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Abstract. We present a multiscale nonlinear image representation that permits 
an efficient coding of natural images. The input image is first decomposed into 
a set of subbands at multiple scales and orientations using near-orthogonal 
symmetric quadrature mirror filters. This is followed by a nonlinear “divisive 
normalization” stage, in which each linear coefficient is divided by a value 
computed from a small set of neighboring coefficients in space, orientation and 
scale. This neighborhood is chosen to allow this nonlinear operation to be effi-
ciently inverted. The parameters of the normalization operation are optimized in 
order to maximize the independence of the normalized responses for natural 
images. We demonstrate the near-independence of these nonlinear responses, 
and suggest a number of applications for which this representation should be 
well suited. 

1   Introduction 

The choice of an appropriate image representation is often driven by the goal of re-
moving statistical redundancy in the input signal. The general problem is extremely 
difficult, and thus one typically must restrict it by constraining the form of the de-
composition and/or by simplifying the description of the input statistics. A classical 
solution is to consider only linear decompositions, and the second-order (i.e. covari-
ance) properties of the input signal. This technique, known as Principal Components 
Analysis (PCA), has several drawbacks. First, the solution is not unique if one does 
not impose additional constraints. Moreover, although PCA can be used to recover a 
set of statistically independent axes for representing Gaussian data, the technique of-
ten fails when the data are non-Gaussian (as is the case of natural images [1]). More 
recently, a number of authors have shown that one may use higher-order statistics to 
uniquely constrain the choice of linear decomposition. These procedures are com-
monly known as Independent Components Analysis (ICA). The resulting basis func-
tions of such decompositions are similar to cortical receptive fields [2, 3] and the as-
sociated coefficients are generally more independent than principal components. 

Nevertheless, linear decompositions cannot completely eliminate higher-order sta-
tistical dependencies [e.g. 4, 5], basically due to the fact that natural images are not 
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formed as sums of independent components. Large-magnitude coefficients tend to lie 
along ridges with orientation matching that of the subband, and also tend to occur at 
the same spatial locations in subbands at adjacent scales and orientations [5]. Large 
number of recent “ context-based”  algorithms in image processing take advantage of 
this, often implicitly. 

In recent years, Simoncelli and co-workers [6, 7, 8] have shown that a nonlinear 
divisive normalization can significantly reduce statistical dependencies between adja-
cent responses. In this nonlinear stage, the linear inputs are squared and then divided 
by a weighted sum of squared neighboring responses in space, orientation and scale, 
plus a regularizing constant. Divisive normalization not only reduces dependency, but 
also can be used to describe the nonlinear response properties of neurons in visual 
cortex [9, 10] and yields image descriptors more relevant from a perceptual point of 
view [11]. However, using of the divisive normalization in image processing applica-
tions is not straightforward since it is not easily invertible [12]. 

A number of authors have proposed nonlinear extensions of multiscale decomposi-
tions for use in image processing. For example, nonlinear pyramid schemes can be 
obtained by replacing linear filters in their linear counterparts by median, morpho-
logical or rank order based filters. There are also many nonlinear decompositions 
based on nonredundant (critically sampled) linear decompositions, such as morpho-
logical subband [e.g. 13, 14, 15], order statistics based subband [e.g. 16, 17, 18], and 
morphological wavelet [e.g. 19, 20, 21] decompositions. 

 
In this paper, we describe a simple nonlinear multiresolution image representation. 

Starting with a nonredundant linear decomposition, we normalize each coefficient by 
a value computed from a neighborhood that is suboptimal for dependency reduction, 
but that allows the transform to be easily inverted. We describe the empirical optimi-
zation of the transform parameters, and demonstrate that the redundancy in the result-
ing coefficients is substantially less than that of the original linear ones. 

2   Image Representation Scheme 

The scheme proposed here consists of a linear decomposition followed by a nonlinear 
divisive normalization stage. 

2.1   Linear stage 

The linear stage is an approximately orthogonal three-level linear decomposition 
based on symmetric quadrature mirror filters (QMF) with 9 coefficients [22], which 
are closely related to wavelets (essentially, they are approximate wavelet filters). The 
basis functions of this linear transform are localized in space, orientation and spatial 
frequency. This gives rise to 9 subbands (horizontal, vertical and diagonal for each of 
the 3 scales considered here) plus an additional low-pass channel. Multiscale linear 
transforms like this are very popular for image representation. 

The left panel in Fig. 1 shows a typical conditional histogram of a natural image.  



 
Fig. 1. Conditional histograms of two neighboring coefficients (one is the vertical neighbor of 
the other) in the lowest (finest) scale vertical subband of the QMF (left), and Gabor (right) 
pyramid of the “ Einstein”  standard test image. 

As we can see, the QMF coefficients are decorrelated, since the expected value of 
the ordinate is approximately zero independently of the abscissa and therefore the co-
variance is close to zero as well. This makes an important difference between or-
thogonal and non-orthogonal linear transforms, since in the non-orthogonal cases 
“ close”  coefficients are correlated and the expected value of the ordinate is not zero 
but varies linearly with the abscissa. This is what we can see in the right panel in Fig. 
1, which corresponds to a non-orthogonal Gabor pyramid [23].  

On the other hand, however, the “ bowtie”  shape of the left histogram reveals that 
coefficients are not statistically independent. This shape suggests that the variance of 
a coefficient depends on the value of the neighboring coefficient. The dependence is 
such that the variance of the ordinate scales with the squared value of the abscissa.  

All pairs of coefficients taken either in space, frequency or orientation always 
show this type of dependence [4, 5], while the strength varies depending on the spe-
cific pair chosen. Intuitively, dependence will be stronger for coefficients that are 
closer, while it will decrease with distance along any axis. The form of the histograms 
is robust across a wide range of images, and different pairs of coefficients. In addi-
tion, this is a property of natural images but is not of the particular basis functions 
chosen. 

Several distributions have been proposed to describe the conditional statistics of 
the coefficients obtained by projecting natural images onto an orthogonal linear basis 
[e.g. 7, 8, 24]. Here we will use the Gaussian model of [7].  

Assuming a Gaussian model, the conditional probability }){|( 2�� FFS  of an or-

thogonal linear coefficient ci of a natural image, given the other squared coefficients 
}{ 2�F  (j ≠ i), can be modeled as a zero-mean Gaussian density with a variance 
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In the model, 2�D  and {bij} (i ≠ j) are free parameters and can be determined by 

maximum-likelihood (ML) estimation. Operating with Eq. 1 we obtain the following 
ML equation: 

 (2) 

where « denotes expected value. In practice, we can compute « for each subband, 

averaging over all spatial positions of a set of natural images.  

2.2   Nonlinear stage 

The nonlinear stage consists basically of a divisive normalization, in which the re-
sponses of the previous linear filtering stage, ci, are divided by the square root of a 
weighted sum of squared neighboring responses in space, orientation and scale, 

}{ 2
F , plus a constant, 2�G : 
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Eq. 3 is slightly different than models of cortical neuron responses (in these models 
the second term of the equality is typically squared) but has the advantage that pre-
serves sign information. We will refer as optimal divisive normalization to the one de-
fined by the values of the parameters (constant 2�G  and weights {eij}) that yields the 

minimum mutual information, or equivalently minimizes statistical dependence, be-
tween normalized responses for a set of natural images. It can be shown that an ap-
proximate solution is [7]: 2�G  = 2�D , eij = bij (i ≠ j) and eii = 0, that is to adopt directly 

the parameters of the Gaussian model, 2�D  and bij (i ≠ j), as the normalization parame-

ters.  
A key feature of the nonlinear stage is the particular neighborhood considered in 

Eq. 3. As shown in Fig. 2, we have considered 12 coefficients {cj} (j ≠ i) adjacent to 
ci along the four dimensions (9 in a square box in the 2D space, plus 2 neighbors in 
orientation and 1 in frequency). It is important to note that in this particular choice all 
neighbors belong to higher levels of the linear pyramid, which permits to invert the 
nonlinear transform very easily level by level (to recover one level of the linear pyra-
mid we obtain the normalizing values from levels already recovered and multiply 
them by the corresponding nonlinear coefficients). Obviously, in order to invert the 
nonlinear transform we need to store the low-pass residue of the linear decomposition. 

Therefore, in addition to the nice feature of giving almost statistically independent 
coefficients, the described scheme is easily invertible. Since both stages, linear and 
nonlinear, of the image representation scheme are invertible, it is possible to recover 
the input image from its nonlinear decomposition. 
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Fig. 2. QMF decomposition of the “ Lena”  image and neighborhood considered in the nonlinear 
stage of our image representation scheme. 

3   Results 

The following results have been obtained using a “ training set”  of six B&W natural 
images with 512x512 pixel format (“ Boats” , “ Elaine” , “ Goldhill” , “ Lena” , “ Peppers”  
and “ Sailboat” ). 

First, to model the conditional statistics of the QMF coefficients of the images, we 

used the Gaussian model in Eq. 1. The free model parameters , 2(D  and {bij} (i ≠ j), 

were obtained using the mathematical expectation in Eq. 2 over all the QMF coeffi-
cients of the 6 images in the “ training set” , but independently for each subband of the 
QMF pyramid. Both in the Gaussian model and in the divisive normalization, we con-
sidered the 12-coefficient neighborhood, {cj} (j ≠ i), of adjacent coefficients to ci 
along the four dimensions described in the previous section (see Fig. 2). A linear 
search method was used to solve the corresponding minimization problems, using the 
additional constraint of positivity of the free model parameters to improve conver-
gence. As an example, Fig. 3 shows the values of the Gaussian model parameters for 
the lowest scale vertical subband.  



Fig. 3. Parameter values of the Gaussian statistical model for the lowest scale vertical subband. 
The shadowed values correspond to the 9 spatial parameters. The 2 orientation parameters are 
horizontally arranged, and vertically the scale parameter. The bottom row contains the value of 

2)G .  

On the other hand, in order to efficiently attain an optimal divisive normalization 
that minimizes statistical dependence between output responses for natural images, 
we fixed the divisive normalization parameters to the following values [7]: 2*G = 2+D , 

eij = bij (i ≠ j) and eii = 0, where 2,D  and bij (i ≠ j) are the parameters of the Gaussian 

model. 
When we apply the model described above, we obtain representations similar to 

that of Fig. 4. Intuitively, the nonlinear transform has the effect of randomizing the 
image representation in order to reduce statistical dependencies between coefficients 
belonging to the same structural feature, or in other words, the effect of the divisive 
normalization is to choose which coefficients are most effective for describing a given 
image structure. 

Fig. 5 represents two conditional histograms of two adjacent samples in space and 
illustrates the statistical independence achieved by application of the nonlinear (divi-
sive normalization) transform. The left panel shows the conditional histogram of two 
QMF coefficients ci and cj. (cj is the right down neighbor of ci). This linear transform 
does not remove higher-order statistical dependencies, as suggested by the “ bowtie”  
shape of the histogram. The right panel in Fig. 5 shows the conditional histogram be-
tween the two corresponding output responses (ri and rj). As we can see, after nor-
malization, output statistical dependencies are substantially reduced since the result-
ing conditional histogram is basically independent on the value of the abscissa.  

Table 1 shows some numerical measures of statistical dependence in terms of mu-
tual information for the 6 images in the “ training set”  (“ Boats” , “ Elaine” , “ Goldhill” , 
“ Lena” , “ Peppers” , and “ Sailboat” ). Mutual information was calculated from 200 bin 
joint histograms in the interval (-100 , 100) of the corresponding random variables af-
ter fixing their standard deviation to 5 and equalizing their histogram in order to com-
pare the results (note that to apply a monotonic nonlinearity to one or the two vari-
ables does not modify their mutual information). 
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Fig. 4. Nonlinear divisive normalization decomposition of the “ Lena”  image.  

 
 
 

 

Fig. 5. Conditional histograms of two neighboring QMF coefficients ci and cj (cj is the right 
down neighbor of ci), and nonlinear responses ri and rj, of the “ Sailboat”  image. The considered 
subband is the lowest scale vertical one.  

 



Consistently with Fig. 5, we can see in Table 1 that divisive normalization de-
creases mutual information, MI, with all values much closer to zero. If we compare 
our scheme (column A) with a scheme that uses a more general neighborhood (col-
umn B), we observe that the former yields results only slightly worse (the resulting 
nonlinear coefficients are a little more statistically dependent). Nevertheless, this is a 
very small price to pay for easy invertibility. 

 

Table 1. Mutual information between two neighboring QMF coefficients ci and cj (cj is the 
right down neighbor of ci), and between the corresponding normalized coefficients ri and rj, of 
the 6 images in the “ training set” . The considered subband is always the lowest scale vertical 
one. Column A corresponds to our scheme described above and column B corresponds to a 
scheme that uses a more general neighborhood (a 12-coefficient neighborhood of adjacent coef-
ficients along the four dimensions: 8 in a square box in the 2D space, plus 2 adjacent neighbors 
in orientation and 2 in frequency) with coefficients belonging not only to higher levels of the 
QMF pyramid but also to the same and lower levels. 

� 0,��F - ���F. ��� 0,��U - ���U. ����$�� 0,��U - ���U. ����%��

³%RDWV´� 0.18 0.05 0.03 

³(ODLQH´� 0.05 0.03 0.02 

³*ROGKLOO´� 0.10 0.04 0.03 

³/HQD´� 0.12 0.03 0.03 

³3HSSHUV´� 0.09 0.04 0.03 

³6DLOERDW´� 0.12 0.04 0.03 

4   Conclusions 

We have presented a multiscale multiorientation nonlinear image representation 
scheme. The key feature of this new image representation scheme is that the resulting 
coefficients are almost statistically independent, much more than those of the or-
thogonal linear transforms that cannot eliminate higher order dependencies. Such rep-
resentations are also roughly consistent with the nonlinear properties of neurons in the 
primary visual cortex of primates, and have been shown relevant to human percep-
tion. 



One of the main contributions is the particular neighborhood used in the nonlinear 
stage. Basically, we impose the restriction that the neighboring coefficients consid-
ered only belong to higher levels of the linear pyramid. This restriction permits to in-
vert the nonlinear transform very easily and has only little impact on the statistical in-
dependence of the resulting nonlinear coefficients. 

The scheme is robust in the sense that results do not depend critically on the linear 
decomposition, the model of the conditional statistics of the linear coefficients, the 
neighborhood considered, the “ training set”  of natural images, the computing errors 
(for example in estimating the parameters), or even the particular input natural im-
ages. 

Finally, this nonlinear scheme of image representation, which has better statistical 
properties than the popular orthogonal wavelet transforms, is potentially useful for 
many image analysis and processing applications, such as restoration, synthesis, fu-
sion, coding and compression, registration, etc., because of its easy invertibility and 
the great importance of statistical independence in these applications. Similar schemes 
[25, 26] have already been used very successfully in image analysis and processing 
applications. In addition, due to its good perceptual properties, our scheme could be 
useful to define a metric for perceptual image distortion similarly to [26, 27, 28]. 
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