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Abstract Synchronized spontaneous firing among reti-
nal ganglion cells (RGCs), on timescales faster than vi-
sual responses, has been reported in many studies. Two
candidate mechanisms of synchronized firing include
direct coupling and shared noisy inputs. In neighboring
parasol cells of primate retina, which exhibit rapid
synchronized firing that has been studied extensively,
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recent experimental work indicates that direct electrical
or synaptic coupling is weak, but shared synaptic input
in the absence of modulated stimuli is strong. However,
previous modeling efforts have not accounted for this
aspect of firing in the parasol cell population. Here
we develop a new model that incorporates the effects
of common noise, and apply it to analyze the light
responses and synchronized firing of a large, densely-
sampled network of over 250 simultaneously recorded
parasol cells. We use a generalized linear model in
which the spike rate in each cell is determined by
the linear combination of the spatio-temporally filtered
visual input, the temporally filtered prior spikes of
that cell, and unobserved sources representing common
noise. The model accurately captures the statistical
structure of the spike trains and the encoding of the
visual stimulus, without the direct coupling assump-
tion present in previous modeling work. Finally, we
examined the problem of decoding the visual stimulus
from the spike train given the estimated parameters.
The common-noise model produces Bayesian decod-
ing performance as accurate as that of a model with
direct coupling, but with significantly more robustness
to spike timing perturbations.

Keywords Retina · Generalized linear model ·
State-space model · Multielectrode · Recording ·
Random-effects model

1 Introduction

Advances in large-scale multineuronal recordings have
made it possible to study the simultaneous activity of
complete ensembles of neurons. Experimentalists now
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routinely record from hundreds of neurons simultane-
ously in many preparations: retina (Warland et al. 1997;
Frechette et al. 2005), motor cortex (Nicolelis et al.
2003; Wu et al. 2008), visual cortex (Ohki et al. 2006;
Kelly et al. 2007), somatosensory cortex (Kerr et al.
2005; Dombeck et al. 2007), parietal cortex (Yu et al.
2006), hippocampus (Zhang et al. 1998; Harris et al.
2003; Okatan et al. 2005), spinal cord (Stein et al. 2004;
Wilson et al. 2007), cortical slice (Cossart et al. 2003;
MacLean et al. 2005), and culture (Van Pelt et al. 2005;
Rigat et al. 2006). These techniques in principle provide
the opportunity to discern the architecture of neuronal
networks. However, current technologies can sample
only small fractions of the underlying circuitry; there-
fore, unmeasured neurons can have a large collective
impact on network dynamics and coding properties. For
example, it is well-understood that common input plays
an essential role in the interpretation of pairwise cross-
correlograms (Brody 1999; Nykamp 2005). To infer the
correct connectivity and computations in the circuit
requires modeling tools that account for unrecorded
neurons.

Here, we investigate the network of parasol retinal
ganglion cells (RGCs) of the macaque retina. Several
factors make this an ideal system for probing common
input. Dense multi-electrode arrays provide access to
the simultaneous spiking activity of many RGCs, but do
not provide systematic access to the nonspiking inner
retinal layers. RGCs exhibit significant synchrony in
their activity, on timescales faster than that of visual
responses (Mastronarde 1983; DeVries 1999; Shlens
et al. 2009; Greschner et al. 2011), yet the significance
for information encoding is still debated (Meister et al.
1995; Nirenberg et al. 2002; Schneidman et al. 2003;
Latham and Nirenberg 2005). In addition, the under-
lying mechanisms of these correlations in the primate
retina remain under-studied: do correlations reflect di-
rect electrical or synaptic coupling (Dacey and Brace
1992) or shared input (Trong and Rieke 2008)? Conse-
quently, the computational role of the correlations re-
mains uncertain: how does synchronous activity affect
the information encoded by RGCs about the visual
world?

Recent work using paired intracellular recordings re-
vealed that neighboring parasol RGCs receive strongly
correlated synaptic input; ON parasol cells exhibited
weak direct reciprocal coupling while OFF parasol cells
exhibited none (Trong and Rieke 2008). In contrast
with these empirical findings, previous work modeling
the joint firing properties and stimulus encoding of
parasol cells modeled their correlations with nearly
instantaneous direct coupling effects, and did not ac-
count for the possibility of common input (Pillow et al.

2008). Here, we introduce a model for the joint firing of
the parasol cell population that incorporates common
noise effects. We apply this model to analyze the light
responses and synchronized firing of a large, densely-
sampled network of over 250 simultaneously recorded
RGCs. Our main conclusion is that the common noise
model captures the statistical structure of the spike
trains and the encoding of visual stimuli accurately,
without assuming direct coupling.

2 Methods

2.1 Recording and preproccesing

Recordings The preparation and recording methods
were described previously (Litke et al. 2004; Frechette
et al. 2005; Shlens et al. 2006). Briefly, eyes were ob-
tained from deeply and terminally anesthetized Macaca
mulatta used by other experimenters in accordance
with institutional guidelines for the care and use of
animals. 3–5 mm diameter pieces of peripheral retina,
isolated from the retinal pigment epithelium, were
placed flat against a planar array of 512 extracellular
microelectrodes, covering an area of 1800 × 900 μm.
The present results were obtained from 30–60 min
segments of recording. The voltage on each electrode
was digitized at 20 kHz and stored for off-line analy-
sis. Details of recording methods and spike sorting
have been given previously (Litke 2004; see also Segev
et al. 2004). Clusters with a large number of refractory
period violations (>10% estimated contamination) or
spike rates below 1 Hz were excluded from additional
analysis. Inspection of the pairwise cross-correlation
functions of the remaining cells revealed an occasional
unexplained artifact, in the form of a sharp and pro-
nounced ‘spike’ at zero lag, in a few cell pairs. These
artifactual coincident spikes were rare enough to not
have any significant effect on our results; cell pairs
displaying this artifact are excluded from the analysis
illustrated in Figs. 4–6 and 11.

Stimulation and receptive f ield analysis An optically
reduced stimulus from a gamma-corrected cathode ray
tube computer display refreshing at 120 Hz was focused
on the photoreceptor outer segments. The low photopic
intensity was controlled by neutral density filters in
the light path. The mean photon absorption rate for
the long (middle, short) wavelength-sensitive cones was
approximately equal to the rate that would have been
caused by a spatially uniform monochromatic light of
wavelength 561 (530, 430) nm and intensity 9200 (8700,
7100) photons/μm2/s incident on the photoreceptors.



J Comput Neurosci (2012) 33:97–121 99

The mean firing rate during exposure to a steady, spa-
tially uniform display at this light level was 11 ± 3 Hz
for ON cells and 17 ± 3.5 Hz for OFF cells. Spatiotem-
poral receptive fields were measured using a dynamic
checkerboard (white noise) stimulus in which the in-
tensity of each display phosphor was selected randomly
and independently over space and time from a binary
distribution. Root mean square stimulus contrast was
96%. The pixel size (60 μm) was selected to be of the
same spatial scale as the parasol cell receptive fields.
In order to outline the spatial footprint of each cell, we
fit an elliptic two-dimensional Gaussian function to the
spatial spike triggered average of each of the neurons.
The resulting receptive field outlines of each of the
two cell types (104 ON and 173 OFF RGCs) formed
a nearly complete mosaic covering a region of visual
space (Fig. 11(D)), indicating that most parasol cells in
this region were recorded. These fits were only used to
outline the spatial footprint of the receptive fields, and
were not used as the spatiotemporal stimulus filters ki,
as discussed in more detail below.

2.2 Model structure

We begin by describing our model in its full gener-
ality (Fig. 1(A)). Later, we will examine two mod-
els which are different simplifications of the general
model (Fig. 1(B)–(C)). We used a generalized linear
model augmented with a state-space model (GLSSM).
This model was introduced in Kulkarni and Paninski
(2007) and is similar to methods discussed in Smith and
Brown (2003) and Yu et al. (2006); see Paninski et al.
(2010) for review. The conditional intensity function
(instantaneous firing rate), λi

t, of neuron i at time t was
modeled as:

log λi
t = μi + ki · xt + hi · yi

t +
ncells∑

j�=i

Li, j · y j
t +

nq∑

r=1

Mi,r · qr
t .

(1)

The right hand side of this expression is organized in
terms of input-filter pairs; we will describe the inputs
first and then the corresponding filters. μi is a scalar
offset, determining the cell’s baseline log-firing rate; xt

is the spatiotemporal stimulus history vector at time t; yi
t

is a vector of the cell’s own spike-train history in a short
window of time preceding time t; y j

t is the spike-train of
the jth cell preceding time t; qr

t is the rth common noise
component at time t. Correspondingly, ki is the stimulus
spatio-temporal filter of neuron i; hi is the post-spike
filter accounting for the ith cell’s own post-spike effects;
Li, j are direct coupling filters from neuron j to neuron

i which capture dependencies of the cell on the recent
spiking of all other cells; and lastly, Mi,r is the mixing
matrix which takes the rth noise source and ‘injects’ it
into cell i.

We experimented with two different distributions to
model the spike count in each bin, given the rate λi

t.
First we used a Poisson distribution (with mean λi

tdt,
where dt = 0.8 ms was the temporal resolution used
to represent the spike times here) in the exploratory
analyses described in Sections 2.2 and 3.1 below; note
that since λi

t itself depends on the past spike times, this
model does not correspond to an inhomogeneous Pois-
son process (in which the spiking in each bin would be
independent). We also used the Bernoulli distribution
with the same probability of not spiking, p(no spike) =
exp(−λi

tdt).
The Poisson distribution constrains the mean firing

rate to equal the variance of the firing rate, which is
not the case in our data; the variance tends to be sig-
nificantly smaller than the mean. In preliminary analy-
ses, the Bernoulli model outperformed the Poisson
model. Therefore, we used the Bernoulli model for the
complete network with common noise with no direct
coupling (described here and in Section 3.2). We did
not explore the differences between the two models
further, but in general expect them to behave fairly
similarly due to the small dt used here.

Now we will discuss the terms in Eq. (1) in more
detail. The stimulus spatio-temporal filter ki was mod-
eled as a five-by-five-pixels spatial field, by 30 frames
(250 ms) temporal extent. Each pixel in ki is allowed
to evolve independently in time. The history filter was
composed of ten cosine “bump” basis functions, with
0.8 ms resolution, and a duration of 188 ms, while the
direct coupling filters were composed of 4 cosine-bump
basis functions; for more details see Pillow et al. (2008).

The statistical model developed by Pillow et al.
(2008) captured the joint firing properties of a complete
subnetwork of 27 RGCs, but did not explicitly include
common noise in the model. Instead, correlations were
captured through direct reciprocal connections (corre-
sponding to our Li, j terms) between RGCs. (Similar
models with no common noise term have been con-
sidered by many previous authors (Chornoboy et al.
1988; Utikal 1997; Keat et al. 2001; Paninski et al. 2004;
Pillow et al. 2005; Truccolo et al. 2005; Okatan et al.
2005).) Because the cross-correlations observed in this
network have a fast time scale and are peaked at zero
lag, the direct connections in the model introduced by
Pillow et al. (2008) were estimated to act almost instan-
taneously (with effectively zero delay), making their
physiological interpretation somewhat uncertain. We
therefore imposed a strict 3 ms delay on the initial rise



100 J Comput Neurosci (2012) 33:97–121

Fig. 1 Model schemas.
(A) Fully general model.
Each cell is modeled
independently using a
Generalized Linear model
augmented with a state-space
model (GLSSM). The inputs
to the cell are: stimulus
convolved with a linear
spatio-temporal filter (ki · xt
in Eq. (1)), past spiking
activity convolved with a
history filter (hi · yi

t), past
spiking activity of all other
cells convolved with
corresponding cross-coupling
filters (

∑ncells
j�=i Li, j · y j

t ), and a
mixing matrix, M, that
connects nq common noise
inputs qr

t to the ncells
observed RGCs. (B) Pairwise
model. We simplify the model
by considering pairs of
neurons separately.
Therefore, we have two cells
and just one shared common
noise. (C) Common-noise
model where we set all the
cross-coupling filters to zero
and have ncells independent
common-noise sources
coupled to the RGC network
via the mixing matrix M
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of the coupling filters here to account for physiological
delays in neural coupling. (However, the exact delay
imposed on the cross-coupling filters did not change our
results qualitatively, as long as some delay was imposed,
down to 0.8 ms, our temporal resolution, as we discuss
at more length below.) The delay in the cross-coupling
filters effectively forces the common noise term to
account for the instantaneous correlations which are
observed in this network; see Fig. 5 and Section 3.1
below for further discussion.

The last term in Eq. (1) is more novel in this context,
and will be our focus in this paper. The term qr

t is the
instantaneous value of the r-th common noise term at
time t, and we use qr = {qr

t }T
t=1 to denote the time-series

of common noise inputs, r. Each qr is independently
drawn from an autoregressive (AR) Gaussian process,
qr ∼ N (0, Cτ ), with mean zero and covariance matrix
Cτ . Since the inner layers of the retina are composed
of non-spiking neurons, and since each RGC receives

inputs from many inner layer cells, restricting qr to be
a Gaussian process seems to be a reasonable starting
point. To fix the temporal covariance matrix Cτ , recall
that Trong and Rieke (2008) reported that RGCs share
a common noise with a characteristic time scale of
about 4 ms, even in the absence of modulations in
the visual stimulus. In addition, the characteristic width
of the fast central peak in the cross-correlograms in
this network is of the order of 4 ms (see, e.g., Shlens
et al. 2006; Pillow et al. 2008, and also Fig. 5 below).
Therefore, we imposed a 4 ms time scale on our com-
mon noise by choosing appropriate parameters for Cτ ;
we did this using the autoregressive formulation qt =∑n

τ=1 φτ qt−τ + εt, and choosing appropriate parameters
φτ and the variance of the white noise process, εt, using
the Yule–Walker method, which solves a linear set
of equations given the observed data autocorrelation
(Hayes 1996). We use the Matlab implementation of
the Yule–Walker method.
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The common noise inputs in our model are inde-
pendent of the stimulus, to maintain computational
tractability; recall that Trong and Rieke (2008) ob-
served that the common noise was strong and corre-
lated even in the absence of a modulated stimulus.
While the stimulus-independent AR model for the
common noise was chosen for computational conve-
nience (see Appendix A for details), this model proved
sufficient for modeling the data, as we discuss at more
length below. Models of this kind, in which the linear
predictor contains a random component, are common
in the statistical literature and are referred to as ‘ran-
dom effects models’ (Agresti 2002), and ‘generalized
linear mixed models’ (McCulloch et al. 2008).

The mixing matrix, M, connects the nq common
noise terms to the ncells observed neurons; this matrix
induces correlations in the noise inputs impacting the
RGCs. More precisely, the interneuronal correlations
in the noise arise entirely from the mixing matrix;
this reflects our assumption that the spatio-temporal
correlations in the common noise terms are separable.
I.e. the correlation matrix can be written as a Kro-
necker product of two matrices, C = Cτ ⊗ Cs, where
Cs = MT M. Since the common noise sources qt are
independent, with identical distributions, and all the
spatial correlations in the common noise are due to
the mixing matrix, M, we may compute the spatial
covariance matrix of the vector of mixed common noise
inputs Mqt as Cs = MTM. (We have chosen the noise
sources to have unit variance; this entails no loss of
generality, since we can change the strength of any of
the noise inputs to any cell by changing the mixing
matrix M.) The number of noise sources in the model
can vary to reflect modeling assumptions. In Section 2.2
we use one noise source for every pair of neurons, while
in Section 2.2 we use the same number of noise sources
as the number of cells in order to avoid imposing any
further assumptions on the statistical structure of the
noise. (One interesting question is how few common
inputs are sufficient—i.e., how small can we make nq

while still obtaining an accurate model—but we have
not yet pursued this direction systematically.)

Pairwise model (Fig. 1(B)) For simplicity, and for bet-
ter correspondence with the experimental evidence of
Trong and Rieke (2008), we began by restricting our
model to pairs of RGCs. We fit our model to pairs of
the same subset of 27 RGCs analyzed in the modeling
paper by Pillow et al. (2008). The receptive fields of
both ON and OFF cell types in this subset formed
a complete mosaic covering a small region of visual
space, indicating that every parasol cell in this region
was recorded; see Fig. 1(b) of Pillow et al. (2008). We

modeled each pair of neurons with the model described
above, but we allowed one common noise to be shared
by the cells. In other words, the two cells in the pair re-
ceived the same time-series, q, scaled by M = [m1, m2]T

(Fig. 1(B)). Therefore, the conditional intensity is:

λi
t = exp(μi + ki · xt + hi · yi

t + Li, j · y j
t + mi · qt), (2)

where we kept all the notation as above, but we have
dispensed with the sums over the other cells and over
the common noise inputs (since in this case there is only
one other cell and one common noise term to consider).
The probability of observing n spikes between time t
and time t + dt for neuron i in this model is:

P(ni
t) = (λi

t)
ni

t e−λi
t

ni
t!

; (3)

This model is conceptually similar to the model ana-
lyzed by de la Rocha et al. (2007), with a GLM includ-
ing the spike history yi

t and y j
t in place of integrate and

fire spiking mechanism used in that paper.

Common-noise model with no direct coupling
(Fig. 1(C)) Encouraged by the results of the pairwise
model, we proceeded to fit the GLSS model to
the entire observed RGC network. The pairwise
model results (discussed below) indicated that the
cross-coupling inputs are very weak compared to
all other inputs. Also, the experimental results of
Trong and Rieke (2008) indicate only weak direct
coupling between ON cells and no direct coupling
between the OFF cells. Thus, in order to obtain a more
parsimonious model we abolished all cross-coupling
filters (Fig. 1(C)). Hence, the conditional intensity
function, λi

t is:

λi
t = exp

(
μi + ki · xt + hi · yi

t +
nq∑

r=1

Mi,r · qr
t

)
. (4)

As in the pairwise model, each cell has a spatio-
temporal filter, ki, and a history filter, hi. In contrast
with the pairwise model, we now have no direct cou-
pling, Li, j. As discussed above, the firing activity of all
the cells was modeled here as a Bernoulli process, with
probabilities

P(ni
t = 0) = exp(−λi

t)dt

P(ni
t = 1) = 1 − exp(−λi

t)dt.
(5)

The formulation of the model as conditionally indepen-
dent cells given the common noise q, with no cross-
coupling filters, interacting only through the covariance
structure of the common inputs, lends itself naturally
to computational parallelization, since the expensive
step, the maximum likelihood estimation of the model
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parameters, can be performed independently on each
cell if certain simplifying approximations are made, as
discussed in the next section.

2.3 Model parameter estimation

Now that we have introduced the model structure,
we will describe the estimation of the model parame-
ters. We proceeded in three steps. First we obtained
a preliminary estimate of the “private” GLM parame-
ters (μi, ki, hi) using a standard maximum-likelihood
approach in which the common noise inputs q and
direct coupling terms Li were fixed at zero: we maxi-
mized the GLM likelihood p(y|μi, ki, hi, Li = 0, q = 0),
computed by forming products over all timebins t of
either the Poisson likelihood (Eq. (3), in the pairwise
model) or the Bernoulli likelihood (Eq. (5), in the
population model with no direct coupling). In paral-
lel, we obtained a rough estimate of the spatial noise
covariance Cs directly from the data using the PSTH
method (explained briefly below, and in Appendix C).
Then, in the second step, each cell’s GLSS model was
fit independently given the rough estimate of Cs. Lastly,
given the model parameters and data we determined
the covariance structure of the common noise effects
with greater precision using the method of moments
(explained below and in Appendix B).

We now discuss each step in turn. Maximizing
the GLM likelihood p(y|μi, ki, hi, Li = 0, q = 0) fol-
lowed standard procedures (Truccolo et al. 2005; Pillow
et al. 2008). To obtain a first estimate of the spa-
tial noise covariance Cs, we used a peri-stimulus time
histogram- (PSTH-) based approach that was similar
to the cross-covariogram method introduced by Brody
(1999). Specifically, we analyzed another dataset in
which we observed these neurons’ responses to a fixed
repeating white noise stimulus with the same variance
as the longer nonrepeating white noise stimulus used
to fit the other model parameters. By averaging the
neural responses to the repeated stimulus we obtained
the PSTH. We subtracted each neuron’s PSTH from its
response to each trial to obtain the neurons’ trial-by-
trial deviations from the mean response to the stimulus.
We then formed a covariance matrix of the deviations
between the neurons for each trial, and estimated the
spatial covariance Cs from this matrix via a singular
value decomposition that exploits the spatiotemporally
separable structure of the common noise in our model.
(For more details see Appendix C.) It is important to
note that even though the PSTH method gives a good
estimate of the spatial covariance Cs, we only need a
rough estimate of the magnitude of the common noise

going into each cell in order to proceed to the next step
in our estimation procedure.1

In the second stage of the estimation procedure,
we used a maximum marginal likelihood approach to
update the parameters for each cell in parallel, us-
ing the rough estimate of the spatial covariance Cs

obtained in the previous step. We abbreviate � =
{μi, ||ki||2, hi, Li}.2 In our model, since the common
noise inputs q are unobserved, to compute the likeli-
hood of the spike train given the parameters �, we must
marginalize over all possible q:

�opt = argmax
�

log p(y|�, Cs)

= argmax
�

log
∫

p(y|q, �; Cs)p(q, �; Cs)dq, (6)

This marginal loglikelihood can be shown to be a con-
cave function of � in this model (Paninski 2005). How-
ever, the integral over all common noise time series q
is of very high dimension and is difficult to compute
directly. Therefore, we proceeded by using the Laplace
approximation (Kass and Raftery 1995; Koyama and
Paninski 2010; Paninski et al. 2010):

log
∫

p(y|q, �; Cs)p(q, �; Cs)dq

≈ log p(q̂) + log p(y|q̂, �; Cs)

−1

2
log det

(
∂2 p(y|q̂; �; Cs)

∂2q2

)
, (7)

with

q̂ = argmax
q

[
log p(q) + log p(y|q, �; Cs)

]
. (8)

While this approximation might look complicated at
first sight, in fact it is quite straightforward: we have ap-
proximated the integrand p(y|q, �; Cs)p(q, �; Cs) with

1It is also useful to recall the relationship between the spatial
covariance Cs and the mixing matrix M here: as noted above,
since the common noise terms qt have unit variance and are inde-
pendent from the stimulus and from one another, the spatial co-
variance Cs is given by MT M. However, since Cs = (UM)T (UM)

for any unitary matrix U, we can not estimate M directly; we can
only obtain an estimate of Cs. Therefore, we can proceed with the
estimation of the spatial covariance Cs and use any convenient
decomposition of this matrix for our calculations below. (We
emphasize the non-uniqueness of M because it is tempting to
interpret M as a kind of effective connectivity matrix, and this
over-interpretation should be avoided.)
2Estimating the spatio-temporal filters ki simultaneously while
marginalizing over the common noise q is possible but compu-
tationally challenging. Therefore we held the shape of ki fixed in
this second stage but optimized its Euclidean length ||ki||2. The
resulting model explained the data well, as discussed in Section 3
below.
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a Gaussian function, whose integral we can compute ex-
actly, resulting in the three terms on the right-hand-side
of Eq. (7). The key is that this replaces the intractable
integral with a much more tractable optimization prob-
lem: we need only compute q̂, which corresponds to the
maximum a posteriori (MAP) estimate of the common
noise input to the cell on a trial by trial basis.3 The
Laplace approximation is accurate when the likelihood
function is close to Gaussian or highly concentrated
around the MAP estimate; in particular, Pillow et al.
(2011) and Ahmadian et al. (2011) found that this
approximation was valid in this setting.

It should also be noted that the spatial covariance
matrix, Cs, is treated as a fixed parameter and is not
being optimized for in this second stage. The model
parameters and the common noise were jointly opti-
mized by using a Newton-Raphson method on the log-
likelihood, Eq. (7). Taking advantage of the fact that
the second derivative matrix of the log-posterior in the
AR model has a banded diagonal structure, we were
able to fit the model in time linearly proportional to the
length of the experiment (Koyama and Paninski 2010;
Paninski et al. 2010). For more details see Appendix A.
In our experience, the last term in Eq. 7 does not sig-
nificantly influence the optimization, and was therefore
neglected, for computational convenience.

Over-fitting is a potential concern for all parametric
fitting problems. Here one might worry, for example,
that our common noise is simply inferred to be instan-
taneously high whenever we observe a spike. However,
this does not happen, since we imposed that the com-
mon noise is an AR process with a nonvanishing time
scale, and this time correlation, in essence, penalizes
instantaneous changes in the common noise. Further-
more, in all the results presented below, we generated

3We make one further simplifying approximation in the case of
the population model with no direct coupling terms. Here the
dimensionality of the common noise terms is extremely large:
dim(q) = ncells × T, where T is the number of timebins in the
experimental data. As discussed in Appendix A, direct optimiza-
tion over q can be performed in O(n3

cellsT) time, i.e., computa-
tional time scaling linearly with T but unfortunately cubically in
ncells (see Paninski et al. 2010 for further discussion). This cubic
scaling becomes prohibitive for large populations. However, if
we make the simplifying approximation that the common noise
injected into each RGC is nearly conditionally independent given
the observed spikes y when computing the marginal likelihood
p(y|�, Cs), then the optimizations over the ncells independent
noise terms qi can be performed independently, with the total
computation time scaling linearly in both ncells and T. We found
this approximation to perform reasonably in practice (see Section
3 below), largely because the pairwise correlation in the common-
noise terms was always significantly less than one (see Fig. 4
below). No such approximation was necessary in the pairwise
case, where the computation always scales as O(T).

the predicted spike trains using a new realization of the
AR process, not with the MAP estimate of the common
noise obtained here, on a cross-validation set. There-
fore, any possible over-fitting should only decrease our
prediction accuracy.

In the third stage of the fitting procedure, we re-
estimated the spatial covariance matrix, Cs, of the com-
mon noise influencing the cells. We use the method of
moments to obtain Cs given the parameters obtained in
the second step. In the method of moments, we approx-
imated each neuron as a point process with a condi-
tional intensity function, λt = exp(�Xt + qt), where we
have concatenated all the covariates, the stimulus and
the past spiking activity of the cell and all other cells,
into X. This allowed us to write analytic expressions
for the different expected values of the model as a
function of Cs given Xt. Then, we equated the analytic
expressions for the expected values with the observed
empirical expected values and solved for Cs. See de-
tails in Appendix B. The method of moments has the
advantage that it permits an alternating optimization
(iterating between the second and third steps described
here). However, in practice we found that the two
methods for estimating Cs (the PSTH approach and the
method of moments) gave similar results.

2.4 Decoding

Once we found the model parameters, we solved the
inverse problem and estimated the stimulus given the
spike train and the model parameters. We will consider
the decoding of the filtered stimulus input into the cells,
ui = ki · x. For simplicity, we performed the decoding
only on pairs of neurons, using the pairwise model
(Fig. 1(B)) fit of Section 2.2 on real spike trains that
were left out during the fitting procedure. We adopted
a Bayesian approach to decoding, where the stimu-
lus estimate, û(y), is based on the posterior stimulus
distribution conditioned on the observed spike trains
yi. More specifically, we used the maximum a poste-
riori (MAP) stimulus as the Bayesian estimate. The
MAP estimate is approximately equal to the posterior
mean, E

[
u|y, �, Cs

]
in this setting (Pillow et al. 2011;

Ahmadian et al. 2011). According to Bayes’ rule, the
posterior p(u|y, �, Cs) is proportional to the product
of the prior stimulus distribution p(u), which describes
the statistics of the stimulus ensemble used in the ex-
periment, and the likelihood p(y|u, �, Cs) given by the
encoding model. The MAP estimate is thus given by

û(y) = argmax
u

p(u|y, �, Cs)

= argmax
u

[log p(u|�) + log p(y|u, �, Cs)]. (9)
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The prior p(u|�) depends on the model parameters
through the dependence of ui on the stimulus filters ki.
The marginal likelihood p(y|u, �, Cs) was obtained by
integrating out the common noise terms as in Eq. (6),
and as in Eq. (7), we used the Laplace approximation:

log p(y|u, �, Cs) = max
q

[log p(q) + log p(y|u, q, �, Cs)]

(10)

where, again, we retained just the first two terms of the
Laplace approximation (dropping the log-determinant
term, as in Eq. (7)). With this approximation the poste-
rior estimate is given by

û(y) = argmax
u,q

[log p(u|�) + log p(q)

+ log p(y|u, q, �, Cs)]. (11)

By exploiting the bandedness properties of the priors
and the model likelihood, we performed the optimiza-
tion in Eq. (11) in computational time scaling only

linearly with the duration of the decoded spike trains;
for more details see Appendix A.

3 Results

We began by examining the structure of the estimated
GLM parameters. Qualitatively, the resulting filters
were similar for the pairwise model, the common-
noise model, and the model developed by Pillow et al.
(2008). The stimulus filters closely resembled a time-
varying difference-of-Gaussians. The post-spike filters
produced a brief refractory period and gradual recov-
ery with a slight overshoot (data not shown; see Fig. 1
in Pillow et al. 2008).

We will now first present our results based on the
pairwise model. Then we will present the results of
the analysis based on the common-noise model with
no direct coupling; in particular, we will address this
model’s ability to capture the statistical structure that
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t. In panels B through D the traces are obtained
by convolving the estimated filters with the observed spike-trains.
Panel (C): The stimulus input, ki · xt. Panel (D): Estimated cross-
coupling input to the cells, Li, j · y j

t . Panel (E): MAP estimate
of the common noise, q̂t (black), with one standard deviation
band (gray). Red trace indicates a sample from the posterior

distribution of the common noise given the observed data. Note
that the cross-coupling input to the cells are much smaller than all
other three inputs to the cell. Panel (F): The cross-correlations
of the two spike trains (black - true spike trains, red-simulated
spike trains). Panel (G): The three point correlations function of
the common-noise and the spike trains, C(τ1, τ2) = [〈q(t)y1(t +
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when the two cells fire in synchrony the common-noise tends to
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figure)
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is present in the full population data, and to predict
the responses to novel stimuli. Finally, we will turn
back to the pairwise model and analyze its decoding
performance.

3.1 Pairwise model

The pairwise model (Fig. 1(B)) allowed for the trial-
by-trial estimation of the different inputs to the cell,
including the common noise, qt. To examine the rela-
tive magnitude of the inputs provided by stimulus and
coupling-related model components, we show in Fig. 2
the net linear input to an example pair of ON cells
on a single trial. The top panel (panel A) shows the
spike-trains of two ON cells over 1 s. Below it are
the different linear inputs. The post-spike filter input,
hi · yi

t, (panel B) imposes a relative refractory period
after each spike by its fast negative input to the cell.
The stimulus filter input, ki · xt, (panel C) is the stimulus
drive to the cell. In panel D we show the cross-coupling
input to the cells, Li, j · y j

t . The MAP estimate of the
common noise, mi · qt, (panel E black line) is positive
when synchronous spikes occur during negative stim-
ulus periods or when the stimulus input is not strong
enough to explain the observed spike times. This can
be seen quantitatively in panel J, where we show the
three point correlation function of the common noise

and the two spike trains. In this case, mi = m j = 1, for
simplicity, so mi · qt = qt. The red line in panel E is
an example of one possible realization of the common
noise which is consistent with the observed spiking
data; more precisely, it is a sample from the Gaussian
distribution with mean given by the MAP estimate,
qt, (black line) and covariance given by the estimated
posterior covariance of qt (gray band) (Paninski et al.
2010). Note that the cross-coupling input, Li, j · y j

t , is
much smaller than the stimulus, self-history, and the
common noise.

The relative magnitude of the different linear inputs
is quantified in Fig. 3(A), where we show the root
mean square (RMS) inputs to the ensemble of cells
from qt and Li, j · y j

t as a function of the cells’ distance
from each other. One can see that the common noise
is significantly larger than the cross-coupling input in
the majority of the cell pairs. It is important to note
that we are plotting the input to the cells and not
the magnitude of the filters; since the OFF population
has a higher mean firing rate, the net cross-coupling
input is sometimes larger than for the ON population.
However, the magnitude of the cross-coupling filters is
in agreement with Trong and Rieke (2008); we found
that the cross-coupling filters between neighboring ON
cells are stronger, on average, than the cross-coupling
filters between neighboring OFF cells by about 25%
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inputs. However, the filter magnitudes agree with the results of
Trong and Rieke (2008); the cross-coupling filters between ON

cells are stronger, on average, than the cross-coupling filters be-
tween OFF cells (not shown). The gap under 100 μm is due to the
fact that RGCs of the same type have minimal overlap (Gauthier
et al. 2009). (B) Histograms showing the relative magnitude of
the common noise and stimulus plus post-spike filter induced
inputs to each cell under the common-noise model. The X-axis

is the ratio of the RMS of each of these inputs
(√

var(q̂t)

var(hi·yi
t+ki·xt)

)
.

Common inputs tend to be a bit more than half as strong as the
stimulus and post-spike inputs combined
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(data not shown). It is also clear that the estimated cou-
pling strength falls off with distance, as also observed in
Shlens et al. (2006). The gap under 100 μm in Fig. 3(A)
reflects the minimum spacing between RGCs of the
same type within a single mosaic.

Cells that are synchronized in this network have
cross-correlations that peak at zero lag (as can be seen
in Fig. 5 below and in Shlens et al. 2006 and Pillow et al.
2008). This is true even if we bin our spike trains with
sub-millisecond precision. This is difficult to explain
by direct coupling between the cells, since it would
take some finite time for the influence of one cell to
propagate to the other (though, gap junction coupling
can indeed act on a submillisecond time scale and can
explain fast time scale synchronization Brivanlou et al.
1998). Pillow et al. (2008) used virtually instantaneous
cross-coupling filters with sub-millisecond resolution to
capture these synchronous effects. To avoid this non-
physiological instantaneous coupling, as discussed in
the methods we imposed a strict delay on our cross-
coupling filters Li, j, to force the model to distinguish be-
tween the common noise and the direct cross-coupling.
Therefore, by construction, the cross-coupling filters
cannot account for very short-lag synchrony (under
4 ms) in this model, and the mixing matrix M handles
these effects, while the cross-coupling filters and the
receptive field overlap in the pairwise model account
for synchrony on longer time scales. Indeed, the model
assigns a small value to the cross-coupling and, as we
will show below, we can in fact discard the cross-
coupling filters while retaining an accurate model of
this network’s spiking responses.

In the pairwise model, since every two cells share
one common noise term, we may directly maximize the
marginal log-likelihood of observing the spike trains
given M (which is just a scalar in this case), by eval-
uating the log-likelihood on a grid of different values
of M. For each pair of cells, we checked that the value
of M obtained by this maximum-marginal-likelihood
procedure qualitatively matched the value obtained by
the method of moments procedure (data not shown).
We also repeated our analysis for varying lengths of
the imposed delay on the direct interneuronal cross-
coupling filters. We found that the length of this delay
did not appreciably change the obtained value of M,
nor the strength of the cross-coupling filters, across the
range of delays examined (0.8 − 4 ms).

3.2 Common-noise model with no direct coupling

We examined the effects of setting the cross-coupling
filters to zero in the common-noise model in response

to two considerations. The first consideration is the
fact that the cross-coupling inputs to the cells were
much smaller than all other inputs once we introduced
the common noise effects and imposed a delay on
the coupling terms. The second consideration is that
Trong and Rieke (2008) reported that the ON RGCs
are weakly coupled, and OFF cells are not directly
coupled. This reduced the number of parameters in the
model drastically since we no longer have to fit ncells ×
(ncells − 1) cross-coupling filters, as in the fully general
model. When we estimated the model parameters with
the direct coupling effects removed, we found that the
inputs to the cell are qualitatively the same as in the
pairwise model. For this new common-noise model,
across the population, the standard deviation of the
total network-induced input is approximately 1/2 the
standard deviation of total input in the cells (Fig. 3(B)),
in agreement with the results of Pillow et al. (2008).
We also found that the inferred common noise strength
shared by any pair of cells depended strongly on the
degree of overlap between the receptive fields of the
cells (Fig. 4), consistent with the distance-dependent
coupling observed in Fig. 3(A).

In order to test the quality of the estimated model
parameters, and to test whether the common noise
model can account for the observed synchrony, we
presented the model with a new stimulus and examined
the resulting spike trains. As discussed in the methods,
it is important to note that the common noise samples
we used to generate spike trains are not the MAP
estimate of the common noise we obtain in the fitting,
but rather, new random realizations. This was done for
two reasons. First, we used a cross-validation stimulus
that was never presented to the model while fitting
the parameters, and for which we have no estimate
of the common noise. Second, we avoid over-fitting
by not using the estimated common noise. Since we
have a probabilistic model, and we are injecting noise
into the cells, the generated spike trains should not be
exact reproductions of the collected data; rather, the
statistical structure between the cells should be pre-
served. Below, we show the two point (Fig. 5) and three
point correlation (Fig. 6) functions of a set of randomly
selected cells under the common-noise model. Both in
the cross-correlation function and in the three-point
correlation functions, one can see that the correlations
of the data are very well approximated by the model.4

4In many of the three point correlation functions one can notice
persistent diagonal structures. If we consider the three point
correlation of neuron 1 with the time shifted firing of neurons 2
and 3, the diagonal structure is the sign of a correlation between
the time shifted neurons (2 and 3).
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Fig. 4 Comparing the inferred common noise strength (right)
and the receptive field overlap (left) across all ON–ON and OFF–
OFF pairs. Note that these two variables are strongly dependent;
Spearman rank correlation coefficent = 0.75 (computed on all
pairs with a positive overlap, excluding the diagonal elements
of the displayed matrices). Thus the strength of the common
noise between any two cells can be predicted accurately given
the degree to which the cells have overlapping receptive fields.

The receptive field overlap was computed as the correlation
coefficient of the spatial receptive fields of the two cells; the
common noise strength was computed as the correlation value
derived from the estimated common noise spatial covariance
matrix Cs (i.e., Cs(i, j)/

√
Cs(i, i)Cs( j, j)). Both of these quantities

take values between −1 and 1; all matrices are plotted on the
same color scale

The results for the pairwise model are qualitatively the
same and were previously presented in Vidne et al.
(2009).

To further examine the accuracy of the estimated
common noise terms q̂, we tested the model with the
following simulation. Using the estimated model pa-
rameters and the true stimulus, we generated a new
population spike-train from the model, using a novel
sample from the common-noise input q. Then we es-
timated q given this simulated population spike-train
and the stimulus, and examined the extent to which
the estimated q̂ reproduces the true simulated q. We
found that the estimated q̂ tracks the true q well when
a sufficient number of spikes are observed, but shrinks
to zero when no spikes are observed. This effect can be
quantified directly by plotting the true vs. the inferred
qt values; we find that E(q̂t|qt) is a shrunk and half-
rectified version of the true qt (Fig. 7(A)), and when
quantified across the entire observed population, we

find that the correlation coefficient between the true
and inferred simulated common-noise inputs in this
model is about 0.5 (Fig. 7(B)).

We also tested the model by examining the peris-
timulus time histogram (PSTH). We presented to the
model 60 repetitions of a novel 10 s stimulus, and
compared the PSTHs of the generated spikes to the
PSTHs of the recorded activity of the cells (Fig. 8).
The model does very well in capturing the PSTHs of
the ON population and captures the PSTH of the OFF
population even more accurately. In each case (PSTHs,
cross-correlations, and triplet-correlations), the results
qualitatively match those presented in Pillow et al.
(2008). Finally, we examined the dependence of the
inferred common noise on the stimulus; recall that we
assumed when defining our model that the common
noise is independent of the stimulus. We computed the
conditional expectation E[q|x, y] as a function of x for
each cell, where we use y to denote the cell’s observed
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pair, and a blue/red negative cross-correlation indicates a OFF–
ON/ON–OFF pair. Note that the cross-correlation at zero lag is
captured by the common noise

spike train, q for the common noise influencing the
cell, and x denotes the sum of all the other inputs
to the cell (i.e., the stimulus input ki · xt plus the re-
fractory input hi · yi

t). This function E[q|x, y] was well-
approximated by a linear function with a shallow slope
over the effective range of the observed x (data not
shown). Since we can reabsorb any linear dependence
in E[q|x, y] into the generalized linear model (via a
suitable rescaling of x), we conclude that the simple
stimulus-independent noise model is sufficient here.

The common noise model suggests that noise in the
spike trains has two sources: the “back-end” noise due
to the stochastic nature of the RGC spiking mechanism,
and the “front-end” noise due to the common noise
term, which represents the lump sum of filtered noise
sources presynaptic to the RGC layer. In order to
estimate the relative contribution of these two terms,
we used the “law of total variance”:

Ex[var(y|x)] = Ex
[
varq|x(E[y|q, x])]

+Ex
[
Eq|x[var(y|q, x)]] . (12)

Here q, x, and y are as in the preceding paragraph. The
first term on the right-hand side here represents the
“front-end” noise: it quantifies the variance in the spike
train that is only due to variance in q for different values
of x. The second term on the right represents the “back-
end” noise: it quantifies the average conditional vari-
ance in the spike train, given x and q (i.e., the variance
due only to the spiking mechanism). We found that the
front-end noise is approximately 60% as large as the
back-end noise in the ON population, on average, and
approximately 40% as large as the back-end noise in
the OFF population.

3.3 Decoding

The encoding of stimuli to spike-trains is captured well
by the GLSS model, as quantified in Figs. 5–8. We
will now consider the inverse problem, the decoding
of the stimuli given the spike-trains and the model
parameters. This decoding analysis is performed using
real spike trains that were left out during the fitting
procedure of the pairwise model (Fig. 1B).
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Fig. 8 Comparing real versus
predicted PSTHs. Example
raster of responses and
PSTHs of recorded data and
model-generated spike trains
to 60 repeats of a novel 1 sec
stimulus. (A) OFF RGC
(black) and model cell (blue).
(B) ON RGC (black) and
model ON cell (red). (C)–(D)
Correlation coefficient
between the model PSTHs
and the recorded PSTHs for
all OFF (C) and ON cells
(D). The model achieves high
accuracy in predicting the
PSTHs
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Figure 9 shows an example of decoding the filtered
stimulus, ui, for a pair of cells. Figure 10(A) shows
a comparison of the mean-square decoding errors for

MAP estimates based on the pairwise common-noise
model, and those based on a GLM with no common
noise but with post-spike filters directly coupling the

Fig. 9 Stimulus decoding
given a pair of spike trains. In
panels (B) through (D) blue
indicates cell 1 and green cell
2. (A) MAP estimate of the
common noise going into two
cells (black) with one
standard deviation of the
estimate (gray). (B) and (C)
panels: The true stimulus
filtered by the estimated
spatio-temporal filter trace,
ki · xt, (black) and the MAP
estimate of the filtered
stimulus (green/blue) with
one standard deviation
(gray). Decoding performed
following the method
described in Section 2.4. (D)
The spike trains of the two
cells used to perform the
decoding
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Fig. 10 Decoding jitter analysis. (A) Without any spike jitter, the
two models decode the stimulus with nearly identical accuracy.
Each point represents the decoding performance of the two
models for a pair of cells. In red: ON–ON pairs. In blue: OFF–
OFF. (B) Jitter analysis of the common noise model versus the
direct coupling model from Pillow et al. (2008). The X axis
denotes the maximum of the cross-correlation function between
the neuron pair. Baseline is subtracted so that units are in spikes/s
above (or below) the cells’ mean rate. The Y axis is the percent

change (
Scommon−noise−Sdirect−coupling

Scommon−noise
∗ 100) in the model’s sensitivity

to jitter (S =
√

U jitter−U
|�t| ) compared to the change in sensitivity of

the direct coupling model: negative values mean that the common
noise model is less sensitive to jitter than a model with direct
cross-coupling. Note that the common-noise model leads to more
robust decoding in every cell pair examined, and pairs that are
strongly synchronized are much less sensitive to spike-train jitter
in the common noise model than in the model with coupling
filters

two cells, as in Pillow et al. (2008). There is very little
difference between the performance of the two models
based on the decoding error.

However, the decoder based on the common noise
model turned out to be significantly more robust than
that based on the direct, instantaneous coupling model.
We studied robustness by quantifying how jitter in the
spike trains changes the decoded stimulus, u(y jitter), in
the two models, where y jitter is the jittered spike train
(Ahmadian et al. 2009). Specifically, we analyzed a
measure of robustness which quantifies the sensitivity
to precise spike timing. To calculate a spike’s jitter
sensitivity we compute the estimate u(y) for the original
spike train and for a spike train in which the timing of
that spike is jittered by a Gaussian random variable,
with standard deviation �t. We defined the sensitivity
to be the root mean square distance between the two
stimulus estimates divided by |�t|, S =

√
u jitter−u
|�t| , where

u jitter is the decoded stimulus of the jittered spike train,
and S is computed in the limit of small jitter, �t → 0.
The average value of these spike sensitivities quan-
tifies how sensitively the decoder depends on small
variations in the spike trains. Conversely, the smaller
these quantities are on average, the more robust is the
decoder.

Our intuition was that the direct coupling model
has very precise spike-induced interactions, via the
coupling filters Li, j, but these interactions should be
fragile, in the sense that if a spike is perturbed, it will

make less sense to the decoder, because it is not at
the right time relative to spikes of other cells. In the
common-noise model, on the other hand, the temporal
constraints on the spike times should be less precise,
since the common noise term acts as an unobserved
noise source which serves to jitter the spikes relative
to each other, and therefore adding small amounts
of additional spike-time jitter should have less of an
impact on the decoding performance. We found that
this was indeed the case: the spike sensitivities for
ON–ON (OFF–OFF) pairs turned out to decrease by
about 10% (5%) when using the decoder based on
the common noise model instead of the instantaneous
coupling model with no common noise. Furthermore,
the percentage decrease in mean spike sensitivity was
directly proportional to the strength of the common
noise input between the two cells (Fig. 10(B)).

4 Discussion

The central result of this study is that multi-neuron
firing patterns in large networks of primate parasol
retinal ganglion cells can be explained accurately by
a common-noise model with no direct coupling inter-
actions (Figs. 1(C), 5–8), consistent with the recent
intracellular experimental results of Trong and Rieke
(2008). The common noise terms in the model can
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be estimated on a trial-by-trial basis (Figs. 2 and 7),
and the scale of the common noise shared by any pair
of cells depends strongly on the degree of overlap in
the cells’ receptive fields (Fig. 4). By comparing the
magnitudes of noise- versus stimulus-driven effects in
the model (Fig. 3), we can quantify the relative contri-
butions of this common noise source, versus spike-train
output variability, to the reliability of RGC responses.
Finally, optimal Bayesian decoding methods based on
the common-noise model perform just as well as (and in
fact, are more robust than) models that account for the
correlations in the network by direct coupling (Fig. 10).

4.1 Modeling correlated firing in large networks

In recent years, many researchers have grappled with
the problem of inferring the connectivity of a network
from spike-train activity (Chornoboy et al. 1988; Utikal
1997; Martignon et al. 2000; Iyengar 2001; Paninski
et al. 2004; Truccolo et al. 2005; Okatan et al. 2005;
Nykamp 2005, 2008, 2009; Kulkarni and Paninski 2007;
Stevenson et al. 2008, 2009). Modeling of correlated
firing in the retina has been a special focus (Nirenberg
et al. 2002; Schnitzer and Meister 2003; Schneidman
et al. 2006; Shlens et al. 2006; Pillow et al. 2008; Shlens
et al. 2009; Cocco et al. 2009). The task of disambiguat-
ing directed connectivity from common input effects
involves many challenges, among them the fact that the
number of model parameters increases with the size of
the networks, and therefore more data are required in
order to estimate the model parameters. The computa-
tional complexity of the task also increases rapidly. In
the Bayesian framework, integrating over higher and
higher dimensional distributions of unobserved inputs
becomes difficult. Here, we were aided by prior knowl-
edge from previous physiological studies—in particu-
lar, that the common noise in this network is spatially
localized (Shlens et al. 2006; Pillow et al. 2008) and
fast (with a timescale that was explicitly measured by
Trong and Rieke 2008)—to render the problem more
manageable. The model is parallelizable, which made
the computation much more tractable. Also, we took
advantage of the fact that the common noise may be
well approximated as an AR process with a banded
structure to perform the necessary computations in
time that scales linearly with T, the length of the ex-
periment. Finally, we exploited the separation of time
scales between the common-noise effects and those due
to direct connectivity by imposing a strict time delay on
the cross-coupling filters; this allowed us to distinguish
between the effects of these terms in estimating the
model structure (Figs. 2 and 3).

Our work relied heavily on the inference of the
model’s latent variables, the common noise inputs, and
their correlation structure. If we fit our model para-
meters while ignoring the effect of the common noise,
then the inferred coupling filters incorrectly attempt to
capture the effects of the unmodeled common noise. A
growing body of related work on the inference of latent
variables given spike train data has emerged in the
last few years, building on work both in neuroscience
(Smith and Brown 2003) and statistics (Fahrmeir and
Kaufmann 1991; Fahrmeir and Tutz 1994). For exam-
ple, Yu et al. (2006, 2009) explored a dynamical latent
variable model to explain the activity of a large number
of observed neurons on a single trial basis during motor
behavior. Lawhern et al. (2010) proposed to include
a multi-dimensional latent state in a GLM framework
to account for external and internal unobserved states,
also in a motor decoding context. We also inferred the
effects of the common noise on a single trial basis, but
our method does not attempt to explain many observed
spike trains on the basis of a small number of latent
variables (i.e., our focus here is not on dimensionality
reduction); instead, the model proposed here maintains
the same number of common noise terms as the num-
ber of observed neurons, since these terms are meant
to account for noise in the presynaptic network, and
every RGC could receive a different and independent
combination of these inputs.

Two important extensions of these methods should
be pursued in the future. First, in our method the
time scale of the common noise is static and preset.
It will be important to relax this requirement, to allow
dynamic time-scales and to attempt to infer the correct
time scales directly from the spiking data, perhaps via
an extension of the moment-matching or maximum
likelihood methods presented here. Another important
extension would be to include common noise whose
scale depends on the stimulus; integrating over such
stimulus-dependent common noise inputs would entail
significant statistical and computational challenges that
we hope to pursue in future work (Pillow and Latham
2007; Mishchenko et al. 2011).

4.2 Possible biological interpretations of the common
noise

One possible source of common noise is synaptic vari-
ability in the bipolar and photoreceptor layers; this
noise would be transmitted and shared among nearby
RGCs with overlapping dendritic footprints. Our re-
sults are consistent with this hypothesis (Fig. 4), and
experiments are currently in progress to test this idea
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more directly (Rieke and Chichilnisky, personal com-
munication). It is tempting to interpret the mixing ma-
trix M in our model as an effective connectivity matrix
between the observed RGC layer and the unobserved
presynaptic noise sources in the bipolar and photore-
ceptor layers. However, it is important to remember
that M is highly underdetermined here: as emphasized
in the Methods section, any unitary rotation of the
mixing matrix will lead to the same inferred covariance
matrix Cλ. Thus an important goal of future work will
be to incorporate further biological constraints (e.g.,
on the sparseness of the cross coupling filters, local-
ity of the RGC connectivity, and average number of
photoreceptors per RGC), in order to determine the
mixing matrix M uniquely. One possible source of such
constraints was recently described by Field et al. (2010),
who introduced methods for resolving the effective
connectivity between the photoreceptor and RGC lay-
ers. Furthermore, parasol ganglion cells are only one
of many retinal ganglion cell type; many researchers
have found the other cell types to be synchronized as
well (Arnett 1978; Meister et al. 1995; Brivanlou et al.
1998; Usrey and Reid 1999; Greschner et al. 2011). An
important direction for future work is to model these
circuits together, to better understand the joint sources
of their synchrony.

4.3 Functional roles of synchrony and common noise

Earlier work (Pillow et al. 2008) showed that proper
consideration of synchrony in the RGC population
significantly improves decoding accuracy. Here, we
showed that explaining the synchrony as an outcome
of common noise driving the RGCs, as opposed to a
model where the synchrony is the outcome of direct
post-spike coupling, leads to less sensitivity to temporal
variability in the RGC output spikes. One major ques-
tion remains open: are there any possible functional ad-
vantages of this (rather large) common noise source in
the retina? Cafaro and Rieke (2010) recently reported
that common noise increases the accuracy with which
some retinal ganglion cell types encode light stimuli. An
interesting analogy to image processing might provide
another clue: “dithering” refers to the process of adding
noise to an image before it is quantized in order to
randomize quantization error, helping to prevent visual
artifacts which are coherent over many pixels (and
therefore more perceptually obvious). It might be inter-
esting to consider the common noise in the retina as an
analog of the dithering process, in which nearby pho-
toreceptors are dithered by the common noise before
the analog-to-digital conversion implemented at the

ganglion cell layer (Masmoudi et al. 2010). Of course,
we emphasize that this dithering analogy represents just
one possible hypothesis, and further work is necessary
to better understand the computational role of common
noise in this network.
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Appendix A: O(T) optimization for parameter
estimation and stimulus decoding for models
with common noise effects

The common-noise model was formulated as condition-
ally independent cells, with no cross-coupling filters,
interacting through the covariance structure of the
common noise inputs. Therefore, the model lends it-
self naturally to parallelization of the computationally
expensive stage, the maximum likelihood estimation
of the model parameters. For each cell, we need to
estimate the model parameters and the common noise
the cell receives. The common noise to the cell on
a given trial is a time series of the same length of
the experiment itself (T discrete bins), and finding the
maximum a posteriori (MAP) estimate of the common
noise is a computationally intensive task because of
its high dimensionality, but it can be performed inde-
pendently on each cell. We used the Newton-Raphson
method for optimization over the joint vector, ν =
[�, q], of the model cell’s parameters and the common-
noise estimate. Each iteration in the Newton-Raphson
method requires us to find the new stepping direction,
δ, by solving the linear set of equations, Hδ = ∇, where
∇ denotes the gradient and H the Hessian matrix (the
matrix of second derivatives) of the objective function
F. We need to solve this matrix equation for δ at every
step of the optimization. In general, this requires O(T3)
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Fig. 11 PSTH-based method (A) Approximate spatial covari-
ance matrix of the inferred common noise composed of the
first two spatial singular vectors. C̃i, j = ∑2

k=1 σkUk (the vectors
are reshaped into matrix form). Note the four distinct regions
corresponding to the ON–ON, OFF–OFF, ON–OFF, and OFF–
ON. (B) First two temporal singular vectors, corresponding
to the temporal correlations of the ‘same-type’ (ON–ON and
OFF–OFF pairs), and ‘different type’(ON–OFF pairs). Note the
asymmetry of the ON–OFF temporal correlations. (C) Relative

power of all the singular values. Note that the first two singular
values are well separated from the rest, indicating the correlation
structure is well approximated by the first two singular vectors.
(D) Receptive field centers and the numbering schema. Top in
red: ON cells. Bottom in blue: OFF cells. The numbering schema
starts at the top left corner and goes column-wise to the right. The
ON cells are 1 through 104 and the OFF cells are 105 to 277. As a
result, cells that are physically close are usually closely numbered

operations which renders naive approaches inapplica-
ble for long experiments such as the one discussed
here. Here we used a O(T) method for computing
the MAP estimate developed in Koyama and Paninski
(2010).

Because of the autoregressive structure of the com-
mon noise, q, the log posterior density of qt can be
written as:

F = log p({qt}|{yt}) = log p(qo)

+
T∑

t=1

log p(qt|qt−1)+
T∑

t=1

log p(yt|qt)+const, (13)

where we denote the spike train as {yt}, and for sim-
plicity we have suppressed the dependence on all other

model parameters and taken q to be a first order au-
toregressive process. Since all terms are concave in q,
the entire expression is concave in q.

The Hessian, H, has the form:

H =

⎡

⎢⎢⎢⎣

∂2 F
∂2q

∂2 F
∂q∂�

∂2 F
∂�∂q

∂2 F
∂2�

⎤

⎥⎥⎥⎦ ; (14)

note that the dimension of J = ∂2 F
∂2q is T × T (in our case

we have a 9.6 min recording and we use 0.8 ms bins,
i.e. T = 720, 000), while the dimension of H�� = ∂2 F

∂2�

is just N × N, where N is the number of parameters in
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the model (N < 20 for all the models considered here).
Using the Schur complement of H we get:

H−1 =
[

J Hq�

H�q H��

]−1

=
[

J−1 + J−1 Hq�S−1 H�q J −J−1 Hq�S−1

−S−1 H�q J−1 S−1

]

(15)

where we note the Schur complement of H as S =
J − Hq� H−1

�� H�q. The dimensions of ∂2 F
∂2�

are small
(number of model parameters, N), and because of the
autoregressive structure of the common noise, J = ∂2 F

∂2q ,
is a tridiagonal matrix:

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 B1,2 0 . . . 0 0

BT
1,2 D2 B2,3 . . . 0 0

0 BT
2,3 D3

. . . 0 0
...

...
. . .

. . .
... 0

0 0 0 BT
T−2,T−1 DT−1 BT−1,T

0 0 0 . . . BT
T−1,T DT

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

where

Dt = ∂2

∂q2
t

log p(yt|qt) + ∂2

∂q2
t

log p(qt|qt−1)

+ ∂2

∂q2
t

log p(qt+1|qt) (17)

and

Bt,t+1 = ∂2

∂qt∂qt+1
log p(qt+1|qt). (18)

In the case that we use higher order autoregressive
processes, Dt and Bt are replaced by d × d blocks
where d is the order of the AR process. The tridiagonal
structure of J allows us to obtain each Newton step
direction, δ, in O(d3T) time using standard methods
(Rybicki and Hummer 1991; Paninski et al. 2010).

We can also exploit similar bandedness properties
for stimulus decoding. Namely, we can carry out the
Newton-Raphson method for optimization over the
joint vector ν = (u, q), Eq. (11), in O(T) computa-
tional time. According to Eq. (11) (repeated here for
convenience),

û(y)=argmax
u,q

[log p(u)+log p(q|�)+log p(y|u, q, �)].

(19)

the Hessian of the log-posterior, J, (i.e., the matrix
of second partial derivatives of the log-posterior with
respect to the components of ν = (u, q)) is:

J = ∂2 log p(u)

∂2ν
+ ∂2 log p(q|�)

∂2ν
+ ∂2 log p(y|u, q, �)

∂2ν
.

(20)

Thus, the Hessian of the log-posterior is the sum of the
Hessian of the log-prior for the filtered stimulus, A =
∂2

∂2ν
log p(u), the Hessian, B = ∂2

∂2ν
log p(q|�), of the log-

prior for the common noise, and the Hessian of the log-
likelihood, D = ∂2

∂2ν
log p(y|u, q, �). Since we took the

stimulus and common noise priors to be Gaussian with
zero mean, A and B are constant matrices, independent
of the decoded spike train.

We order the components of ν = (u, q) according to
(u1

1, u2
1, q1, u1

2, u2
2, q2, · · · ), where subscripts denote the

time step, i.e., such that components corresponding to
the same time step are adjacent. With this ordering, D
is block-diagonal with 3 × 3 blocks

D =
⎛

⎜⎝
d1,1 0 · · ·

0 d2,2 · · ·
...

...
. . .

⎞

⎟⎠ ,

dt,t =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∂L
∂u1

t ∂u1
t

∂L
∂u1

t ∂u2
t

∂L
∂u1

t ∂qt

∂L
∂u2

t ∂u1
t

∂L
∂u2

t ∂u2
t

∂L
∂u2

t ∂qt

∂L
∂qt∂u1

t

∂L
∂qt∂u2

t

∂L
∂qt∂qt

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

where L ≡ log p(y|u, q, �) is the GLM log-likelihood.
The contribution of the log-prior for q is given by

B =
⎛

⎜⎝
b1,1 b1,2 · · ·
b2,1 b2,2 · · ·
...

...
. . .

⎞

⎟⎠ , bt1,t2 =
⎛

⎝
0 0 0
0 0 0
0 0 Bt1,t2

⎞

⎠ , (22)

where, as above, the matrix
[
Bt1,t2

]
is the Hessian cor-

responding to the autoregressive process describing q
(the zero entries in bt1,t2 involve partial differentiation
with respect to the components of u which vanish be-
cause the log-prior for q is independent of u). Since B
is banded, B is also banded. Finally, the contribution of
the log-prior term for u is given by

A =
⎛

⎜⎝
a1,1 a1,2 · · ·
a2,1 a2,2 · · ·
...

...
. . .

⎞

⎟⎠ , at1,t2 =
⎛

⎝
A1,1

t1,t2 A1,2
t1,t2 0

A2,1
t1,t2 A2,2

t1,t2 0
0 0 0

⎞

⎠ , (23)



116 J Comput Neurosci (2012) 33:97–121

where the matrix A (formed by excluding all the
zero rows and columns, corresponding to partial
differentiation with respect to the common noise, from
A) is the inverse covariance matrix of the ui. The
covariance matrix of the ui is given by Cij

u = kiCxk j T

where Cx is the covariance of the spatio-temporally
fluctuating visual stimulus, x, and k j T

is cell j’s receptive
field transposed. Since a white-noise stimulus was used
in the experiment, we use Cx = c2I, where I is the
identity matrix and c is the stimulus contrast. Hence we
have Cij

u = c2kik j T
, or more explicitly5

[
Cu

]i, j
t1,t2

≡ Cov[ui
t1, u j

t2 ] = c2
∑

t,n

ki(t1 − t, n)k j(t2 − t, n).

(24)

Notice that since the experimentally fit ki have a finite
temporal duration Tk, the covariance matrix, Cu is
banded: it vanishes when |t1 − t2| ≥ 2Tk − 1. However,
the inverse of Cu, and therefore A are not banded in
general. This complicates the direct use of the banded
matrix methods to solve the set of linear equations,
Jδ = ∇, in each Newton-Raphson step. Still, as we will
now show, we can exploit the bandedness of Cu (as well
as B and D) to obtain the desired O(T) scaling.

In order to solve each Newton-Raphson step we
need to recast our problem into an auxiliary space in
which all our matrices are tridiagonal. Below we show
how such a rotation can be accomplished. First, we cal-
culate the (lower triangular) Cholesky decomposition,
L, of Cu, satisfying LL

T = Cu. Since Cu is banded, L is
itself banded, and its calculation can be performed in
O(T) operations (and is performed only once, because
Cu is fixed and does not depend on the vector (u, q)).
Next, we form the 3T × 3T matrix L

L =
⎛

⎜⎝
l1,1 0 · · ·
l2,1 l2,2 · · ·
...

...
. . .

⎞

⎟⎠ , lt1,t2 =
⎛

⎝
L1,1

t1,t2 L1,2
t1,t2 0

L2,1
t1,t2 L2,2

t1,t2 0
0 0 1

⎞

⎠ .

(25)

Clearly L is banded because L is banded. Also notice
that when L acts on a state vector it does not affect its q

5Since x is binary, strictly speaking, ui is not a Gaussian vector
solely described by its covariance. However, because the filters
ki have a relatively large spatiotemporal dimension, the compo-
nents of ui are weighted sums of many independent identically
distributed binary random variables, and their prior marginal
distributions can be well approximated by Gaussian distributions
(see Pillow et al. 2011 and Ahmadian et al. 2011 for further
discussion of this point). For this reason, we replaced the true
(non-Gaussian) joint prior distribution of yi with a Gaussian
distribution with zero mean and covariance Eq. (24).

part: it corresponds to the T × T identity matrix in the
q-subspace. Let us define

G ≡ L
T
JL. (26)

Using the definitions of L and A, and L
T

AL = I (which
follows from A = C−1

u and the definition of L), we then
obtain

G = Iu + B + L
T
DL, (27)

where we defined

Iu =
⎛

⎜⎝
iu 0 · · ·
0 iu · · ·
...

...
. . .

⎞

⎟⎠ , iu =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ . (28)

Iu is diagonal and B is banded, and since D is block-
diagonal and L is banded, so is the third term in
Eq. (27). Thus G is banded.

Now it is easy to see from Eq. (26) that the solution,
δ, of the Newton-Raphson equation, Jδ = ∇, can be
written as δ = Lδ̃ where δ̃ is the solution of the auxiliary
equation Gδ̃ = L

T∇. Since G is banded, this equation
can be solved in O(T) time, and since L is banded, the
required matrix multiplications by L and L

T
can also

be performed in linear computational time. Thus the
Newton-Raphson algorithm for solving Eq. (11) can be
performed in computational time scaling only linearly
with T.

Appendix B: Method of moments

The identification of the correlation structure of a la-
tent variable from the spike-trains of many neurons,
and the closely related converse problem of gener-
ating spike-trains with a desired correlation structure
(Niebur 2007; Krumin and Shoham 2009; Macke et al.
2009; Gutnisky and Josic 2010), has received much
attention lately. Krumin and Shoham (2009) generate
spike-trains with the desired statistical structure by
nonlinearly transforming the underlying nonnegative
rate process to a Gaussian processes using a few com-
monly used link functions. Macke et al. (2009) and
Gutnisky and Josic (2010) both use thresholding of a
Gaussian process with the desired statistical structure,
though these works differ in the way the authors sam-
ple the resulting processes. Finally, Dorn and Ringach
(2003) proposed a method to find the correlation struc-
ture of an underlying Gaussian process in a model
where spikes are generated by simple threshold cross-
ing. Here we take a similar route to find the correlation
structure between our latent variables, the common
noise inputs. However, the correlations in the spike
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trains in our model stem from both the receptive field
overlap as well as the correlations among the latent
variable (the common noise inputs) which we have to
estimate from the observed spiking data. Moreover,
the GLM framework used here affords some additional
flexibility, since the spike train including history effects
is not restricted to be a Poisson process given the latent
variable.

Our model for the full cell population can be written
as:

λ = exp(k · x + h · y + Q), (29)

where Q ∼ N (0, Cτ ⊗ Cs) since we assume the spatio-
temporal covariance structure of the common noise is
separable (as discussed in Section 2.2). Here, we sep-
arate the covariance of the common noise inputs into
two terms: the temporal correlation of each of the com-
mon noise sources which imposes the autoregressive
structure, Cτ , and the spatial correlations between the
different common inputs to each cell, Cs. Correlations
between cells have two sources in this model. First, the
spatio-temporal filters overlap. Second, the correlation
matrix Cs accounts for the common noise correlation.
The spatio-temporal filters’ overlap is insufficient to
account for the observed correlation structure, as dis-
cussed in (Pillow et al. 2008); the RF overlap does not
account for the large sharp peak at zero lag in the cross-
correlation function computed from the spike trains of
neighboring cells. Therefore, we need to capture this
fast remaining correlation through Cs.

We approximated our model as: yi ∼
Poisson(exp(aizi + qi)dt) where zi = ki · xi + hi · yi.
Since the exponential nonlinearity is a convex,
log-concave, increasing function of z, so is
Eq

[
exp(aizi + qi)

]
(Paninski 2005). This guarantees

that if the distribution of the covariate is elliptically
symmetric, then we may consistently estimate the
model parameters via the standard GLM maximum
likelihood estimator, even if the incorrect nonlinearity
is used to compute the likelihood (Paninski 2004), i.e,
even when the correct values of the correlation matrix,
Cs, are unknown. Consistency of the model parameter
estimation holds up to a scalar constant. Therefore,
we leave a scalar degree of freedom, ai in front of zi.
We will now write the moments of the distribution
analytically and afterwards we will equate them to the
observed moments of the spike trains:

The average firing rate can be written as:

E[yi] = Ez,q
[
exp(aizi + qi)

]

= Ez
[
exp(aizi)

]
Eq

[
exp(qi)

]

= Gi(ai)ri

(30)

and

E
[
ziyi] = Ez,b

[
z exp(aizi + qi)

]

= Ez
[
z exp(aizi)

]
Eq

[
exp(qi)

]

= d
dai

Gi(ai)ri

(31)

where Gi(ai) = E[exp(aizi)] is the moment generating
function (Bickel and Doksum 2001) of aizi and ri =
E[exp(qi)] = exp(μi + 1

2 (Cs)ii) may be computed ana-
lytically here (by solving the Gaussian integral over
exp(q)). Therefore we have:

E[ziyi]
E[yi] =

d
dai Gi(ai)ri

Gi(ai)ri
= d

dai
log Gi(ai) (32)

and we can solve for ai
opt.

Now, we can proceed and solve for Cs. We first
rewrite Cs using the “law of total variance” saying that
the total variance of a random variable is the sum of
expected conditioned variance plus the variance of the
expectations:

Cs = E
[
yiy j] − E

[
yi] E

[
y j]

= Ez,q[Cov(y|z, q)] + Covz,q(E[y|z, q]).
(33)

The first term in the right hand side can be written as:

Ez,q
[
Cov(y|z, q)

] = Ez,q
[
diag[exp(aizi + qi)]]

= diag[E[yi]], (34)

since the variance of a Poisson process equals its mean.
The second term in the right hand side of Eq. (33) is

Covz,q(E[y|z, q])
= Ez,q

[
E[yi|zi, qi]E[y j|z j, q j]]

−Ez,q
[
E[yi|zi, qi]] Ez,q

[
E[y j|z j, q j]]

= Ez,q
[
exp(aizi + qi) exp(a jz j + q j)

]

−Ez,q
[
exp(aizi + qi)

]
Ez,q

[
exp(a jz j + q j)

]

= Ez
[
exp(aizi+a jz j)

]
Eq

[
exp(qi + q j)

]−E
[
yi] E

[
y j]

= Gi, j(ai, a j) exp

(
1

2

(
Cii

s + C jj
s + 2Cij

s

))

−Gi(ai)riG j(a j)r j (35)

Putting them back together, we have

Cs = diag
[
E

[
yi]]

+ rir j(Gi, j(ai, a j) exp
(
(Cs)i, j − Gi(ai)G j(a j)

)
.

(36)
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Now we have all the terms for the estimation of Cs, and
we can uniquely invert the relationship to obtain:

(Cs)i, j = log

(
(Ĉs)i, j − E[yi]
rir jGi, j(ai, a j)

+ Gi(ai)G j(a j)

Gi, j(ai, a j)

)
, (37)

where we set Gi, j(ai, a j) = E[exp(aizi + a jz j)], and we
denote the observed covariance of the time-series as Ĉs.

As a consequence of the law of total variance (re-
call Eq. (33) above), the Poisson mixture model (a
Poisson model where the underlying intensity is itself
stochastic) constrains the variance of the spike rate to
be larger than the mean rate, while in fact our data
is under-dispersed (i.e., the variance is smaller than
the mean). This often results in negative eigenvalues
in the estimate of Cs. We therefore need to find the
closest approximant to the covariance matrix by finding
the positive semidefinite matrix that minimizing the 2-
norm distance to Cs which is a common approach in
the literature, though other matrix norms are also pos-
sible. Therefore, in order that the smallest eigenvalue
is just above zero, we must add a constant equal to
the minimum eigenvalue to the diagonal, Cpsd

s = Cs +
min(eig(Cs)) · 1. For more details see (Higham 1988); a
similar problem was discussed in (Macke et al. 2009).
Finally, note that our estimate of the mixing matrix, M,
only depends on the estimate of the mean firing rates
and correlations in the network. Estimating these quan-
tities accurately does not require exceptionally long
data samples; we found that the parameter estimates
were stable, approaching their final value even with as
little as half the data.

Appendix C: PSTH-based method

A different method to obtain the covariance structure
of the common noise involves analyzing the covaria-
tions of the residual activity in the cells once the PSTHs
are subtracted (Brody 1999). Let yi

r(t) be the spike train
of neuron i at repeat r. Where the the ensemble of cells
is presented with a stimulus of duration T, R times.
si = Er[yi

r(t)] is the PSTH of neuron i. Let

δyi
r(t) = yi

r(t) − Er[yi
r(t)]; ie, (38)

δyi
r(t) is each neuron’s deviation from the PSTH on

each trial. This deviation is unrelated to the stimulus
(since we removed the ‘signal’, the PSTH). We next

form a matrix of cross-correlations between the devi-
ations of every pair of neurons,

Ci, j(τ ) = Er
[(

yi
r (t) − Er

[
yi

r (t)
])

· (
y j

r (t + τ) − Er
[
y j

r (t + τ)
])]

= Er
[
δyi

r(t) · δy j
r(t + τ)

]
; (39)

we can cast this matrix into a 2-dimensional matrix,
Ck(τ ), by denoting k = i · N + j. The matrix, Ck(τ ),
contains the trial-averaged cross-correlation functions
between all cells. It has both the spatial and the tempo-
ral information about the covariations.

Using the singular value decomposition one can al-
ways decompose a matrix into Ck(τ ) = U�V. There-
fore, we can rewrite our matrix of cross-covariations as:

Ck(τ ) =
∑

i

σiUi · VT
i . (40)

where Ui is the ith singular vector in the matrix U
and Vi is the ith singular vector in the matrix V and
σi are the singular values. Each matrix, σiUi · VT

i , in
the sum, is a spatio-temporally separable matrix. Ex-
amining the singular values, σi, in Fig. 11(C), we see a
clear separation between the first and second singular
values; this provides some additional support for the
separable nature of the common noise in our model.
The first two singular values capture most of the struc-
ture of Ck(τ ). This means that we can approximate the
matrix Ck(τ ) ≈ C̃k = ∑2

i=1 σiUi · VT
i (Haykin 2001). In

Fig. 11(A), we show the spatial part of the matrix of
cross-covariations composed of the first two singular
vectors reshaped into matrix form, and in Fig. 11B we
show the first two temporal counterparts. Note the dis-
tinct separation of the different subpopulations (ON–
ON, OFF–OFF, ON–OFF, and OFF–ON) composing
the matrix of the entire population in Fig. 11A.
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