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Abstract

It has been demonstrated that basic aspects of human visual motion per-
ception are qualitatively consistent with a Bayesian estimation frame-
work, where the prior probability distribution on velocity favors slow
speeds. Here, we present a refined probabilistic model that can account
for the typical trial-to-trial variabilities observed in psychophysical speed
perception experiments. We also show that data from such experiments
can be used to constrain both the likelihood and prior functions of the
model. Specifically, we measured matching speeds and thresholds in a
two-alternative forced choice speed discrimination task. Parametric fits
to the data reveal that the likelihood function is well approximated by
a LogNormal distribution with a characteristic contrast-dependent vari-
ance, and that the prior distribution on velocity exhibits significantly
heavier tails than a Gaussian, and approximately follows a power-law
function.

Humans do not perceive visual motion veridically. Various psychophysical experiments
have shown that the perceived speed of visual stimuli is affected by stimulus contrast,
with low contrast stimuli being perceived to move slower than high contrast ones [1, 2].
Computational models have been suggested that can qualitatively explain these perceptual
effects. Commonly, they assume the perception of visual motion to be optimal either within
a deterministic framework with a regularization constraint that biases the solution toward
zero motion [3, 4], or within a probabilistic framework of Bayesian estimation with a prior
that favors slow velocities [5, 6].

The solutions resulting from these two frameworks are similar (and in some cases identi-
cal), but the probabilistic framework provides a more principled formulation of the problem
in terms of meaningful probabilistic components. Specifically, Bayesian approaches rely
on a likelihood function that expresses the relationship between the noisy measurements
and the quantity to be estimated, and a prior distribution that expresses the probability of
encountering any particular value of that quantity. A probabilistic model can also provide a
richer description, by defining a full probability density over the set of possible “percepts”,
rather than just a single value. Numerous analyses of psychophysical experiments have
made use of such distributions within the framework of signal detection theory in order to
model perceptual behavior [7].

Previous work has shown that an ideal Bayesian observer model based on Gaussian forms
for both likelihood and prior is sufficient to capture the basic qualitative features of global
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Figure 1: Bayesian model of visual speed perception. a) For a high contrast stimulus, the
likelihood has a narrow width (a high signal-to-noise ratio) and the prior induces only a
small shift µ of the mean v̂ of the posterior. b) For a low contrast stimuli, the measurement
is noisy, leading to a wider likelihood. The shift µ is much larger and the perceived speed
lower than under condition (a).

translational motion perception [5, 6]. But the behavior of the resulting model deviates
systematically from human perceptual data, most importantly with regard to trial-to-trial
variability and the precise form of interaction between contrast and perceived speed. A
recent article achieved better fits for the model under the assumption that human contrast
perception saturates [8]. In order to advance the theory of Bayesian perception and provide
significant constraints on models of neural implementation, it seems essential to constrain
quantitatively both the likelihood function and the prior probability distribution. In previous
work, the proposed likelihood functions were derived from the brightness constancy con-
straint [5, 6] or other generative principles [9]. Also, previous approaches defined the prior
distribution based on general assumptions and computational convenience, typically choos-
ing a Gaussian with zero mean, although a Laplacian prior has also been suggested [4]. In
this paper, we develop a more general form of Bayesian model for speed perception that
can account for trial-to-trial variability. We use psychophysical speed discrimination data
in order to constrain both the likelihood and the prior function.

1 Probabilistic Model of Visual Speed Perception

1.1 Ideal Bayesian Observer

Assume that an observer wants to obtain an estimate for a variable v based on a measure-
ment m that she/he performs. A Bayesian observer “knows” that the measurement device
is not ideal and therefore, the measurement m is affected by noise. Hence, this observer
combines the information gained by the measurement m with a priori knowledge about v.
Doing so (and assuming that the prior knowledge is valid), the observer will – on average –
perform better in estimating v than just trusting the measurements m. According to Bayes’
rule

p(v|m) =
1
α

p(m|v)p(v) (1)

the probability of perceiving v given m (posterior) is the product of the likelihood of v for
a particular measurements m and the a priori knowledge about the estimated variable v
(prior). α is a normalization constant independent of v that ensures that the posterior is a
proper probability distribution.

It is important to note that the measurement m is an internal variable of the observer and
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Figure 2: 2AFC speed discrimination experiment. a) Two patches of drifting gratings were
displayed simultaneously (motion without movement). The subject was asked to fixate
the center cross and decide after the presentation which of the two gratings was moving
faster. b) A typical psychometric curve obtained under such paradigm. The dots represent
the empirical probability that the subject perceived stimulus2 moving faster than stimulus1.
The speed of stimulus1 was fixed while v2 is varied. The point of subjective equality, vmatch,
is the value of v2 for which Pcum = 0.5. The threshold velocity vthresh is the velocity for
which Pcum = 0.875.

is not necessarily represented in the same space as v. The likelihood embodies both the
mapping from v to m and the noise in this mapping. So far, we assume that there is a
monotonic function f(v) : v → vm that maps v into the same space as m (m-space).
Doing so allows us to analytically treat m and vm in the same space. We will later propose
a suitable form of the mapping function f(v).

An ideal Bayesian observer selects the estimate that minimizes the expected loss, given the
posterior and a loss function. We assume a least-squares loss function. Then, the optimal
estimate v̂ is the mean of the posterior in Equation (1). It is easy to see why this model
of a Bayesian observer is consistent with the fact that perceived speed decreases with con-
trast. The width of the likelihood varies inversely with the accuracy of the measurements
performed by the observer, which presumably decreases with decreasing contrast due to
a decreasing signal-to-noise ratio. As illustrated in Figure 1, the shift in perceived speed
towards slow velocities grows with the width of the likelihood, and thus a Bayesian model
can qualitatively explain the psychophysical results [1].

1.2 Two Alternative Forced Choice Experiment

We would like to examine perceived speeds under a wide range of conditions in order to
constrain a Bayesian model. Unfortunately, perceived speed is an internal variable, and it is
not obvious how to design an experiment that would allow subjects to express it directly 1.
Perceived speed can only be accessed indirectly by asking the subject to compare the speed
of two stimuli. For a given trial, an ideal Bayesian observer in such a two-alternative forced
choice (2AFC) experimental paradigm simply decides on the basis of the two trial estimates
v̂1 (stimulus1) and v̂2 (stimulus2) which stimulus moves faster. Each estimate v̂ is based
on a particular measurement m. For a given stimulus with speed v, an ideal Bayesian
observer will produce a distribution of estimates p(v̂|v) because m is noisy. Over trials,
the observers behavior can be described by classical signal detection theory based on the
distributions of the estimates, hence e.g. the probability of perceiving stimulus2 moving

1Although see [10] for an example of determining and even changing the prior of a Bayesian
model for a sensorimotor task, where the estimates are more directly accessible.



faster than stimulus1 is given as the cumulative probability

Pcum(v̂2 > v̂1) =
∫ ∞

0

p(v̂2|v2)
∫ v̂2

0

p(v̂1|v1) dv̂1 dv̂2 (2)

Pcum describes the full psychometric curve. Figure 2b illustrates the measured psychomet-
ric curve and its fit from such an experimental situation.

2 Experimental Methods

We measured matching speeds (Pcum = 0.5) and thresholds (Pcum = 0.875) in a 2AFC
speed discrimination task. Subjects were presented simultaneously with two circular
patches of horizontally drifting sine-wave gratings for the duration of one second (Fig-
ure 2a). Patches were 3deg in diameter, and were displayed at 6deg eccentricity to either
side of a fixation cross. The stimuli had an identical spatial frequency of 1.5 cycle/deg. One
stimulus was considered to be the reference stimulus having one of two different contrast
values (c1=[0.075 0.5]) and one of five different speed values (u 1=[1 2 4 8 12] deg/sec)
while the second stimulus (test) had one of five different contrast values (c 2=[0.05 0.1 0.2
0.4 0.8]) and a varying speed that was determined by an interleaved staircase procedure.
For each condition there were 96 trials. Conditions were randomly interleaved, including
a random choice of stimulus identity (test vs. reference) and motion direction (right vs.
left). Subjects were asked to fixate during stimulus presentation and select the faster mov-
ing stimulus. The threshold experiment differed only in that auditory feedback was given
to indicate the correctness of their decision. This did not change the outcome of the ex-
periment but increased significantly the quality of the data and thus reduced the number of
trials needed.

3 Analysis

With the data from the speed discrimination experiments we could in principal apply a
parametric fit using Equation (2) to derive the prior and the likelihood, but the optimization
is difficult, and the fit might not be well constrained given the amount of data we have ob-
tained. The problem becomes much more tractable given the following weak assumptions:

• We consider the prior to be relatively smooth.

• We assume that the measurement m is corrupted by additive Gaussian noise with
a variance whose dependence on stimulus speed and contrast is separable.

• We assume that there is a mapping function f(v) : v → vm that maps v into the
space of m (m-space). In that space, the likelihood is convolutional i.e. the noise
in the measurement directly defines the width of the likelihood.

These assumptions allow us to relate the psychophysical data to our probabilistic model in
a simple way. The following analysis is in the m-space. The point of subjective equality
(Pcum = 0.5) is defined as where the expected values of the speed estimates are equal. We
write

E〈v̂m,1〉 = E〈v̂m,2〉 (3)

vm,1 − E〈µ1〉 = vm,2 − E〈µ2〉
where E〈µ〉 is the expected shift of the perceived speed compared to the veridical speed.
For the discrimination threshold experiment, above assumptions imply that the variance
var〈v̂m〉 of the speed estimates v̂m is equal for both stimuli. Then, (2) predicts that the
discrimination threshold is proportional to the standard deviation, thus

vm,2 − vm,1 = γ
√

var〈v̂m〉 (4)
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Figure 3: Piece-wise approximation We perform a parametric fit by assuming the prior to
be piece-wise linear and the likelihood to be LogNormal (Gaussian in the m-space).

where γ is a constant that depends on the threshold criterion P cum and the exact shape of
p(v̂m|vm).

3.1 Estimating the prior and likelihood

In order to extract the prior and the likelihood of our model from the data, we have to find
a generic local form of the prior and the likelihood and relate them to the mean and the
variance of the speed estimates. As illustrated in Figure 3, we assume that the likelihood is
Gaussian with a standard deviation σ(c, vm). Furthermore, the prior is assumed to be well-
approximated by a first-order Taylor series expansion over the velocity ranges covered by
the likelihood. We parameterize this linear expansion of the prior as p(vm) = avm + b.

We now can derive a posterior for this local approximation of likelihood and prior and then
define the perceived speed shift µ(m). The posterior can be written as

p(vm|m) =
1
α

p(m|vm)p(vm) =
1
α

[exp(− v2
m

2σ(c, vm)2
)(avm + b)] (5)

where α is the normalization constant

α =
∫ ∞

−∞
p(m|vm)p(vm)dvm =

b

2

√
π2σ(c, vm)2 (6)

We can compute µ(m) as the first order moment of the posterior for a given m. Exploiting
the symmetries around the origin, we find

µ(m) =
∫ ∞

−∞
vp(vm|m)dvm ≡ a(m)

b(m)
σ(c, vm)2 (7)

The expected value of µ(m) is equal to the value of µ at the expected value of the measure-
ment m (which is the stimulus velocity vm), thus

E〈µ〉 = µ(m)|m=vm =
a(vm)
b(vm)

σ(c, vm)2 (8)

Similarly, we derive var〈v̂m〉. Because the estimator is deterministic, the variance of the
estimate only depends on the variance of the measurement m. For a given stimulus, the
variance of the estimate can be well approximated by

var〈v̂m〉 = var〈m〉(∂v̂m(m)
∂m

|m=vm)2 (9)

= var〈m〉(1 − ∂µ(m)
∂m

|m=vm)2 ≈ var〈m〉



Under the assumption of a locally smooth prior, the perceived velocity shift remains locally
constant. The variance of the perceived speed v̂m becomes equal to the variance of the
measurement m, which is the variance of the likelihood (in the m-space), thus

var〈v̂m〉 = σ(c, vm)2 (10)

With (3) and (4), above derivations provide a simple dependency of the psychophysical
data to the local parameters of the likelihood and the prior.

3.2 Choosing a Logarithmic speed representation

We now want to choose the appropriate mapping function f(v) that maps v to the m-space.
We define the m-space as the space in which the likelihood is Gaussian with a speed-
independent width. We have shown that discrimination threshold is proportional to the
width of the likelihood (4), (10). Also, we know from the psychophysics literature that
visual speed discrimination approximately follows a Weber-Fechner law [11, 12], thus that
the discrimination threshold increases roughly proportional with speed and so would the
likelihood. A logarithmic speed representation would be compatible with the data and our
choice of the likelihood. Hence, we transform the linear speed-domain v into a normalized
logarithmic domain according to

vm = f(v) = ln(
v + v0

v0
) (11)

where v0 is a small normalization constant. The normalization is chosen to account for
the expected deviation of equal variance behavior at the low end. Surprisingly, it has been
found that neurons in the Medial Temporal area (Area MT) of macaque monkeys have
speed-tuning curves that are very well approximated by Gaussians of constant width in
above normalized logarithmic space [13]. These neurons are known to play a central role
in the representation of motion. It seems natural to assume that they are strongly involved
in tasks such as our performed psychophysical experiments.

4 Results

Figure 4 shows the contrast dependent shift of speed perception and the speed discrimina-
tion threshold data for two subjects. Data points connected with a dashed line represent
the relative matching speed (v2/v1) for a particular contrast value c2 of the test stimulus
as a function of the speed of the reference stimulus. Error bars are the empirical stan-
dard deviation of fits to bootstrapped samples of the data. Clearly, low contrast stimuli
are perceived to move slower. The effect, however, varies across the tested speed range
and tends to become smaller for higher speeds. The relative discrimination thresholds for
two different contrasts as a function of speed show that the Weber-Fechner law holds only
approximately. The data are in good agreement with other data from the psychophysics
literature [1, 11, 8].
For each subject, data from both experiments were used to compute a parametric least-
squares fit according to (3), (4), (7), and (10). In order to test the assumption of a LogNor-
mal likelihood we allowed the standard deviation to be dependent on contrast and speed,
thus σ(c, vm) = g(c)h(vm). We split the speed range into six bins (subject2: five) and
parameterized h(vm) and the ratio a/b accordingly. Similarly, we parameterized g(c) for
the seven contrast values. The resulting fits are superimposed as bold lines in Figure 4.

Figure 5 shows the fitted parametric values for g(c) and h(v) (plotted in the linear domain),
and the reconstructed prior distribution p(v) transformed back to the linear domain. The
approximately constant values for h(v) provide evidence that a LogNormal distribution
is an appropriate functional description of the likelihood. The resulting values for g(c)
suggest for the likelihood width a roughly exponential decaying dependency on contrast
with strong saturation for higher contrasts.
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Figure 4: Speed discrimination data for two subjects. a) The relative matching speed of
a test stimulus with different contrast levels (c2=[0.05 0.1 0.2 0.4 0.8]) to achieve subjec-
tive equality with a reference stimulus (two different contrast values c 1). b) The relative
discrimination threshold for two stimuli with equal contrast (c1,2=[0.075 0.5]).
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Figure 5: Reconstructed prior distribution and parameters of the likelihood function. The
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approximately following a power-law function with exponent n ≈ −1.4 (bold line).



5 Conclusions

We have proposed a probabilistic framework based on a Bayesian ideal observer and stan-
dard signal detection theory. We have derived a likelihood function and prior distribution
for the estimator, with a fairly conservative set of assumptions, constrained by psychophys-
ical measurements of speed discrimination and matching. The width of the resulting like-
lihood is nearly constant in the logarithmic speed domain, and decreases approximately
exponentially with contrast. The prior expresses a preference for slower speeds, and ap-
proximately follows a power-law distribution, thus has much heavier tails than a Gaussian.

It would be interesting to compare the here derived prior distributions with measured true
distributions of local image velocities that impinge on the retina. Although a number of
authors have measured the spatio-temporal structure of natural images [14, e.g. ], it is
clearly difficult to extract therefrom the true prior distribution because of the feedback loop
formed through movements of the body, head and eyes.
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