyed methods against our proposed net-
work on an image randomly selected from the validation dataset.
A similar comparison for another randomly selected image in the
validation dataset is given in Supplemental Figure S2. The aggre-
gate performance, in terms of PSNR and structural similarity
[SSIM (Wang et al., 2004)], for each denoising approach over
all images in the validation dataset is summarized in Table 1.
Descriptions of each method are given in detail in Baseline
Methods for Denoising Performance Evaluation section. The
noisy simulated image shown in Figure 4a, along with the
zoom-in image taken from the region indicated by the red box
along the Pt nanoparticle surface, illustrating the severity of the
signal degradation that has occurred due to shot noise. The
same noisy image was processed using the denoising methods
described in Baseline Methods for Denoising Performance
Evaluation section. The results are presented in Figures 4b–4i in

Fig. 4. Comparing the proposed network’s performance on multislice simulations against other baseline denoising methods, including other neural networks. See
text for an explanation of the methods. In brief, (a) displays a noisy simulated image, along with a zoom-in on the region indicated by the red box in the figure inset.
(b) through (i) show the outputs from the networks listed in Table 1. The clean simulated image is shown as a ground truth reference in ( j). The proposed network
produces denoised images of high quality, recovering precisely the structure of the nanoparticle, even at the surface, with comparatively few artifacts, as shown in
(i).
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order of increasing performance in terms of PSNR. The original
ground truth simulated image, which serves as a ground truth ref-
erence, is presented in Figure 4j.

In general, the proposed deep CNN denoising architecture
outperforms the baseline methods by a large margin, achieving
a PSNR of 42.87 ± 1.45 dB and an SSIM of 0.99 ± 0.01. The start-
ing PSNR of the noisy simulation is about 3 dB. As seen in
Figure 4i, the proposed network produces an estimated image
that closely resembles the ground truth simulation. In addition
to recovering the overall shape of the Pt nanoparticle, the aperi-
odic structures of the Pt surface and the Pt/CeO2 interface, as
well as the subtle contrast variations that are present in the
CeO2, have all been accurately denoised by the proposed architec-
ture. The next-best performance is attained by the other two
simulation-based denoising (SBD) neural networks (e.g., Figs.
4g, 4h), which reach PSNR and SSIM values around 30.6 dB
and 0.93, respectively. However, in the images denoised through
these inferior networks, the contrast features around aperiodic
sites or abruptly terminating surfaces are typically missing or dis-
torted. Moreover, significant artifacts often appear in these
images, including phantom atomic column-like contrast in the
vacuum, or unrealistic structures characterized by missing col-
umns in unphysical sites, e.g., the material bulk.

A number of decisive factors contribute to the performance of
the network. First is the size of the network’s receptive field. The
receptive field is the region of the noisy image that the network
can see while estimating the intensity of a particular denoised out-
put pixel. The receptive field is not equivalent in size to the region
of the image input to the network but rather is determined by the
number and dimension of consecutive convolution and down-
sampling operations performed by the network. Further details
on the concept can be found in the literature (Goodfellow et al.,
2016; Araujo et al., 2019). The baseline networks evaluated in
the performance comparison, which are the present
state-of-the-art in denoising natural images, employ receptive
fields either 41 × 41 pixels (in the case of DnCNN, Fig. 4g) or
45 × 45 pixels (in the case of the small U-Net, Fig. 4h). Given
the fact that the real space pixel size of the data is 6.1 pm, these
receptive fields amount to regions around 0.26 nm × 0.26 nm in
size. As shown in Supplemental Figure S3, with a limited receptive
field of such size, it is challenging to see the structure of the
atomic columns in the ground truth simulation. Once shot
noise has been added to reduce the PSNR to 3 dB, differentiating

regions containing structure from those which contain only vac-
uum becomes virtually impossible by eye. Increasing the receptive
field is critical to achieving better denoising performance.
Supplemental Figure S4 shows that expanding the receptive field
by a factor of 25 to a region around 200 × 200 pixels (i.e.,
1.22 nm × 1.22 nm) allows the network to sense the local structure
around the pixel to be denoised. With a receptive field of this size,
different structures (e.g., vacuum, Pt surface, CeO2 bulk, surface
corner site) remain discernible even after adding noise. This sug-
gests that increasing the receptive field contributes to the net-
work’s ability to detect subtle contrast variations as well as
aperiodic defects. In this work, the network’s receptive field was
increased simply by implementing aggressive down-sampling.
The receptive field of the proposed network is roughly 900 ×
900 pixels (i.e., 5.49 nm × 5.49 nm, Fig. 4i).

The network’s performance is also influenced by the nature of
the images contained in the training dataset. Here we have discov-
ered that the geometry of the image (i.e., the scaling and orienta-
tion), as well as the character of the atomic column contrast (i.e.,
the focusing condition), appear to have the largest impact on per-
formance. In Supplemental Figure S5, we demonstrate that the
denoising performance measured in terms of PSNR degrades sig-
nificantly when the network is evaluated on simulated images that
have been scaled or rotated in a manner that was missing from the
images in the training dataset. Note that the performance remains
roughly constant across various values of pixel size and orienta-
tion when these pixel sizes and orientations are present in the
training dataset. These results indicate that augmenting the train-
ing data with random resizing/rotations can ensure that robust
performance is obtained when the network is applied to real
data, which may differ slightly in exact scaling or orientation
from the images in the training dataset. Practically, the results
also imply that networks must be carefully trained to denoise
images taken at the particular image magnification of interest.

We have also investigated the generalizability of the network to
unseen supported nanoparticle structures, non-periodic surface
defects, and atomic column contrast conditions (i.e., defocus).
As shown in Supplemental Figure S6, the network generalizes
well to new (a) nanoparticle structures of various shape/size
and (b) atomic-level Pt surface defects, with a good and consistent
PSNR denoising performance above 34 dB for all of the categories
explored here. The network is also generally robust to ±5 nm var-
iations in defocus. The largest degradation in performance
(PSNR = 28 dB) is observed when the network is trained on
images with black-column contrast and tested on images with
white-column contrast. A general conclusion would be to train
the network using images simulated at a defocus close to the
data that are to be denoised.

Evaluating the Network’s Ability to Accurately Predict
Nanoparticle Surface Structure

Understanding the atomic-scale structure of the catalyst surface is
of principal scientific interest. Here, we perform a detailed evalu-
ation of the network’s ability to produce denoised images that
accurately recover the atomic-level structure of the supported Pt
nanoparticle surface. The analysis was conducted over a set of
308 new simulated images that were specifically generated for
the surface structure evaluation. A series of 44 Pt/CeO2 structural
models were created with many different types of atomic-level
surface defects, including, e.g., the removal of an atom from a col-
umn, the removal of two atoms, the removal of all but one atom,

Table 1. Summary of Denoising Performance on Simulated Images in Terms of
Mean PSNR and SSIM, Along with the Standard Deviation, for Each of the
Surveyed Methods Aggregated Over All of the Images in the Validation Dataset.

Denoising Method PSNR (dB) SSIM (Arb. Units)

Raw 3.56 ± 0.03 0.00 ± 0.00

Adaptive WF 21.59 ± 0.07 0.44 ± 0.03

LPF 22.42 ± 1.08 0.63 ± 0.02

VST + NLM 26.55 ± 0.16 0.73 ± 0.01

VST + BM3D 22.57 ± 0.15 0.80 ± 0.01

PURE-LET 28.36 ± 0.88 0.93 ± 0.01

SBD + DnCNN 30.47 ± 0.64 0.93 ± 0.01

SBD + Small U-Net 30.87 ± 0.56 0.93 ± 0.01

Ours 42.87 ± 1.45 0.99 ± 0.01
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the addition of an adatom at a new site, etc., to emulate dynamic
atomic-level reconfigurations that could potentially be observed
experimentally. Nine of the models are shown in Supplemental
Figure S7 to provide an overview of the type of surface structures
that were considered. Images were simulated under defocus values
ranging from 6 nm to 10 nm, all with a tilt of 3° in x and −1° in y
and a support thickness of 40 Å. Note that these images were
never seen by the network during the training process and dem-
onstrate an evaluation of its performance on unseen images.

A ground truth simulated image from the surface evaluation
dataset is shown in Figure 5a1. A so-called blob detection algo-
rithm based on the Laplacian of Gaussian approach was imple-
mented to locate and identify the Pt atomic columns in the
image (Kong et al., 2013). Each of the 308 sets of identified atomic
columns were compared to their corresponding clean images and
inspected for errors; no discrepancies were found. The atomic col-
umns at the nanoparticle surface were distinguished from those in
the bulk by computing a Graham scan on the identified structure
(Graham, 1972). Figure 5a2 shows a binary image depicting the Pt
atomic columns identified in one of the ground truth simulated
images. The set of atomic columns located at the surface have
been highlighted with a green line.

Evaluating the network’s ability to recover surface structure
can be accomplished by examining how this set changes after
denoising. Figure 5b1 displays a denoised image produced by
the network from a unique Poisson noise realization of the
ground truth simulation. While the network denoises with out-
standing performance and recovers the overall shape of the speci-
men, note the appearance of the three spurious Pt surface atomic
columns that do not appear in the original ground truth

simulation. The Pt atomic columns identified in this denoised
image are pictured in Figure 5b2, where those located at the sur-
face are highlighted now by a red line. The spurious Pt surface
atomic columns have been marked with white arrows. Based on
inspection of the noisy data, we believe that the particular distri-
bution of intensity present in the noise realization can lead the
network to produce denoised estimates with spurious surface
atoms, perhaps due to the random clustering of intensity in a
manner that appears to resemble an atom (see, e.g.,
Supplemental Fig. S8). Figure 5c1 displays a denoised image pro-
duced by the same network from a second unique Poisson noise
realization. Note that in this case, the Pt surface structure has
been recovered exactly. The Pt atomic columns identified in this
denoised image are pictured in Figure 5c2 and are equivalent to
those identified in the original simulation.

To quantify the network’s performance in recovering the Pt
atomic structure, we compute four metrics that are commonly
employed in the field of machine learning: precision, recall, F1
score, and Jaccard index. These metrics are defined by the follow-
ing equations:

Precision = |A > B|
|B| (2)

Recall = |A > B|
|A| (3)

F1 Score = 2× Precision × Recall
Precision+ Recall

(4)

Fig. 5. (a1) depicts a representative ground truth simulation from the Pt atomic structure evaluation image dataset (nground truth = 308). To the right, in (a2), the set
of Pt columns identified in the ground truth image (i.e., |A|) are shown, with those located at the surface highlighted by a green line. (b1) and (c1) show two
denoised images produced by the network from two unique noise realizations of the same original simulation. To the right, in (b2) and (c2), the set of Pt columns
identified in the respective denoised images (i.e., |B|) are shown, with those at the surface highlighted now by a red line. To quantify the network’s performance in
recovering the Pt atomic structure, we compute the precision, recall, F1 score, and Jaccard index of the two sets. (d) provides box plot distributions of each metric
for both the surface (blue boxes) and the bulk (orange boxes) computed over 25 noise realizations of each ground truth simulation (ndenoised = 7,700). Outliers in the
distributions are marked by small diamonds. Scale bars in (a1)–(c1) correspond to 5 Å.
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Jaccard Index = |A > B|
|A < B| (5)

These metrics were calculated for both the surface and the bulk
structure; when the metrics were calculated for the surface struc-
ture, |A| represents the set of Pt atomic columns identified at the
surface in the ground truth simulation, and |B| represents the col-
umns identified at the surface in the denoised image. Similarly,
when the metrics were calculated for the bulk structure (i.e.,
everything other than the surface), |A| and |B| represent the
bulk atomic columns in the ground truth and denoised images,
respectively. To attain an accurate representation of the network’s
performance, 25 noise realizations of each ground truth simula-
tion were sampled and then denoised, resulting in an evaluation
over 7,700 total images.

Figure 5d displays box plot distributions of the four metrics
computed over all 7,700 images for both the surface (blue
boxes) and the bulk (orange boxes). Box plots, or box-and-whis-
ker plots, are useful for graphically visualizing distributions of
data on the basis of the quartiles that exist within the distribution.
The quartiles are a set of three numerical values that divide the
number of data points in the distribution into four roughly
equally sized parts; e.g., the second quartile is the median or mid-
point of the dataset when the values are ordered from smallest to
largest, the first quartile lies halfway between the smallest value
and the median, and the third quartile lies halfway between the
median and the largest value. In the box-and-whisker plot, the
box is drawn from the first quartile (Q1) to the third quartile
(Q3) with the median value represented by a line within this
box. Whiskers, which are lines extending beyond the edges of
the box, can be useful for describing the behavior of the data
that falls in the upper or lower quartile of the distribution. Here
we choose to follow a standard practice for drawing the whiskers:
a distance equal to 1.5× the interquartile range (defined by Q3–
Q1) is drawn from each edge of the box; on the top of the box,
for example, the largest value above Q3 that lies within this dis-
tance is defined as the edge of the top whisker; similarly, the
smallest value below Q1 that lies within this distance is defined
as the edge of the bottom whisker. Values beyond the edge of
the whiskers are considered outliers; here, they are drawn as
small solid diamonds. As seen in Figure 5d, the box plots for
the bulk are all narrow and have median values of 1.0, which is
expected given that the network was not seen to produce images
characterized by unphysical bulk structures, such as, e.g., missing
interior atomic columns.

The distributions for the surface structure are slightly more
varied and reveal detailed information about the performance
of the network. First, consider the distribution for the precision
(left-most box plot in Fig. 5d). The precision, or the positive pre-
dictive value, measures the fraction of real surface columns over
all of the surface columns identified in the denoised image.
Effectively, a lower precision value indicates that there are more
false positives (i.e., spurious surface columns) in the denoised out-
put. As a reference, consider a ground truth simulation in which
there are originally 15 atomic columns present at the surface (e.g.,
Fig. 5a1). The addition of one spurious surface column would
result in a precision value of 0.93, while the addition of three col-
umns would yield a precision value of 0.80. As seen in Figure 5d,
the median precision value is 1.0 and the first quartile lies nearby
at 0.93. Thus, the precision distribution shows the network fre-
quently produces denoised images that do not contain spurious

atomic columns; occasionally it will include one, and rarely it
will add two or more.

In addition to including spurious atomic columns, the network
may fail to recover the full structure, resulting in a real column
that is absent from the denoised image. The prevalence of this
event can be captured by the recall, which measures the fraction
of real columns over all of the columns identified at the surface
in the clean ground truth image. Effectively, a lower recall value
indicates that there are more false negatives in the network-
denoised output, which means that columns which were origi-
nally present in the ground truth image are no longer present
in the network-denoised output. As presented in Figure 5d, the
median recall value is also 1.0, with a distribution that is similar
to—but narrower than—the precision. These values again indicate
an impressive performance by the network. Interestingly, the
slightly smaller distribution suggests that the network may tend
to include spurious atomic columns more often than it fails to
sense real atomic columns.

Taking the harmonic mean of the precision and recall yields
the F1 score, which accounts both for false positives as well as
false negatives. Here, the median value of the F1 score distribution
is around 0.96, and the first quartile lies around 0.93. Given that
the median precision and recall are both 1.0, it is not surprising
that the F1 score distribution is also narrow and clustered around
high values (i.e., greater than 0.90). Note that the harmonic mean
of 1.0 (the median precision/recall) and 0.93 (the first quartile of
both distributions) equals 0.96, which is the median F1 score.
Thus, the F1 score reveals that while the network may occasion-
ally include a spurious column or fail to include a real one, com-
binations of these errors occur less frequently.

Finally, we have computed the Jaccard index to gauge the exact
degree of similarity between the surface structure in the clean and
denoised images. As defined above, the Jaccard index equals the
fraction of true positives (i.e., real columns) over the union of sur-
face columns identified in both the clean and the denoised
images. The ideal value of 1.0 occurs only when the exact atomic
structure is recovered. In general, for the images in the surface
evaluation dataset, the addition of a spurious atomic column
would give a Jaccard index of 0.87, while the omission of a real
column would give a value of 0.93. The distribution plotted in
Figure 5d shows that the median Jaccard index value is 0.93
and that the first quartile lies at 0.87. Observe that the third quar-
tile lies at 1.0, signaling that the network will achieve a perfect
performance in recovering the precise atomic structure at the sur-
face at least 25% of the time, despite the extreme degree of signal
degradation that has occurred due to shot noise. The location of
the first quartile at 0.87 indicates that at least 66% of the errors
involve the addition or omission of only one atomic column.
The remaining errors, which represent at most 25% of the total
data, involve the addition and/or omission of more than one
atomic column. Further studies implementing this approach
could be done in the future to assess the effect that varying the
noise level has on the network’s ability to predict the atomic-level
surface structure exactly.

Quantifying the Agreement Between the Noisy Observation
and the Network-Denoised Output

When applying the trained network to real data, the atomic struc-
ture in the network-denoised output cannot be compared to a
clean ground truth image, since none is available. Establishing a
tool to assess the likelihood of an atomic column’s appearance
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in the network-denoised image would thus be of great utility.
Here, we develop a statistical analysis based on the log-likelihood
ratio test that makes it possible to hypothetically evaluate whether
an atomic column in the denoised image is (1) likely to represent
a true atomic column in the structure or (2) likely to be an artifact
introduced by the denoising neural network. Additionally, a
graphical visualization of the log-likelihood ratio is created in
the form of a likelihood map. The log-likelihood ratio method
requires only the network-denoised image and the noisy input
and is therefore extensible to real experimental data, where no
clean ground truth references exist.

First, we validate the analysis on a large dataset of simulated
images, for which the true atomic structures are exactly known.
Figure 6 depicts a representative (a) noisy and (b) denoised
image from the simulated dataset discussed in the prior section.
To compute the log-likelihood ratio and generate the likelihood
map, the following procedure is implemented: first, an atomic col-
umn in the denoised image is located, e.g., through blob detection,
as was done in the previous section (here, we focus on the Pt col-
umns, although the method is generalizable to any area of interest
so long as it can be identified in the denoised image). As a sim-
plifying assumption, we model the intensity of the atomic column
as a constant value, which is obtained by averaging over all the
denoised pixels in the region R identified by the blob detection
algorithm. We have investigated the impact on the likelihood

from a fitted Gaussian shape, and it showed little difference
from that calculated from averaging. Since there is no consider-
able advantage to fitting a Gaussian to the data, we choose not
to do so for simplicity. Additionally, we assume that the signal
within the atomic column region is constant in order to be con-
sistent with the log-likelihood ratio test procedures. In
Supplemental Figure S9, we show that for these imaging condi-
tions, averaging over the column is a good assumption, provided
the region R is restricted to a limited area (e.g., radius < 0.7 Å)
within the innermost portion of the atomic column, where the
intensity is largely invariant. This provides a directly interpretable
metric that can be used to quantitatively evaluate the degree of
consistency between the denoised output and the noisy raw data.

Second, we compute the statistical likelihood, L, of observing the
noisy data in R of the input, assuming the true signal in this region
is the constant value calculated from the denoised output. We know
that the observed signal is governed only by shot noise, which can
be modeled with a Poisson distribution. And furthermore, we
assume that every pixel is mutually independent, so that the overall
likelihood in R is simply the product of the individual probabilities
for each pixel i in R. Mathematically, the likelihood calculation is
then defined by the following equation:

L(R) =
∏
i [ R

pl(xi) (6)

Fig. 6. Likelihood analysis to quantify the agreement between noisy data and network-denoised output. In (a), a representative noisy simulated image is shown
along with (b) a denoised image output by the network. (c) depicts an atomic-level likelihood map, which visualizes the extent to which the atomic structure
identified in the denoised image is consistent with the noisy observation. After denoising, a spurious atomic column appears at the arrowed site, which shows
a large negative value in the likelihood map, indicating that the presence of an atomic column at this location is not likely. The likelihood analysis has been per-
formed over 1,540 denoised images, yielding the distributions given by the letter-value plots for spurious (blue, top) and real (red, bottom) columns in (d). The
diamonds mark the extrema of the two distributions. Scale bars in (a)–(c) correspond to 1.0 nm.
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where xi is the intensity of the ith noisy pixel in R, and pl is a
Poisson probability mass function characterized by a mean of λ,
which is equal to the constant value calculated from the denoised
output. Here, a higher likelihood value would indicate a better
level of agreement between the denoised output and the noisy
data. To assess instead whether the column is an artifact of the
denoising network, we also compute the likelihood of observing
the noisy data in R with the true signal now represented by the
constant value of the vacuum (i.e., λ = 0.45).

Comparing the relative magnitude of these two likelihood val-
ues allows one to consider whether the atomic column is likely to
be real or spurious. How consistent either hypothesis is with the
noisy observation can be tested by taking the natural log of the
likelihood ratio (also known as a log-likelihood ratio test).
Considering, e.g., the noisy and denoised images of Figures 6a
and 6b, the results of this test are conveniently visualized for
every atomic column detected in the denoised image through
the likelihood map that is presented in Figure 6c. Positive (red)
log-likelihood ratio values indicate the detected column is more
consistent with the noisy data than is the presence of vacuum.
Conversely, sites with negative (blue) values are less consistent
with the data and may therefore be spurious additions. A spurious
atomic column appears in this denoised image at the corner site
marked by the black arrow on the left side of the particle. Observe
that the likelihood map displays a relatively large negative value of
−0.012 at this site, signaling that the detected atomic column is
inconsistent with the noisy data and likely to be a spurious column.

It should be discussed that the likelihood map shows a handful
of sites that correspond to real atomic columns, but which none-
theless have negative log-likelihood ratio values, including, e.g., in
the bulk of the nanoparticle. First, we point out that the likelihood
map does not provide an absolute validation of the structure pre-
sent in the denoised image but rather offers a visualization of the
statistical agreement between this structure and the noisy input. In
this case, the observed image has been so degraded by shot noise
(vacuum SNR = 0.67) that, inevitably, a few real atomic columns
will be observed to have average noisy intensities that are more
consistent with the vacuum level. The sensitivity of the
log-likelihood ratio in response to the overall SNR has not been
investigated and could be the subject of future work. As a second
point, the appearance of real atomic columns with a negative
log-likelihood ratio is in some way a testament to the network’s
ability to infer the presence of structure in spite of an SNR so
low that the data appear more consistent with vacuum. This
point is explored further in Performance on Experimental Data
and Visualizing the Network’s Effective Filter section. It is also
worth pointing out that in a time series of images, one would
be able to look at the variation in the likelihood map for different
frames to facilitate a more correct interpretation.

Regardless of these nuances, some useful heuristics may still be
established that allow one to use the likelihood map to quickly
assess the atomic structure that appears in the denoised image.
Figure 6d presents letter-value or so-called boxen plots of
∼65,000 log-likelihood ratio values calculated over 1,540 denoised
images (5 unique noise realizations of 308 ground truth images),
providing insight into how the distribution of values derived from
spurious atomic columns (top) compares with that derived from
real atomic columns (bottom). A dashed vertical line is provided
at 0.0 for reference. The spurious column distribution shows a
slightly negative median and is clustered around 0.0 while being
skewed toward negative values. The positive tail diminishes rap-
idly and becomes marginal for values above 0.0045. On the

other hand, the real atomic column distribution has a positive
median of 0.0052 and is skewed toward the right. Many values
are seen to exceed 0.010, which virtually never occurs for spurious
atomic columns. The negative tail becomes negligible for values
below −0.0060. These distributions reveal two simple guidelines:
(1) sites with log-likelihood ratio values ≥0.0050 can be treated
as a real structure with a high degree of certainty, and (2) sites
with log-likelihood ratios ≤−0.0060 (e.g., the spurious column
arrowed in Fig. 6c) are almost certainly artificial. A site with a
value in between is not as easily distinguishable but nonetheless
still has a quantitative statistical measure of agreement given by
its log-likelihood ratio. In principle, during general analysis, one
could use the log-likelihood ratio information to evaluate various
denoised structures that are more or less consistent with the noisy
input. It is also worth noting that in practice additional prior
information (e.g., knowledge of the material) may also be lever-
aged to support an assessment of the predicted structure.

Performance on Experimental Data and Visualizing the
Network’s Effective Filter

The trained network was applied to the experimentally acquired
in situ TEM image dataset. Several other state-of-the-art denois-
ing techniques were also applied to the same real data in order
to establish a baseline for evaluating the performance of the pro-
posed network. Figure 7 presents a summary of the results. A sin-
gle 25 ms exposure in situ TEM image of a CeO2-supported Pt
nanoparticle in 5 mTorr N2 gas is shown in Figure 7a. Beneath
it, a zoom-in image is shown from the region marked by the
red box at the Pt nanoparticle surface, to demonstrate the severity
of the shot noise and the lack of clarity regarding the underlying
image signal. Each baseline method was applied to the same noisy
image, generating the denoised outputs shown from Figures 7b–
7g. Details on all of the methods are given in Baseline Methods
for Denoising Performance Evaluation section. The denoised
image produced by the proposed network architecture is shown
in Figure 7h. Although a clean reference image is not available
experimentally, a relatively high SNR image has been prepared
by time-averaging the experimental data over 40 frames for
1.0 s total, as shown in Figure 7i. Finally, Figure 7h displays the
likelihood map for interpreting the structure that appears in the
proposed network’s output. The likelihood analysis was not
applied to the images produced by the baseline methods, due to
the abundance of obvious artifacts introduced by these methods,
as discussed below.

As seen in comparing the time-averaged image against the
denoised estimates generated by the various methods, the pro-
posed network architecture produces denoised images of superior
quality. In particular, the proposed network is the only method
that recovers a physically sensible atomic structure at the Pt sur-
face, with the denoised zoom-in of Figure 7h strongly resembling
the time-averaged zoom-in of Figure 7i. The DnCNN (Fig. 7f)
and small U-Net (Fig. 7g) denoising networks achieve the
next-best overall performance. However, the images output by
these architectures tend to exhibit unphysical structures character-
ized by, e.g., warped contrast around corner sites, not to mention
that they also show unusual atomic column-like intensity in the
vacuum and at the Pt surface, likely due to localized noise fluctu-
ations. The remaining methods yield images of relatively similar
inferior quality. A remarkable exception worth mentioning is
the blind-spot network (Fig. 7b). This self-supervised deep learn-
ing method, which was trained only on the raw experimental data
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and not on the simulations, outputs an image with arguably worse
noise content in the image center around the Pt nanoparticle and
Pt/CeO2 interface; interestingly, in other regions (e.g., the vacuum
and the CeO2 bulk), the denoised estimate matches the time-
averaged image contrast with exceptional similarity. We are pres-
ently investigating alternative blind-spot architectures for
improved performance (Sheth et al., 2020). Another series of
denoised images generated from another experimental frame is
shown in Supplemental Figure S10.

The denoising mechanisms used by CNNs are often treated as
a “black box”, with little understanding offered to interpret how
they work. Recent work shows that computing the gradient of
the network’s output with respect to its input at a specific pixel
of interest can offer an interpretable visualization of the network’s
equivalent linear filter at that pixel (Mohan et al., 2020a). In this
section, we investigate the filtering strategies used by the network
to denoise real data and show how they adapt to the presence of
atomic-level defects at the catalyst surface.

Consider the denoised experimental frame shown in Figure 8a.
Three pixels in the image have been marked by (small) red

squares. One pixel is in the vacuum, one is in an atomic column
at the Pt nanoparticle surface, and the last is in an atomic column
in the CeO2 bulk. The effective receptive field around each pixel is
marked by a larger red box; these regions are plotted in Figures
8b1, 8c1, and 8d1, respectively, with the pixels of interest again
marked by a small red square. It is noted that while the true recep-
tive fields around each pixel are about 900 × 900 pixels in size,
most of the information in the gradient is concentrated around
the central 300 × 300 pixels, so for plotting purposes, we choose
to focus on this region. We wish to investigate the mechanism
by which the network denoises these particular pixels. Figures
8b2, 8c2, and 8d2 display the field of view around each pixel in
the noisy experimental data. These windowed images are effec-
tively what the network senses when denoising each pixel. In
Figures 8b3, 8c3, and 8d3, the Jacobian of the network at each
pixel is plotted, which gives a local linear approximation of the
function used by the network to map the noisy input to a
denoised output. We call this visualization the network’s effective
filter, as it shows which regions of the input have the most impact
on the denoised estimate.

Fig. 7. Evaluating the performance of the proposed network on experimental 25 ms exposure in situ TEM images, in comparison to current state-of-the-art meth-
odologies. A raw 25 ms frame of a CeO2-supported Pt nanoparticle in 5 mTorr N2 gas is shown in (a) along with a zoom-in image from the region marked by the red
box. Denoised estimates of the same raw frame from the baseline methods are presented in (b) through (g), while (h) displays the denoised estimate from the
proposed network. (i) presents a time-average over 40 raw frames, or 1.0 s total, to serve as a relatively high SNR reference image. Finally, ( j) shows the likelihood
map of the proposed network’s output to quantify the agreement with the noisy observation.
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Interestingly, the effective filter shows considerable variation at
different locations in the image. For the pixel in the vacuum,
Figure 8b3 shows the gradient at this location is mostly uniform
with a magnitude close to 0.0. The largely uniform gradient sug-
gests the network senses a lack of structure in the vacuum and has
incorporated this information into its denoising strategy.
Compare this with the gradient plotted in Figure 8d3 for the
pixel on an atomic column in the CeO2 bulk. Here, the gradient
shows a clear periodicity, with a symmetric pattern that mirrors
the local structure of the bulk material. The symmetry reveals
that the network has learned to recognize an uninterrupted con-
tinuation of structure at this location. Note that the magnitude of
the gradient in the region around the central pixel is comparable
to that of the surrounding atomic column-like regions. The
mostly equal weighting of local and nonlocal periodic information
implies that the network considers the central atomic column to
be similar to those surrounding it.

The network’s denoising strategy adapts in response to non-
periodic structural features at the Pt nanoparticle surface. As
seen in Figure 8c3, at the surface, the network gives substantially
more weight to information that is in the immediate proximity of
the pixel to be denoised. Strongly weighting the intensity within
an atomic column-sized region may be what enables the network
to recover the nonperiodic atomic features at the catalyst surface.
In unfavorable cases, the same strategy could lead to artifacts if
the noisy input contains a randomly bright clustering of intensity
that resembles an atomic column. As in the CeO2 bulk, periodic-
ity is seen in the gradient at the Pt surface, although now the sep-
aration distance between the atomic column-like regions has
changed to match the periodicity of the projected Pt lattice.
Notably, the spatial distribution of the filter is also now less sym-
metric, with the magnitude of the gradient diminishing to zero
more rapidly in the regions that contain vacuum. Hence, the
asymmetry reflects the termination of the nanoparticle structure

and suggests that the network has learned to identify the presence
of the catalyst surface.

Conclusion

A supervised deep CNN has been developed to denoise ultra-low
SNR atomic-resolution TEM images of nanoparticles acquired
during applications wherein the image signal is severely limited
by Poisson shot noise. In this work, we have focused on data
acquired on a direct detector operated in electron counting
mode; however, in principle, the proposed network can be applied
to data acquired in any mode, so long as the noise content can be
modeled. Multislice image simulations were leveraged to generate
a large dataset image for training and testing the network. The
proposed network outperforms existing methods, including
other CNNs, by a PSNR of 12.0 dB, achieving a PSNR of about
43 dB on a test set of simulated images (the typical starting
PSNR of the data explored in this work is only 3 dB). We show
that the network is generally robust to ±5 nm variations in defo-
cus, although we suggest training the network using images at a
defocus similar to the data that are to be denoised. The network’s
ability to correctly predict the atomic-scale structure of the nano-
particle surface was assessed by comparing the atomic columns
originally present in clean simulations against those that appear
in denoised images. We have also developed an approach based
on the log-likelihood ratio test that provides a quantitative mea-
sure of the agreement between the noisy observation and the
atomic-level structure present in the denoised image. The pro-
posed assessment method requires only the network-denoised
image and the noisy input and is therefore extensible to real
experimental data, where no ground truth reference images
exist. The network was applied to an experimentally acquired
TEM image dataset of a CeO2-supported Pt nanoparticle. We
have conducted a gradient-based analysis to investigate the

Fig. 8. Investigating the mechanism by which the network denoises experimental data. A denoised experimental image is shown in (a). Three regions of the image
in the vacuum, catalyst surface, and bulk have been highlighted by red boxes and are depicted in (b1), (c1), and (d1), respectively. The central pixel in each win-
dowed region is marked with a small red square. The noisy input within the network’s receptive field around each pixel is displayed in (b2), (c2), and (d2). In (b3),
(c3), and (d3), the Jacobian of the network at each pixel is plotted, which provides an interpretable visualization of the regions of the noisy input that have the
most impact on the denoised estimate.
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mechanisms used by the network to denoise experimental images.
Here, this shows the network both (a) exploits information on the
surrounding structure and (b) adapts its filtering approach when
it encounters nonperiodic terminations or atomic-level defects at
the nanoparticle surface. The approaches described here may be
applicable to a wide range of imaging applications that are char-
acterized by ultra-low SNR, including the investigation of
dynamic processes with time-resolved in situ microscopy or the
study of beam-sensitive systems.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927621012678.
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