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Human visual speed perception is qualitatively consistent with a Bayesian observer that optimally combines noisy measurements

with a prior preference for lower speeds. Quantitative validation of this model, however, is difficult because the precise noise

characteristics and prior expectations are unknown. Here, we present an augmented observer model that accounts for the

variability of subjective responses in a speed discrimination task. This allowed us to infer the shape of the prior probability as well

as the internal noise characteristics directly from psychophysical data. For all subjects, we found that the fitted model provides an

accurate description of the data across a wide range of stimulus parameters. The inferred prior distribution shows significantly

heavier tails than a Gaussian, and the amplitude of the internal noise is approximately proportional to stimulus speed and

depends inversely on stimulus contrast. The framework is general and should prove applicable to other experiments and

perceptual modalities.

Human perception of visual motion is biased. In many situations, the
perceived speed and direction of a moving visual stimulus depends
significantly on attributes other than its physical motion. For example,
a variety of psychophysical experiments have shown that perceived
retinal speed is affected by contrast, with low-contrast stimuli generally
appearing to move slower than those of high contrast1,2. Although this
behavior seems at first glance to be a shortcoming, it can be seen as
optimal for an observer who lives in a world in which slower motions
are more likely to occur than faster ones and whose judgments are
based on noisy measurements3,4. This optimal observer model is a
probabilistic instantiation of Helmholtz’s description of perception as a
‘best guess’ as to what is in the world, given the observer’s current
sensory input and prior experience5.

In the modern framework of statistical estimation, the optimal
observer may be precisely formulated in terms of two probability
distributions. First, the variability of a set of measurements, ~m,
is specified as a conditional probability distribution, pð~mjvÞ, where
v is the stimulus speed. The variability is due to a combination of
external sources (for example, photon noise) as well as internal sources
(for example, neural response variability). When considered as a
function of v for a particular measurement, this conditional density
is known as a likelihood function. The second component is a
prior probability distribution, p(v), which specifies the probability
of encountering stimuli moving at any particular speed. According
to Bayes’ rule, the product of these two components (when appro-
priately normalized) gives the posterior distribution, pðvj~mÞ, and
an optimal observer should select a value of v that is best according
to this distribution. Common choices are the mean or the mode.
Contrast-induced biases in the perceived speed of moving patterns

arise intrinsically in this model, assuming a prior that favors low
speeds: lower contrast stimuli lead to noisier measurements,
producing broader likelihood functions, which lead to lower speed
estimates (Fig. 1).

Despite the intuitive appeal of Bayesian models for perception, they
are difficult to validate experimentally because one does not usually
know the prior distribution or the likelihood function. In some cases, a
prior can be deduced from theoretical considerations or measured
from the natural environment in which an observer lives6,7. Some
authors have developed models for the spatiotemporal structure of
natural image sequences7,8. If one assumes a retinal coordinate system,
it is difficult to deduce a distribution for human retinal image velocities
because of the relative effects of body, head and eye movements. Even if
such measurements were possible, conditions in the environment
change over many timescales, and the observer may thus use a prior
that is adapted or even switched abruptly according to sensory context9.
Finally, a Bayesian perceptual system operates under constraints that
may prevent it from representing the true prior. Consequently, the
prior distribution used in most Bayesian models to date was chosen for
simplicity and/or computational convenience3,4.

An analogous set of issues arise in determining the likelihood
function, which defines the stochastic relationship between the mea-
surements and the quantity that is to be estimated. For speed percep-
tion, this relationship can be derived by assuming that image brightness
is conserved10,11 and that measurements are corrupted by additive
noise3,12–14. Bayesian models built on this foundation have been shown
to be roughly consistent with human perception3,4,15,16. However, the
noise characteristics in these models are again chosen for computa-
tional convenience, and are unlikely to provide an accurate description
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of perception or physiology. Some authors have proposed likelihood
models based on the response and noise properties of neurons in
primary visual cortex (area V1)15,17, and these have been shown
to provide an improved description of biases observed in human
speed perception15.

In this article, we resolve these issues with an alternative approach.
Rather than making assumptions based on theoretical considerations
or indirect measurements, we reverse-engineered the shape of the prior
distribution and the contrast and speed dependence of the likelihood
function directly from perceptual behavior. Specifically, we embedded a
Bayesian estimator in a general observer model that includes an
optimal decision stage, and we fitted this model to trial-by-trial
responses in a two-alternative forced choice (2AFC) speed discrimina-
tion experiment. We were able to validate the ability of a Bayesian
observer model to account for the data and also to determine the prior
distribution and internal noise level associated with the best-fitting
Bayesian estimator. A preliminary version of some of this work has
been presented earlier18.

RESULTS

As outlined briefly above, a Bayesian estimator can predict contrast-
induced biases in speed perception. The estimation bias is determined
both by the likelihood function and the shape of the prior (Fig. 1).
Because of this ambiguity, experimental measurements of perceptual
speed biases in a subject are not sufficient to uniquely constrain both
the likelihood and the prior. We show in this section that the two
components may be disambiguated by embedding the Bayesian esti-
mator in an observer model that provides a description of both the bias
and the variability of subjective responses.

Bayesian observer model for speed discrimination

When human observers are presented with the same moving stimulus
on repeated trials, their perception of speed fluctuates. Although it is
derived from a probabilistic formulation of the problem, a Bayesian
estimator is a deterministic function that maps each measurement to
an estimated value v̂ð~mÞ and thus cannot, by itself, account for these
fluctuations. Variability in perceived speed arises entirely because of the
variability in the measurement, ~m. These variations in the measure-
ment lead to variations in the likelihood function, which in turn lead
to variations in the posterior distribution, and finally to variations in
the estimate. We summarize this entire process with a conditional
probability distribution of the estimated speed given the true stimulus

speed, pðv̂ð~mÞjvÞ (Fig. 2). For the remainder of this article, we
simplify notation by leaving out the dependence on ~m, referring to
the estimate as v̂.

The width and position of the conditional distribution of the
estimates, pðv̂jvÞ, can be related directly to perceptual quantities of
the observer model. Specifically, the mean of the distribution represents
the average perceived speed for a given stimulus speed. The width
provides a measure of perceptual discriminability: that is, the ability of
the observer to distinguish between stimuli moving at similar speeds.
Thus, this conditional distribution provides a link between the com-
ponents of the Bayesian model (prior and likelihood) and two funda-
mental perceptual quantities (bias and discrimination). Both
perceptual quantities may be measured using standard experimental
methods. Here, we use a 2AFC experimental protocol, in which the
subject was asked to select which of two presented stimuli is perceived
to move faster2. We assume that on each trial, subjects perform an
independent estimate of the speeds of both stimuli and then select the
one with the higher estimate. This strategy defines the relationship
between the probability of the subject’s responses (psychometric
function) and the two conditional probability distributions, pðv̂1jv1Þ
and pðv̂2jv2Þ (Fig. 3a). Finally, this relationship may then be
used to directly constrain the prior distribution and the likelihood
function using the experimentally gathered speed discrimination data
(Fig. 3b) (Methods).

Note that our formulation of a Bayesian observer differs from most
previous approaches, in which the model is used to describe the average
performance of the observer by applying Bayes’ rule to the average
measurement at a given stimulus speed4,15. These models do not
account for trial-to-trial variability, which is always present in the
data and which provides exactly the additional information that is
needed to unambiguously distinguish the contributions of the prior
and the likelihood.

Estimating prior and likelihood from experimental data

Five human subjects performed a 2AFC speed discrimination task, in
which they chose on each trial which of two simultaneously presented
stimuli was moving faster. Stimuli consisted of drifting gratings with a
broadband power spectrum of f –2 (see examples in Fig. 3a) and with
variable contrast and speed covering a wide range of values. Applying
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Figure 2 Bayesian estimation and measurement noise. (a) For a given

retinal stimulus speed v, the measurement ~m contains all the information

from which the observer will compute the estimate v̂ð~mÞ. Because the

measurement ~m is internal to the system, it is corrupted by internal noise

and thus will vary from trial to trial over multiple presentations of the exact

same stimulus. (b) The likelihood will also vary on each trial, as will the

posterior distribution and, ultimately, the Bayesian estimate v̂ð~mÞ. We denote

the distribution of estimates for a given stimulus speed as pðv̂ð~mÞjvÞ.
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Figure 1 Illustration of a Bayesian estimator accounting for contrast-induced
biases in speed perception. (a) A stimulus with high contrast

leads to relatively precise measurements and thus a narrow likelihood.

Multiplication by a prior probability for low speeds induces only a small

shift of the posterior relative to the likelihood. (b) A low-contrast stimulus

is assumed to produce noisier measurements and thus a broader likelihood.

Multiplication by the same prior induces a larger shift and thus the low-

contrast stimulus is typically perceived as moving slower.
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the observer model (Fig. 3a), we solved for a nonparametric descrip-
tion of the prior distribution and the likelihood width (as a separable
function of speed and contrast) that maximized the probability of the
observed data for each subject (Methods).

The prior distribution recovered for all subjects is maximal at the
lowest stimulus speed tested and decreases monotonically with stimu-
lus speed (Fig. 4). But the shape differs significantly from that of the
Gaussian distribution assumed in previous Bayesian models3,4,15. The

central portion of best fitting prior distributions can be approximated
by a power law function of speed. But all subjects tested showed a
flattening at low speeds, and three of the five subjects showed a
flattening at high speeds (for example, subject 1, Fig. 4). The remaining
two did not show this tendency, at least not over the range of speeds
tested (for example, subject 2, Fig. 4).

For all subjects, the width of the likelihood is roughly constant with
respect to speed (Fig. 4, middle column) when considered in a

logarithmic speed domain, suggesting that a
fixed-width Gaussian in this domain (that is, a
log-Normal distribution) might provide an
adequate functional description (Methods).
The recovered dependence of the likelihood
width on contrast is monotonically decreasing
(Fig. 4, right column). We found that this
relationship may be fit by a simple parametric
function derived from assumptions about
noise and contrast response models of cortical
neurons19 (Methods). This is consistent with
previous findings that the introduction of
contrast saturation improves the ability of a
Bayesian model to fit subjective data15. Note
that the sensitivity of speed perception on
contrast varies from subject to subject.

Comparison of perceptual data and model

To examine how well the fitted Bayesian
observer model accounts for human visual
speed perception, we used the model to gen-
erate predictions of both average perceived
speed and thresholds for speed discrimina-
tion. We compared these to values extracted
directly by fitting a Weibull function to the
psychometric function associated with each
stimulus combination (for each subject, there
are a total of 72 such functions; provided in
Supplementary Fig. 1 online together with
model and Weibull fits). Data for all subjects
show that lower-contrast stimuli appeared to
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Figure 3 Bayesian observer model for 2AFC speed discrimination experiment. (a) On each trial, the observer independently performs an optimal estimate of

the speed of each of the two stimuli based on measurements ð~m1; ~m2Þ. These estimates are passed to a decision stage, which selects the grating with the

higher estimate. Over many trials, the estimates for each stimulus pair will vary due to noise fluctuations in the measurements, and the average response of the

decision stage can be computed using standard methods from signal detection theory (Methods). Plotting this average response as a function of, say, v1, yields

a psychometric function. (b) Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects

the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood affects

both the width and the position of the distribution of estimates and thus influences both the position and the slope of the psychometric function.
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Figure 4 Parameters of the Bayesian observer model fitted to perceptual data of two representative

subjects. The extracted prior, p(v), exhibits a much heavier tail than the best-fitting Gaussian distribution
(dash-dotted lines), for both subjects. The speed and contrast dependence of the likelihood width

(g(v) and h(c)) indicate that likelihood is approximately constant in a logarithmic speed domain and

decreases monotonically with contrast in a manner consistent with a simple model for neural response

characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals

computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but

subject 2 was not. Among all subjects, subject 2 shows the strongest contrast dependence as well as

the broadest likelihoods.
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move slower, and the model provides a good account of this behavior.
The strength of the contrast effect, however, varies substantially across
subjects (Fig. 5) and is reduced for higher speeds, effectively vanishing
for some subjects (for example, subject 1).

Subjective discrimination thresholds, which are primarily deter-
mined by the likelihood width (Fig. 3b), are seen to increase
monotonically with speed but fail at low speeds to show the
proportionality to speed that would be expected from the Weber-
Fechner law (Fig. 6). This is most easily seen by replotting relative
thresholds (Fig. 6, bottom panel) for which the Weber-Fechner law
predicts a value that is constant with respect to speed. The behavior
is consistent with results from previous experiments although
all thresholds are higher than those reported for sinewave20,21 or
squarewave22 gratings.

Comparison to other models

To further validate the extracted prior distributions and likelihood
functions, we compared the performance of our fitted Bayesian
observer model with previously published Bayesian models that assume
a speed-independent Gaussian likelihood function and a Gaussian
prior distribution4,15. We also considered a semiparametric version of

our model, in which the likelihood width is assumed to be constant in
the chosen logarithmic speed domain and to fall with contrast accord-
ing to a simple parametric model for neural response variability (Fig. 4,
dashed lines). We fit each of the four models to the data of each of the
five subjects and summarized the quality of the fit as the average log-
probability of the data over all stimulus conditions. To present these
probabilities in a more useful coordinate system and to normalize
for the quality of data across the different subjects, we expressed the
values for each subject on a relative scale whose minimum and
maximum values were specified by two extremal models: the lower
bound was computed as the average log-probability of the data for a
coin-flipping observer model (that is, one that chooses randomly on
each trial) and the upper bound was computed as the average log-
probability of the data according to a Weibull function fit to each
experimental condition.

For all subjects, the Bayesian observer model, using the reverse-
engineered prior distribution and likelihood widths, performs nearly as
well as the individual Weibull fits (Fig. 7). This is remarkable given the
difference in degrees of freedom between the models: two free para-
meters of the Weibull function are independently fit to each of 72
experimental conditions, yielding a total of 144 free parameters, whereas
the nonparametric Bayesian model has only 18. The performance of the
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Figure 6 Speed discrimination thresholds. Comparison of speed

discrimination thresholds predicted by the fitted Bayesian observer model

with those obtained from Weibull fits to the raw data in each experimental

condition, for the two representative subjects (Fig. 4). Points indicate

thresholds (Dv ¼ |v2 � v1| such that response probability Pðv̂24v̂1Þ ¼ 0:75)
as a function of reference stimulus speed v1 for pairs of stimuli of the same

contrast (solid points: c1 ¼ c2 ¼ 0.5; hollow points: c1 ¼ c2 ¼ 0.075). Error

bars indicate s.d. across 30 bootstrapped sets of the trial data. Solid lines

represent discrimination threshold predicted by the fitted Bayesian observer

model (Fig. 4). Top: absolute thresholds increase monotonically with speed.

Bottom: relative discrimination thresholds (absolute threshold divided by v1)

at low speeds deviate from the constant value predicted by the Weber-

Fechner law.

Figure 5 Perceived matching speeds as a function of contrast. Comparison of

matching speeds predicted by the fitted Bayesian observer model with those

obtained from Weibull fits to the raw data in each experimental condition, for

the two representative subjects (Fig. 4). Top: relative speed of a test stimulus

with different contrast levels c2 ¼ [0.05, 0.1, 0.2, 0.4, 0.8] perceived to be

moving as fast as a high-contrast reference stimulus (c1 ¼ 0.5), as a function

of reference stimulus speed v1. Points indicate the speed of subjective

equality estimated from the Weibull fit (that is, the value of v1 for which the
response probability Pðv̂24v̂1Þ ¼ 0:5). Error bars indicate s.d. across 30

bootstrapped sets of the trial data. Data points of constant contrast c2 are

connected with dashed lines and are filled with the same shade. Solid gray

lines show the predicted relative matching speed of the fitted Bayesian

observer model (Fig. 4), averaged over all bootstrap samples. Bottom:

same comparison for a low-contrast reference stimulus (c1 ¼ 0.075).

NATURE NEUROSCIENCE VOLUME 9 [ NUMBER 4 [ APRIL 2006 581

ART ICLES
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



semiparametric version of the Bayesian observer model, which has only
ten parameters, is only marginally worse. The Gaussian models have
fewer free parameters (three for the model with contrast saturation15

and only two for the other4) but show a performance that is significantly
worse, in some cases (for example, subject 4) not much better than the
coin-flipping model. This is partly because the adaptive staircase
procedure leads to an accumulation of data mass around the point of
subjective equality where subject responses are essentially random.

To further elucidate the behavior of the different models, we
compared their prediction for matching speeds and discrimination
thresholds with the values obtained from Weibull fits to the data of
subject 1. The Gaussian models4,15 predict that matching speeds and
discrimination thresholds are speed independent (Fig. 8, left and center
panels). This could provide a reasonable approximation for data

gathered over a small speed and contrast range but does not account
for the full range shown here, especially in the case of the discrimina-
tion thresholds. The semiparametric model provides a substantially
better account of the data (Fig. 8, right panel) and performs nearly as
well as the full nonparametric model (compare with Fig. 5 and Fig. 6).

DISCUSSION

We have shown that a Bayesian estimator can provide an accurate
description of human visual speed perception. Unlike previous Baye-
sian models3,4,14,15 (or related estimators based on a regularization
framework23,24,25), we include an explicit noisy internal measurement
stage so as to explain variability in perceived speed and an optimal
decision stage in order to mimic trial-by-trial responses in a 2AFC
speed discrimination experiment. We collected human speed discrimi-
nation data, indirectly manipulating internal noise levels by varying
stimulus contrast, and used these measurements to derive the shape of
the prior distribution and the width of the likelihood function. In
addition to providing a good fit to the data of all five subjects, the
model reveals that (i) the likelihood width is proportional to a
logarithmic function of speed; (ii) the likelihood width falls mono-
tonically with contrast and is consistent with known contrast response
functions and noise characteristics of cortical neurons; and (iii) the
prior falls with speed as a power law, except that the slope becomes
shallower at the lowest and (for some subjects) the highest speeds
tested. Thus, our fitted model confirms the assumption of a low speed
prior made in previous Bayesian models3,4,15 but clearly demonstrates
that the prior distributions and likelihood functions assumed by these
models do not provide an accurate account of human speed perception.

Bayesian models have also been developed to explain other aspects of
human perception26. Some studies have extracted subjects’ likelihoods
or priors from perceptual data. In the cue combination literature,
likelihood widths have been estimated from discrimination threshold
experiments with single cues26–31. A recent study constrains a prior for a

sensorimotor estimation task by introducing
variability into the visual stimuli and assuming
that subject likelihoods are consistent with this
variability32. Another study constrains a prior
by examining detection performance for stim-
uli drawn from different distributions and
hypothesizing that the subject’s performance
will be best when the stimulus distribution
matches their internal prior model33. In our
experiments, external noise is negligible and
our derived likelihood functions and prior
directly reflect the internal noise characteris-
tics and the prior expectations of the subjects.

Although the Bayesian observer model pro-
vides an excellent fit to the data of all subjects,
it is important to recognize its limitations.
The conclusions we state are well supported
over the tested ranges of speed and contrast
but may not hold beyond these. For example,
some authors report that the perceived speed
of high-speed gratings increases as their con-
trast is reduced1,34. This was not seen in the
data of any of our subjects, but we did observe
that the contrast-induced bias was substan-
tially reduced at the high end of the speed
range (12 deg s–1), disappearing altogether for
some subjects (Fig. 5). For our stimulus
configuration, we found that subjects were
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unable to make reliable judgments for speeds beyond this range. It is
also worth noting that if our data were to show increases in perceived
speed for low-contrast high-speed stimuli, the Bayesian model
described here would be able to fit these behaviors with a prior that
increases at high speeds.

Further validation of the model is needed to substantiate the broader
conclusion that humans use Bayesian inference to compute visual
speed. Specifically, if our subjects behave as Bayesian observers, we
should be able to use their extracted prior and noise characteristics to
predict their behavior on different psychophysical motion tasks4. This
kind of validation may not be straightforward, because it is likely that
the likelihood and prior depend on the details of stimulus configuration
and viewing conditions. For example, speed discrimination is known to
depend on retinal eccentricity20. Thus, the reconstructed likelihood and
prior for our subjects may be specialized for the particular retinal
location used in our experiment. This is not necessarily inconsistent
with a Bayesian view as, under natural viewing conditions, it is likely
that the visual speed distribution on the retina depends on eccentricity.

An important topic for future investigations is the underlying
neurobiological implementation of our observer model. The presenta-
tion in this article has been intentionally noncommittal regarding the
definition of the measurement vector ~m, and it is of interest to associate
~m and the estimate v̂ with the responses of particular neurons or
populations of neurons underlying visual motion perception. The form
of the contrast-dependent measurement noise in our model suggests
that the locus of representation for measurements ~m is likely to
be cortical. Neurons in area MT are a natural choice: they are
highly motion selective35,36 and their responses have been directly
linked to perception37. If we associate the measurement ~m with
responses of MT neurons, the estimate must be computed in sub-
sequent neural stages38 and should be consistent with the prior as well
as the likelihood associated with the MT population response39. In a
similar fashion, perceptual judgments have been explained with an
optimal decision stage40 or an optimal discrimination stage41 operating
on a population of noisy MT responses. Alternatively, we can assume
that the population response of MT neurons directly reflects the speed
estimate16,42, and the measurement vector ~m is associated with
responses of neurons earlier in the system (for example, area V1).
This implies that the MT population responses should reflect the
influence of the prior, varying with contrast in a way that is consistent
with the perceptual biases exhibited by the Bayesian observer model.
This behavior could be implemented in a variety of ways. For example,
the contrast response functions of individual cells could differ depend-
ing on their preferred speed16; alternatively, the speed tuning of
individual cells could change with contrast. Recent physiological
experiments have begun to explore the interaction of speed and
contrast in the responses of these cells38,43.

The current model assumes a set of noisy measurements ~m, followed
by a deterministic estimator and a decision stages. If these latter stages
are to correspond to neural computations, each should presumably
introduce additional noise, and this should be included in optimizing
the computation of the next stage. Finally, it is well known that sensory
neurons adapt their response properties to the ensemble of recently
presented stimuli. We have begun to examine ways by which adaptation
processes can be incorporated into a more complete Bayesian theory
for perception44.

Bayesian models have attained substantial popularity in recent years
and have the potential to form a unifying optimality framework for the
understanding of both perception and physiology. But the Bayesian
framework is quite general, and in order to realize its potential for
explaining biology, it needs to be constrained to the point where it can

make quantitative experimentally testable predictions. The methodology
and results introduced in this article provide a step toward this goal, and
we believe that they will prove applicable to other areas of perception.

METHODS
Psychophysical experiments. Three male and two female human subjects with

normal or corrected-to-normal vision participated in the psychophysical

experiments. Experimental procedures were approved by the human subjects

committee of New York University and all subjects signed an approved consent

form. Two of the subjects (2 and 4) were not aware of the purpose of the study.

Subjects were presented simultaneously with two circular patches containing

horizontally drifting gratings. Patches were 31 in diameter, and were centered

61 on either side of a fixation cross. Gratings were broadband with a frequency

spectrum spanning six octaves (from 1/3 cycles deg–1 to 2 cycles deg–1) with

randomized phases and a power spectrum falling as f –2 (see examples in

Fig. 3a). The mean luminance of both gratings and the background was held

constant at 38 cd m–2. Subjects were asked to fixate a central fixation mark

(cross) while each stimulus pair was presented for 1 s. After presentation,

subjects selected the stimulus that appeared to be moving faster by pressing an

appropriate button. If they did not respond within a 1-s interval, the trial was

repeated. The total blank period between stimulus presentation was approxi-

mately 1.5 s, varying slightly with the computational time needed to generate

the next stimulus pair.

Each pair of stimuli consisted of a reference and a test grating that were

assigned to the left and right patches at random. On each trial, the two gratings

moved in the same direction (left or right, randomly chosen on each trial). The

reference grating had one of two contrast values (c1 ¼ [0.075, 0.5]) and one of

five different speeds (v1 ¼ [0.5, 1, 2, 4, 8, 12] deg s–1), and the test grating had

one of seven different contrast values (c2 ¼ [0.05, 0.075, 0.1, 0.2, 0.4, 0.5, 0.8])

and a variable speed v2 that was adjusted according to two interleaved

adaptive staircase procedures, each starting from one end of the adaptive speed

range of each condition. Staircases procedures were of the type ‘one-up one-

down’. Contrast was defined as the ratio between the maximal intensity

amplitude in each grating and the maximum intensity difference that could

be displayed on the monitor. Each stimulus parameter triplet [v1, c1, c2] was

presented a total of 80 times, and these 80 trials determined a psychometric

function for that condition. Individual trials for different conditions were

randomly interleaved.

Extracting the prior distribution and likelihood function. For each subject,

we fit the Bayesian observer model (Fig. 3a) to the full set of speed

discrimination data by maximizing the likelihood of the data according to

equation (4). This procedure requires a local parametric description of the

likelihood and the prior. For this reason, we make the following assumptions.

(i) We assume the prior is smooth relative to the width of the likelihood.

Specifically, we assume that the logarithm of the prior is well approximated by a

straight line over the range of velocities corresponding to the width of the

likelihood function. (ii) We assume the likelihood, pð~mjvÞ, is well approximated

by a Gaussian centered at a peak value, mv , that can be considered as the scalar

representation of the visual speed measurement (that is, a read-out of ~m).

Constraints on the noise distribution relate only to the projected value mv . We

further assume the expected value of mv to be equal to the actual stimulus speed.

(iii) We assume that the width of the likelihood function is separable in stimulus

speed and contrast, s(c,v) ¼ g(v)h(c), and that it varies slowly with speed.

The assumptions above allow us to relate the psychophysical data to the

likelihood and prior of our probabilistic model. We write the logarithm of the

prior as ln(p(v)) ¼ av + b, derive the posterior based on this local approxima-

tion of the prior and define the perceived speed v̂ðmvÞ as its mode. The

posterior is

pðvjmvÞ ¼
1

a
pðmvjvÞpðvÞ ¼

1

a
exp � ðv �mvÞ2

2s2ðc;mvÞ
+ aðmvÞv + bðmvÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KðvÞ

where a is a normalization constant independent of v. Note that the parameters

{s, a, b} are functions of the measurement mv rather than the true stimulus
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speed v. The posterior is maximal when the exponent K(v) is maximal. Thus,

we differentiate K(v) with respect to v, set it to zero and solve for v to find the

following expression for the perceived speed:

v̂ðmvÞ ¼ mv + aðmvÞs2ðc;mvÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
DðmvÞ

ð1Þ

where D(mv) represents the relative perceptual bias. Equation (1) describes the

perceived speed for a single measurement mv, which we assume is acquired

during a single trial of our experiment. Over many trials, the expected value of

the perceived speed for a given stimulus with speed vstim and contrast cstim is

equal to the expected value of mv (which we assume is the stimulus velocity

vstim) plus the value of D(mv) evaluated at that expected value: hence

Ehv̂ðmvÞjvstimi ¼ vstim +DðmvÞjmv¼vstim

¼ vstim + aðvstimÞs2ðcstim; vstimÞ:
ð2Þ

That is, the bias is a product of the slope of the logarithm of the prior and the

squared width of the likelihood.

Similarly, we derive the variance of the perceived speed. Because the

estimator is a deterministic function of the measurement, the variance of the

estimate only depends on the variance of the measurement. For a given

stimulus, we can linearize the estimator by a first-order Taylor approximation,

and can approximate the variance as the variance of the linearized estimator:

thus

varhv̂ðmvÞjvstimi � varhmvjvstimi
qv̂ðmvÞ
qmv

mv ¼ vstim

��� �2

� varhmvjvstimi 1 þ qDðmvÞ
qmv

mv ¼ vstim

��� �2

:

Under assumptions (i) and (iii) (smooth prior and mild speed dependence

of likelihood width, respectively), the perceived speed bias D(mv) remains

locally constant. Thus, the variance of the perceived speed v̂ is approximately

equal to the variance of the measurement expressed in the speed domain mv,

which is approximately the squared width of the likelihood

varhv̂ðmvÞjvstimi � varhmvjvstimi � s2ðcstim; vstimÞ: ð3Þ

Accordingly, the shape of the distribution of the estimate pðv̂ðmvÞjvstimÞ
matches the shape of the likelihood function, which we assumed to be

Gaussian. Thus, the analysis above defines the distribution of the speed estimate

for a given stimulus as a function of the local parameters of the likelihood

function and the prior distribution of our Bayesian observer model. Namely,

pðv̂ðmvÞjvstimÞ is a Gaussian with mean and variance given by equations (2) and

(3), respectively.

Signal detection theory. For any given prior distribution and likelihood

function, the model simulates the trial-to-trial behavior in the 2AFC speed

discrimination task by sampling the speed distribution pðv̂ðmvÞjvstimÞ of each

stimulus and choosing the stimulus whose sample has a higher speed value.

Over a large number of simulated trials, the decision probability will follow a

psychometric function according to the cumulative probability function45,46

Pðv̂24v̂1Þ ¼
Z1

0

pðv̂2ðm2Þjv2Þ
Ẑv2

0

pðv̂1ðm1Þjv1Þdv̂1dv̂2 ð4Þ

If the prior distribution and likelihood function are correct, then equation

(4) should fit the experimentally measured points on the psychometric

function. To extract the prior distribution and the speed and contrast

dependence of the likelihood, we discretize these functions over speed and

contrast and perform a maximum likelihood fit against all recorded data. The

prior distribution is reconstructed by numerical integration of the fitted local

slope values a(v).

Contrast-dependent likelihood width. The functional form of h(c) (see Fig. 4)

is motivated by assuming that the measurements ~m are the responses of a set of

spatiotemporally tuned cortical neurons involved in the perception of visual

speed, and thus that the variability in ~m and consequently the likelihood width

are determined by the response behavior of these neurons. The average firing

rate of cortical neurons as a function of contrast is well described by r(c) ¼
rmax c

q/(cq + c50
q) + rbase, where rmax and rbase are maximum and baseline firing

rate, respectively, and q and c50 specify the slope and the semisaturation point

of the contrast response function19. The variability of cortical responses

approximately follows a Poisson distribution; that is, the variance of response

grows proportionally with the mean firing rate. This implies that the relative

variability in the measurement and therefore the likelihood width decrease in

inverse proportion to the square-root of the firing rate. Combining these two

descriptions gives the parametric form used in describing the likelihood width

(Fig. 4) as

hðcÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrmaxcq=ðcq + c

q
50Þ+ rbaseÞ

p :

Fitted values for slope and semisaturation point vary across subjects in the

range of q ¼ 1.6y2.5 and c50 ¼ 0.15y0.3 (for subject 2, c50 was not well

constrained by the data and so was restricted to lie in this range). Note that

these parameters depend on our definition of contrast.

Logarithmic speed representation. The analysis above is written in terms of

the speed v but can be applied to any monotonic function of speed. We would

like to choose a representation such that the approximation in equation (3) is

valid: that is, so that assumption (iii) holds (slowly varying likelihood width).

Several results in the psychophysics literature suggest that visual speed dis-

crimination approximately follows a Weber-Fechner law and thus is roughly

proportional to speed21,22. This is consistent with a log-Normal likelihood

function (Gaussian in the logarithmic speed domain—assumption (ii)). But to

account for the deviation from the Weber-Fechner law at low speeds, we use a

modified logarithmic transformation ~v ¼ lnð1 + v=v0Þ, where v0 is a small

constant. Throughout our analysis, we choose a fixed value v0 ¼ 0.3 deg s–1,

which results in an approximately constant g(v) (see Fig. 4). Other choices for v0

necessarily lead to a change in g(v) because g(v) expresses the speed dependence

likelihood width in the ~v domain. However, they do not affect the likelihood

function in the linear speed domain. We have also verified that neither the

fitting results nor the extracted prior are substantially changed when v0 is varied

by an order of magnitude in either direction. Notably, it has been reported that

neurons in the medial temporal area (area MT) of macaque monkeys have

speed-tuning curves that are approximately log-Normal in visual speed accord-

ing to above modified logarithmic representation41. These neurons are known

to play a central role in the representation of motion, and it seems natural to

assume that they are involved in tasks such as our psychophysical experiments.

Note that although the Bayesian estimation is described in a logarithmic

speed domain, it is computed with reference to the world representation of

visual object speed. Thus, estimation is performed by transforming the poster-

ior probability to the linear domain, selecting the estimate and transforming it

back to the logarithmic speed domain.

Note: Supplementary information is available on the Nature Neuroscience website.
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