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ABSTRACT Although moving human observers actively fixate their eyes
on points in the world, computer vision algorithms designed for the esti-
mation of structure-from-motion or egomotion typically do not make use of
this constraint. In this paper, we investigate the computational advantage
of fixation. The main contribution of this work is to precisely specify the
form of the optical flow field for a fixating observer moving in a rigid world.
In particular, we show that the use of a hemispherical (retinal) imaging sur-
face combined with the active process of fixation generates an optical flow
field of a particularly simple form. A further contribution is the finding
that the sign of retinal flow at the retinal periphery can be used to predict
collisions.

7.1 Introduction

Introspection reveals that when a human observer moves, the eye continu-
ally fixates on targets in the world. Although fixation is a common process
in human vision, the potential computational advantage of this behavior
has not been established yet. The main contributions of this paper involve
(i) formalizing retinal flow for a fixating observer and (ii) thereby isolating
simple patterns of flow that are useful in determining an observer’s direc-
tion of heading.2 In particular we explore the role of the retinal periphery
is predicting collision. We expect fixation to be especially fruitful in light
of recent advances in computer vision for constructing active head/eye sys-
tems (Pahlavan, Uhlin & Eklundh, 1993).
This work is part of ongoing research on Active Vision pursued at the

1GRASP Laboratory & Institute for Research in Cognitive Science, University
of Pennsylvania

2A preliminary version of this work is published in the Proceedings of the
Workshop on Visual Behavior (Thomas, Simoncelli & Bajcsy, 1994).
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General Robotics and Active Sensory Perception (GRASP) Laboratory.
Active Vision – a paradigm introduced by Bajcsy (Bajcsy, 1985, 1988) –
provides constraints that allow certain ill–posed problems in Computer Vi-
sion to be converted into well–posed ones. These constraints arise due to
simplifying assumptions about the world and its visual appearance that are
satisfied when the camera moves actively. For example, Krotkov (Krotkov,
1989) describes the active vergeance of a stereo camera pair in order to fa-
cilitate figure–ground segmentation. Hager (Hager, 1988) fused constraints
from multiple sensory sources (vision and touch). Bajcsy and Maver (Ba-
jcsy & Maver, 1993) used information derived from shadows to actively
move the camera to a more informative position.
In the tradition of active vision research, the present article discusses the

constraints on optical flow fields that are imposed by the process of active
fixation. The crucial difference between the present work and traditional
optical flow analyses (cf. (Thomas, 1993) for a review) is fixation. In the
computer vision literature, a previous analysis of optical flow field under
fixation has been provided by Raviv and Herman (Raviv & Herman, 1990).
As in this paper, they determine the loci of zero flow. They also describe the
temporal evolution of these loci of zero flow. In contrast, our development
is done in a different coordinate system using a different representation of
optical flow, we analyze the pattern of flow across the entire retina, and we
use the sign of a particular projection of flow vectors in order to determine
direction of heading.
The notion of sign of flow has been previously exploited in work by

Fermueller (Fermueller, 1993), who analyzes components of the flow field
(so-called normal flow) in terms of sign (cf. also the accompanying article by
Fermueller & Aloimonos). Due to the assumption of normal flow she arrives
at very different patterns from ours. The simple four–way distinction which
we isolate at the periphery cannot be observed using normal flow, which
gives rise to areas bounded by conic sections. Furthermore, the search over
the solution space that is required by her algorithm may make it unrealistic
for implementation on a mobile robot. In section 7.7, we demonstrate an
implementation of our closed-form solution being used to guide a robot to
a target.
In this work we make the following assumptions: (i) the observer moves

with respect to the world and fixates on a target; (ii) the world is rigid,
with no independently moving elements; and (iii) the possible rotation axes
of the eye lie on a plane orthogonal to the direction of gaze. Assumption (i)
is a behavioral one that is observed in humans and animals. Assumptions
(ii) and (iii) will allow us to write the retinal flow field in a particularly
simple form; (iii) also corresponds closely to Listing’s Plane for the human
eye.
We first define retinal flow for a 2D universe and then extend it to the

full 3D case; the flow in 2D provides one component of the flow in 3D. The
retinal flow in 3D is then decomposed into longitudinal and latitudinal
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flow, and we then show that the longitudinal component depends only on
the translational direction of heading and not the rotation of the eye. We
show that longitudinal flow, especially at the periphery, can be analyzed
to determine the direction of heading. Finally we test the performance of
this model in experiments involving a simulated environment as well as a
real world setting and a mobile robot platform.

7.2 Retinal Flow in a Rigid 2D Universe

For ease of exposition, we first consider a reduced case of a 2D universe in
which we define the flow on the retina for any given point in the universe;
as the observer moves the flow determines how each point projected on the
retina moves.

7.2.1 Calculating Retinal Flow

In a 2D planar universe, the eye of the observer corresponds to a circle
(E in Fig. 7.1), and the retina corresponds to a semicircle (R).3 As the
observer moves, the center of the eye (O in Fig. 7.1) translates on the
2D plane. In addition, the eye may also rotate about its center (O). A
combination of these two types of motion is sufficient to capture all possible
rigid movements of the eye in this 2D universe.
When the observer fixates on a target point (such as a corner of an

object) this point – by definition – remains projected at the center of the
retina, i.e., on the fovea (F in Fig. 7.1). In order to maintain fixation while
moving, the observer has to rotate the eye about its center (O). Although
the target point on which the observer fixates (T) is stationary at the fovea,
the remainder of the retinal image (e.g. P) can be expected to change; this
change will be precisely defined below.
The instantaneous movement of the retinal image will be referred to as

retinal flow, and it will be defined in the present formalization in terms of
angular coordinates. We parameterize the retinal flow of a point P as an
angular velocity, i.e., the temporal derivative of an angle between two rays:
(i) the direction of gaze (ray OT in Fig. 7.1) and (ii) the ray from the point
in the world to the center of the eye (OP in Fig. 7.1).
The retinal flow may be decomposed into two components: one due to

observer translation and the other due to the fixating rotation. The first
component is written as:

ω1 =
|�v × �p|
|�p|2 (7.1)

3The eye and the retina considered in this paper will only correspond to the
human eye in terms of optics and not in terms of the actual physical structure.
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FIGURE 7.1. Model of the eye in a 2D universe.

where �v is the translational velocity of the center of the eye, �p is the vector
from the center of the eye to an arbitrary point in the world P, and ×
indicates a standard vector cross–product.
The second component corresponds to the fixation rotation about the

center of the eye:

ω2 = −|�v ×�t|
|�t|2 (7.2)

where �t is the vector from the center of the eye to the target point (T in
Fig. 7.1); the direction of �t is also called the direction of gaze, or optical
axis. The negative sign indicates that when the eye rotates in one direction,
the points on the retina move in the opposite direction.
Finally, the resultant retinal angular velocity of a point is the sum of the

two angular velocities4, i.e.

ω = ω1 + ω2

4In general, the sum of two rotation vectors does not produce a rotation vector
corresponding to the composition of rotations. The angular velocities may be
added here because they are instantaneous measurements.
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=
|�v × �p|
|�p|2 − |�v ×�t|

|�t|2 (7.3)

Given the observer translation velocity �v, the vector representing gaze
�t, and the vector from the eye to any point in the world �p, Equation (7.3)
defines the retinal flow of that point in a 2D universe.

7.2.2 Level Sets of Retinal Flow

In this section we will consider the points in the 2D universe that give rise
to the same value of retinal flow. Let us first isolate those points in the
2D universe that correspond to zero retinal flow. The projections of such
points on the retina come to rest (for an instant) while the observer moves
and fixates. To find such points, we set Equation (7.3) to zero and solve for
�p:

|�v × �p|
|�p|2 − |�v ×�t|

|�t|2 = 0 (7.4)

Factoring the magnitude of �v from both terms results in:

|v̂ × �p|
|�p|2 − |v̂ ×�t|

|�t|2 = 0 (7.5)

where v̂ is the unit vector in the direction of �v.
Although the points in the 2D universe satisfying the above equation lie

on a simple curve, reducing the solution to a recognizable form requires
further vector algebraic manipulations. To this effect, let us introduce a
unit vector û perpendicular to v̂; then |v̂×�t| = û ·�t. We can now rewrite
equation 7.5 in terms of û, removing v̂.

û · �p
�p · �p − û ·�t

�t ·�t = 0 (7.6)

This can be rewritten as:

�p · �p− û · �p
(
�t ·�t
û ·�t

)
= 0 (7.7)

and further (by completing the square) as:∥∥∥∥∥�p− 1

2

(
�t ·�t
û ·�t

)
û

∥∥∥∥∥
2

=

[
1

2

(
�t ·�t
û ·�t

)]2
(7.8)

For r = 1
2

(
�t·�t
û·�t
)
and �c = r û, we obtain the familiar equation of a circle:

(�p− �c)2 = r2 (7.9)
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FIGURE 7.2. The level sets of retinal flow in a 2D universe. This scene depicts a
traffic intersection, where the observer is moving along the road with translational
velocity �v, and fixates on a corner of a building T . O is the center of the eye of
the observer, and P is an example point in the universe, the retinal velocity of
which is being calculated. The points with zero retinal flow lie on the solid circle
with center C. Points in the shaded area have flow in the clockwise direction
while points in the unshaded area have flow in the counter–clockwise direction.
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The vector �c is the center of this circle (with respect to the center of the
eye). Recall that û is a vector perpendicular to the velocity of the observer
�v; this means that the center of the circle lies in a direction perpendicular
to the direction of movement. This circle, corresponding to zero flow in the
retina, is depicted by the solid line in Fig. 7.2. The circle passes through the
target point of fixation and through the center of the eye. All points on the
circle, including these two points, behave in the same way: momentarily,
they are stationary. Furthermore, the points within this circle all move in
the same direction on the retina, whereas the points outside of this circle
move in the opposite direction.5

A similar analysis can be performed for any other value of retinal flow
besides the zero flow. For each such value, the result corresponds to a circle
of points in the 2D universe; the radius of the circle varies depending on
the particular value chosen. Sample circles which correspond to points with
the equal retinal flow are shown as dotted curves in Fig. 7.2. Note that the
centers of all such circles lie on a straight line.
An interesting boundary case involves fixating straight ahead. In this case

the direction of fixation coincides with the direction of observer movement.
The resulting circle of zero flow has an infinite radius (i.e., it is a line), as
illustrated in Fig. 7.3. In this situation, points lying to one side of this line
move in one direction, while points on the remaining half plane move in
the opposite direction. This result fits intuition: when looking and moving
straight ahead, points on the left half of the visual field move left, and
points on the right half move right.

7.3 Retinal Flow in a Rigid 3D Universe

The case of moving and fixating in a 3D universe is clearly more complicated
than the 2D case. However, the 3D case can be elegantly decomposed into
two modules: one involving the retinal flow just as in the 2D case, and the
other involving a new component.

7.3.1 Calculating Retinal Flow

In a 3D universe, the eye corresponds to a sphere (rather than a circle)
with a center O (in Fig. 7.4) and the retina involves a hemisphere (rather
than a semicircle). As in the 2D case, the eye rotates in order to fixate on
a target. However, the 3D rotation that accomplishes fixation is no longer

5The retinal flow associated with each point in the world forms a vector field
or dynamical system (Abraham & Shaw, 1993) with a separatrix corresponding
to the circle of zero flow which separates the two regions of opposite flow. This
suggests an interesting connection between the present analysis and the dynamics
of well known systems.
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FIGURE 7.3. The special case of moving and fixating in the same direction; cf.
previous figure for explanation of symbols.

unique.6

In order to make the problem manageable, we constrain the way in which
the eye can rotate in order to fixate. The constraint we impose is that the
axis about which the eye rotates is always perpendicular to the direction
of gaze; i.e., the possible rotation axes lie on a plane. Although this is an
arbitrary constraint, the physiology of the eye suggests that a similar con-
straint operates in humans (involving the so–called Listing’s Plane (Yarbus,
1967)). Furthermore, this particular formulation of the constraint allows us
to decompose the retinal flow into two components.
In order to represent the two components of retinal flow in a 3D universe

we impose a grid of longitudes and latitudes on the hemispherical retina.
These longitudes and latitudes are comparable to the standard grid used
to specify coordinates on the earth. In the present analysis, we wish to fix
this grid on the retina in a such a way that the center of the eye, the target
point (that is being fixated on), and the direction of movement all fall on a
plane containing the equator. This plane will be referred to as the critical
plane (cf. Fig. 7.4). The other latitudes are semicircles on the retina lying

6For any fixating rotation, an additional instantaneous rotation about the
optical axis can be added without loss of fixation. The family of such fixation
rotation axes are obtained by varying the amount of this additional rotation.
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FIGURE 7.4. Model of the eye in a 3D universe. The critical plane contains the
center of the eye, the target point and the velocity direction. The eye rotates
about an axis passing through the North and South Poles in order fixate.
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on planes parallel to the critical plane. The longitudes are semicircles7 on
the retina starting at the North Pole and ending at the South Pole. As is
standard, the North Pole, center of the globe (eye) and the South Pole lie
on an axis perpendicular to the equatorial (critical) plane. Note that this
line is the axis about which the eye rotates in order to fixate the chosen
target.
The retinal flow corresponding to points lying on the critical plane is

identical to the retinal flow of points in the 2D universe, and was given by
Equation (7.3). As before we will use angular velocity to represent retinal
flow. However, in the 3D case angular velocity is no longer unique: any
component of angular velocity in the direction of �p is not observable on
the retina. In order to achieve uniqueness of representation, we constrain
angular velocity of a point �p to be perpendicular to �p:

�ω =
�v × �p

|�p|2 −
((

�v ×�t

|�t|2

)
× p̂

)
× p̂ (7.10)

�ω is the retinal flow corresponding to a 3D world point P , represented as
an angular velocity. This equation is a generalization of the 2D result given
in Equation (7.3). The double cross–products with p̂ in Equation (7.10)
ensure that �ω (for any given world point) is always perpendicular to p̂, the
unit vector in the direction of that world point.

7.3.2 Points with Zero Flow in the 3D Universe

The points with zero flow are interesting boundary cases that enhance an
intuitive understanding of how flow is related to positions in the world. The
points that are momentarily stationary on the retina are those that have
neither latitudinal nor longitudinal flow.
In order to determine the points in the world which have no retinal flow

we rewrite Equation (7.10) as:

�ω =

[
�v

|�p| −
(�v ×�t)× p̂

|�t|2

]
× p̂ (7.11)

When �v coincides with �t, �v × �t = 0 and there is no rotation due to
fixation. In such a special case, all infinitely far away points have zero flow,
as well as points along the line of sight. In what follows we concentrate on
the more typical case with rotation due to fixation (i.e. �v ×�t �= 0).
Assuming that �v × �t �= 0, the points with zero flow are those where �ω

is identical to zero, i.e. when
[

�v
|�p| − (�v×�t)×p̂

|�t|2
]
is either (a) equal to zero or

(b) parallel to p̂; we shall denote this term by �m(�p).

7These semicircles are half of the so–called great circles.
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FIGURE 7.5. Points with zero flow
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7.3.2.1 Case (a): �m(�p) = 0

From this condition it follows:

�v ×�t

|�t|2 × p̂ =
�v

|�p| (7.12)

The above vector equation holds only when the vectors on both sides of
the equation have the same direction and magnitude. One solution for �p
is either of a pair of points infinitely far away in the direction of the north
and south pole (i.e. in the direction of �v ×�t).
An additional set of solutions arises may be derived as follows. The left

hand side gives rise to vectors orthogonal to �p. If these vectors are to be
in the direction of �v, then �p must lie on the plane perpendicular to �v
(labeled H in Figure 7.5). Furthermore, for any given direction of �p in this
plane, there is one particular magnitude that will satisfy the magnitude
component of the above equation. This magnitude is such that

|(�v ×�t)× �p|
|�t|2 = |�v| (7.13)

By simple vector algebra we get

v̂p · �p =
|�t ·�t|
|v̂ ×�t| (7.14)

where v̂p is a unit vector perpendicular to �v and �v×�t. The magnitudes of

�p that satisfy 7.14 correspond to a line parallel to �v×�t at a distance |�t·�t|
|v̂×�t|

(on the plane H), as shown in Fig. 7.5.

7.3.2.2 Case (b): �m(�p) parallel to p̂

The second term of �m(�p) always corresponds to vectors on the plane per-
pendicular to �v ×�t; i.e., these vectors lie on the critical plane spanned by
�v and �t (Fig. 7.4). By definition, the first term of �m(�p) also lies on the
critical plane, and hence the difference of the two terms of �m(�p) lies on
the critical plane. If this difference vector �m(�p) is to be parallel to p̂, it is
necessary that p̂ lie on the critical plane. Thus, the situation reduces to the
2D case already discussed in Section 7.2.2. As in the 2D case, the points
with zero flow lie on a circle (defined by Equation (7.8)).
In conclusion, apart from the special case without rotation due to fixa-

tion, the points with zero retinal flow are:

1. the two infinitely far away points in the direction of the north and
south poles,

2. the points on the line parallel to the rotation axis (Equation (7.14)),
and
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3. the circle on the critical plane.8

7.4 Latitudinal and Longitudinal Flow

7.4.1 Calculating Latitudinal and Longitudinal
Flow

In general, the retinal flow may be decomposed into two components: lati-
tudinal flow and longitudinal flow. It is crucial for our purposes later in the
chapter to isolate the longitudinal component of the flow in Equation (7.10).

The second term of this equation is already in the correct form: since �v×�t
|�t|2

is a vector perpendicular to the critical plane, the resulting flow is entirely
latitudinal.
In order to perform the desired decomposition of the second term of

Equation (7.10), e decompose the observer’s velocity �v into two compo-
nents: (i) �v′, which is the projection of �v onto a plane containing P, the
North Pole and the center of the eye (this plane will be referred to as the
longitudinal plane) and (ii) �v′′, which is perpendicular to the longitudinal
plane, such that:

�v = �v′ + �v′′ (7.15)

Since �v′ lies in the longitudinal plane, it generates flow only within that
plane (i.e., longitudinal flow). On the other hand, �v′′ is orthogonal to the
longitudinal plane, and thus produces flow out of that plane (i.e., latitudinal
flow).
Thus, �ω can be decomposed into �ωx, the latitudinal flow, and �ωy, the

longitudinal flow, as follows:

�ωx =
�v′′ × �p

|�p|2 − �v ×�t

|�t|2 × p̂× p̂ (7.16)

�ωy =
�v′ × �p

|�p|2 (7.17)

As Equation (7.17) shows, the longitudinal flow of a point P depends
only on the movement of the observer. The direct relationship between the
observer motion and longitudinal flow will be exploited in the latter half
of this paper; this relationship is a result of the particular choice of the
latitudes and longitudes in this formalization.

8Under a different formulation, Raviv and Herman (Raviv & Herman, 1990)
identify the line and the circle as involving zero flow. However, our decomposition
in the remainder of this paper is unique and distinct from Raviv and Herman.
The level sets of our latitudinal flow do not correspond to any of their level sets.
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7.4.2 Points with Zero Longitudinal Flow in the
3D Universe

Although we have already obtained expressions for the world points that
produce zero flow, we can gain additional intuition by considering those
points that generate either zero latitudinal flow or zero longitudinal flow.
In the case of longitudinal flow, all points with zero flow lie on either

of two planes (cf. Figure 7.5). One such plane is the critical plane. All
points on the critical plane project onto a single latitude, the equator. Any
translation within or rotation perpendicular to the critical plane will not
induce the points to change latitudes; i.e. the points remain on the equator
regardless of observer motion or fixation. Since the points remain on the
same latitude, they have zero longitudinal flow.9 The second plane with
zero longitudinal flow is perpendicular to the direction of the observer’s
velocity �v and passes through the center of the eye. For points on this
plane, the modified velocity (�v′ in Equation (7.17)) is zero, resulting in no
longitudinal flow.

7.4.3 Points with Zero Latitudinal Flow in the 3D
Universe

In the case of latitudinal flow, all points with zero flow lie on a cylinder but
not all points on the cylinder have zero flow. The points with non–zero flow
on this cylinder form an open interval line passing through the north and
south poles (see Fig. 7.5). This can be shown by first writing an explicit
expression for �v′′:

�v′′ =
[�v · ([�v ×�t]× p̂)](�v ×�t)× p̂

|(�v ×�t)× p̂|2 (7.18)

After substituting this expression for �v′′ into Equation (7.16) and per-
forming some simple algebraic manipulations, we arrive at the following
constraint on the world points �p with zero latitudinal:

�v · [(�v ×�t)× �p]

|(�v ×�t)× �p|2 − 1

|�t|2 = 0 (7.19)

Note that in the above equation only that component of �p which is
orthogonal to �v × �t matters. Hence the circle of zero flow on the critical
plane extends to a cylinder of points above and below the critical plane.

9For points on the critical plane, note that �v′ and �p are in the same direction,
leading to a zero cross–product term in equation 7.17.
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FIGURE 7.6. Sign of longitudinal flow on the hemispherical retina, projected (for
illustration purposes) onto the plane perpendicular to the viewing direction.

7.5 A Systematic Pattern at the Periphery

We will show that when a target is fixated on, the retinal periphery has a
unique invariant property: it is the only longitude that is a constant across
all possible rotations of the eye. This makes the retinal periphery an inter-
esting location to look at for certain visual tasks. We define the periphery
to be that longitude (or great circle) lying in a plane perpendicular to the
direction of gaze.
Let us consider a situation where the moving observer has to decide

whether he/she is heading towards the fixated target or not. In the former
case, the observer will hit the target if he/she continues in the current
direction of motion, whereas in the latter case the observer will miss the
fixated target.10 Such an ability to predict hit andmiss situations (assuming
that the current direction of movement is maintained, and assuming that
the target does not move) should turn out to be useful in navigation.
An analysis of the retinal flow at the periphery of our model eye indicates

that the characteristics of the longitudinal flow distinguish hit from miss
situations (in the sense described above). The magnitude of the longitudinal

10This holds for an idealized case where the observer is a point. For a practical
situation in which the observer has finite size, determining a hit situation is more
involved.
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FIGURE 7.7. The sign of the retinal flow at the periphery. (See text for descrip-
tion of “at the periphery”.)

flow on the periphery (from a point P in the world) depends on how far the
point is from the eye as well as how fast the observer moves. On the other
hand, the direction – or sign – of the longitudinal flow within a quadrant
of the retina only depends on whether the observer is heading towards the
target. The quadrants are defined by the location of the North and South
Poles on the periphery.
In the miss situation, the sign of the longitudinal flow (sign of �ωy in

Equation (7.17)) switches exactly four times as one traces along the pe-
riphery (i.e., once for each quadrant). Figure 7.6(a) indicates the sign of
the longitudinal flow along the periphery as well as across the entire retina
for the most extreme miss situation. Even in less extreme cases the sign
changes four times.
Although Equation (7.17) could be analyzed to derive the number of

sign changes, we will turn to Figure 7.5 for a more intuitive proof. The
two planes of zero longitudinal flow divide the entire universe into four
quadrants; within each quadrant the longitudinal flow is of the same sign,
whereas sign switches at the planes. For example, in the quadrant spanned
between the observer’s direction of heading and the North Pole the longitu-
dinal flow is towards the North Pole, whereas in the quadrant on the other
side of the critical plane (and on the same side as the observer’s direction)
the longitudinal flow is towards the South Pole. When the observer is not
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moving directly ahead, these two planes will cut the hemispherical retina
into four quadrants, thereby producing the four–way distinction in the sign
of the longitudinal flow.
As we continuously move from a miss situation towards a hit situation,

the translation direction gets closer to the direction of gaze . When the
translation direction and the direction of gaze coincide, one of the planes
with zero longitudinal flow (in Fig. 7.5) contains the entire periphery. Thus
the longitudinal flow of all the points on the periphery is zero in the hit
situation. Immediately adjacent to this infinitely thin periphery, a differ-
ent picture emerges. As one traces the longitudinal flow just inside of the
periphery, the sign of the longitudinal flow changes exactly twice. Figure
7.6(b) shows the sign of the longitudinal flow across the entire retina in the
hit situation.
Thus, in theory, the infinitely thin line of the periphery will contain the

four–way change for the miss situation and zero flow for the hit situation.
However, in practice, the observable difference at a periphery with finite
thickness involves a four–way change in the miss situation and a two–way
change in the hit situation. This situation is illustrated in Fig. 7.7.

7.6 Experiment I: Simulated Image Sequence

In a simulated experiment we attempted to obtain the sign of the longitudi-
nal flow on the retina as in Fig. 7.6. The number of times the sign changes
along the periphery (two vs. four times) allows us to distinguish between
the hit and the miss situations.
In the simulation we created a rigid world consisting of 1024 points. The

points were uniformly and randomly distributed in all directions around
the initial position of the eye. The points were also randomly (but nonuni-
formly) distributed in distance, with more points closer11 Due to the hemi-
spheric nature of the retina only those points in front of the eye were
projected on the retina; the visual field was 180◦ along any diameter of the
retina.
Two pairs of images were generated containing the projections of points

in the world onto the retina. The target on which the eye fixated was located
at a distance equal to thrice the radius of the eye, directly ahead of the
initial position of the eye. The two pairs contained the same first image:
a view from an initial eye position. The second image of the first pair was
generated to simulate a sideways movement of one fourth of the radius of
the eye (miss situation). The second image of the second pair simulated
a movement of onefourth of the radius of the eye towards the target (hit

11The distance (d) of the points was chosen randomly such that 1
d
was uniformly

distributed in the range [0, 0.5].
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FIGURE 7.8. Image sequences depicting the retina for the hit situation (left
column) and themiss situation (right column). The first image is common to both
sequences. The world consists of 3D points randomly distributed in position (cf.
text for details). In all cases the camera is fixating on the same dot that projects
to the center of the image.
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situation) from the initial position. The two image sequences are shown in
Fig. 7.8.
In order to test the sign of the longitudinal flow on the retina, the optical

flow in both image sequences was estimated, using a multi-scale gradient-
based algorithm described in (Simoncelli, 1993). The longitudinal flow was
then extracted from the total optical flow. 12

Fig. 7.9 shows the sign of the longitudinal flow across the entire retina
for the two sequences. The longitudinal flow in one direction is shown in
white, and in the opposite direction in black. For the hit situation these
regions approximately divide the retina into two halves – shown on the left
in Fig. 7.9 – while in the miss situation the retina is divided into quarters,
shown on the right. Each row corresponds to a different range of values of
longitudinal flow that was ignored (shown grey in figure).
Although the overall pattern of the sign of the longitudinal flow on the

simulated retina is in agreement with the theoretical prediction (cf. Fig.
7.6), there are certain regions on the retina that have an unexpected sign.
We attribute this error due to imperfect optical flow; a set of simulations
with perfect optical flow obtained perfect patterns as shown in Figure 7.10.
The errors present in the optical flow estimates are due to blank regions of
the images and undersampling in time.

7.7 Experiment II: Servoing to a target

This experiment demonstrates that the sign of noisy retinal flow that is
sufficient to determine the direction of heading of a moving robot that fix-
ates on a target. The task is to guide the robot toward the target from
any starting position and velocity, using only visual information. As the
robot moves, its direction of heading is continuously computed based on
the sign of longitudinal flow. Based on the current direction of heading, the
robot’s direction of motion is continuosly changed until it heads directly to-
wards the target.13 It is assumed that there are no obstacles, since obstacle
avoidance is beyond the scope of this work.
In order to simulate a wide field of view,14 we employ two cameras in the

12The optical flow contained both the latitudinal and longitudinal flow. For the
purposes of this demonstration only the longitudinal flow was needed. Simoncelli’s
optical flow algorithm was easily modified to obtain the longitudinal component
of flow.

13Note that fixation corresponds merely to having the robot look in the direc-
tion of the target. We must determine which way the robot is heading relative to
the target. Although such information could potentially be obtained through po-
sitional encoders (corresponding to vestibular or muscular feedback in humans)
the model developed in this paper solves for direction of heading using visual
information alone.

14We are currently constructing a 180◦ field–of–view camera.
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FIGURE 7.9. Simulated Experiment: Sign of the Longitudinal Flow for hit (left)
and miss (right) situations. In the first row the points with less that 0.125 pixels
of longitudinal flow were ignored. The comparable figure for the second row was
0.25 pixels and for the third row was 0.5 pixels.

FIGURE 7.10. Simulated Experiment with perfect optical flow. The sign of the
longitudinal flow is depicted for different directions of heading. From left to right,
the directions of heading are −90◦, −45◦, 0◦(direct ahead), 45◦ and 90◦.
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Fovea (start) Fovea (mid) Fovea (end)

Periphery (start) Periphery (mid) Periphery (end)

Long. flow (start) Long. flow (mid) Long. flow (end)

Robot at start Robot mid way Robot at end

FIGURE 7.11. Each column of images corresponds to one position in the robot’s
path towards the target (a black-and-white checkerboard pattern hung on a pil-
lar). The first column is at the robot’s starting position, the last column is at
the robot’s finish position and the middle column is about midway between start
and finish. At each position, the first row is the foveal image, the second row is
the peripheral image. The third row is the sign of the longitudinal flow in the
periphery image: these images are used to move the robot towards the target.
The fourth row provides an external view of the robot at different positions along
its path.
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present work : (i) a camera pointed at the target, which we denote as the
fovea, and (ii) a large field-of-view camera pointed upwards in a direction
orthogonal to the foveal camera, which we denote as the peripheral camera.
Note that although the second camera obtains a view of just a portion of
the periphery, this portion is sufficient to calculate the direction of heading
(as indicated by e.g. the top portion of the different situations in Figure
7.10). The two cameras are held rigid with respect to each other.
The purpose of the foveal camera is to track the target such that the

target is always in the center of the image. While the robot is in motion,
and the target moves from the center of the image, the fovea is rotated to
compensate for the target motion, thereby achieving fixation. The fovea is
mounted on a turntable whose stepper motors are constantly servoed using
the amount of slip of the target from the image center. The first column
in Figure 7.11 shows the initial position of the robot, and the target being
fixated. The target in this case is chosen to be a simple pattern that can be
easily tracked in order to maintain fixation. However, since the fixation is
performed by a course–to–fine correlation scheme, the target could be any
arbitrary textured pattern.
The sign of the longitudinal flow provided by the peripheral camera is

used to compute the direction of heading. Recall that for this particular
camera arrangement, the peripheral camera provides sign of flow only in a
circular patch around the North Pole. The problem of finding the direction
of heading is reduced to the problem of locating the line that divides the
positive flow from the negative flow at the North Pole; as was seen in Figure
7.10 this line rotates about the North Pole. In practice, the orientation of
this line is computed as the phase of the first harmonic of the flow pattern.
As is standard, the phase is computed by first projecting the pattern onto
two functions, a sine and a cosine, and then calculating the arctangent of
the ratio of the two projections.
The third row in Figure 7.11 shows the sign of the longitudinal flow at

three different positions of the robot along its trajectory towards the target
(white is one direction and black the opposite direction of sign). The first
row of Figure 7.11 shows the images obtained from the fovea and the second
row from the periphery at the three robot locations. The computed value
of the direction of heading (w.r.t to the direction of gaze/target) at any
given position of the robot is used to servo the robot to move towards its
direction of gaze.
The current implementation of the system is in C running on a Sun

Workstation. Each run of the experiment takes under 2 minutes, and the
initial distance from the robot to the target is 3.1 meters. The experiment
was repeated 10 successive times. In every trial the robot started by heading
in a direction perpendicular to the target direction. In two of the ten trials
the robot arrived within 40 cm of the pillar containing the target; in the
remaining eight trials the base of the robot ended up in contact with the
pillar, directly underneath the target. Figure 7.11 is an example of a case
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Fovea (start) Fovea (end)

FIGURE 7.12. Foveal images for a typical uninterrupted run of the robot, where
the robot reaches the target.

where the robot’s base does not touch the pillar. Due to the fact that the
robot was stopped in the middle of its run in order to take the mid pictures
in Figure 7.11, the servoing algorithm in effect had to start again, resulting
in overshooting. Pictures from the fovea of a typical uninterrupted sequence
– where the robot base touched the pillar – are provided in Figure 7.12.

7.8 Conclusion

In this paper we have formulated the precise relationship between retinal
flow, the movement of a fixating observer and the geometry of the physical
world in a simple and systematic way. The simplicity of the formulation
derives from the use of a spherical imaging surface, coupled with the con-
straints imposed by fixation.
Our theoretical analysis and subsequent experiments reveal that the in-

formation along the periphery of the retina appears to be sufficient for
determining whether the observer will eventually hit a target if it contin-
ues moving in its current direction (assuming the target will not move).
This is possible precisely because the observer actively fixates on the tar-
get while moving. We believe this formulation will prove useful in many
problems involving optical flow computation.
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