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Abstract

We examine the statistics of natural monochromatic images decomposed
using a multi-scale wavelet basis. Although the coefficients of this rep-
resentation are nearly decorrelated, they exhibit important higher-order
statistical dependencies that cannot be eliminated with purely linear pro-
cessing. In particular, rectified coefficients corresponding to basis func-
tions at neighboring spatial positions, orientations and scales are highly
correlated. A method of removing these dependencies is to divide each
coefficient by a weighted combination of its rectified neighbors. Sev-
eral successful models of the steady-state behavior of neurons in primary
visual cortex are based on such “divisive normalization” computations,
and thus our analysis provides a theoretical justification for these models.
Perhaps more importantly, the statistical measurements explicitly specify
the weights that should be used in computing the normalization signal.
We demonstrate that this weighting is qualitatively consistent with re-
cent physiological experiments that characterize the suppressive effect
of stimuli presented outside of the classical receptive field. Our obser-
vations thus provide evidence for the hypothesis that early visual neural
processing is well matched to these statistical properties of images.

An appealing hypothesis for neural processing states that sensory systems develop in re-
sponse to the statistical properties of the signals to which they are exposed [e.g., 1, 2].
This has led many researchers to look for a means of deriving a model of cortical process-
ing purely from a statistical characterization of sensory signals. In particular, many such
attempts are based on the notion that neural responses should be statistically independent.

The pixels of digitized natural images are highly redundant, but one can always find a
linear decomposition (i.e., principal component analysis) that eliminates second-order cor-
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relation. A number of researchers have used such concepts to derive linear receptive fields
similar to those determined from physiological measurements [e.g., 16, 20]. The principal
components decomposition is, however, not unique. Because of this, these early attempts
required additional constraints, such as spatial locality and/or symmetry, in order to achieve
functions approximating cortical receptive fields.

More recently, a number of authors have shown that one may use higher-order statisti-
cal measurements to uniquely constrain the choice of linear decomposition [e.g., 7, 9].
This is commonly known as independent components analysis. Vision researchers have
demonstrated that the resulting basis functions are similar to cortical receptive fields, in
that they are localized in spatial position, orientation and scale [e.g., 17, 3]. The associ-
ated coefficients of such decompositions are (second-order) decorrelated, highly kurtotic,
and generally more independent than principal components.

But the response properties of neurons in primary visual cortex are not adequately described
by linear processes. Even if one chooses to describe only the mean firing rate of such
neurons, one must at a minimum include a rectifying, saturating nonlinearity. A number of
authors have shown that a gain control mechanism, known as divisive normalization, can
explain a wide variety of the nonlinear behaviors of these neurons [18, 4, 11, 12, 6]. In most
instantiations of normalization, the response of each linear basis function is rectified (and
typically squared) and then divided by a uniformly weighted sum of the rectified responses
of all other neurons. Physiologically, this is hypothesized to occur via feedback shunting
inhibitory mechanisms [e.g., 13, 5]. Ruderman and Bialek [19] have discussed divisive
normalization as a means of increasing entropy.

In this paper, we examine the joint statistics of coefficients of an orthonormal wavelet im-
age decomposition that approximates the independent components of natural images. We
show that the coefficients are second-order decorrelated, but not independent. In partic-
ular, pairs of rectified responses are highly correlated. These pairwise dependencies may
be eliminated by dividing each coefficient by a weighted combination of the rectified re-
sponses of other neurons, with the weighting determined from image statistics. We show
that the resulting model, with all parameters determined from the statistics of a set of im-
ages, can account for recent physiological observations regarding suppression of cortical
responses by stimuli presented outside the classical receptive field. These concepts have
been previously presented in [21, 25].

1 Joint Statistics of Orthonormal Wavelet Coefficients

Multi-scale linear transforms such as wavelets have become popular for image representa-
tion. Typically, the basis functions of these representations are localized in spatial position,
orientation, and spatial frequency (scale). The coefficients resulting from projection of
natural images onto these functions are essentially uncorrelated. In addition, a number
of authors have noted that wavelet coefficients have significantly non-Gaussian marginal
statistics [e.g., 10, 14]. Because of these properties, we believe that wavelet bases provide
a close approximation to the independent components decomposition for natural images.
For the purposes of this paper, we utilize a typical separable decomposition, based on
symmetric quadrature mirror filters taken from [23]. The decomposition is constructed by
splitting an image into four subbands (lowpass, vertical, horizontal, diagonal), and then
recursively splitting the lowpass subband.

Despite the decorrelation properties of the wavelet decomposition, it is quite evident that
wavelet coefficients are not statistically independent [26, 22]. Large-magnitude coefficients
(either positive or negative) tend to lie along ridges with orientation matching that of the
subband. Large-magnitude coefficients also tend to occur at the same relative spatial loca-
tions in subbands at adjacent scales, and orientations. To make these statistical relationships
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Figure 1: Illustration of image statistics as seen through two neighboring receptive fields.
Left image: Joint conditional histogram of two linear coefficients. Pixel intensity corre-
sponds to frequency of occurrence of a given pair of values, except that each column has
been independently rescaled to fill the full intensity range. Right image: Joint histogram of
divisively normalized coefficients (see text).

more explicit, the left panel of Fig. 1 shows a conditional histogram of coefficients associ-
ated with two neighboring receptive fields. Assuming stationarity, the statistics are gathered
over all spatial positions of a single natural image. First, we see that the coefficients are
well decorrelated: The expected value of the ordinate coefficient is approximately zero,
independent of the value of the abscissa. But the variance of the ordinate clearly increases
with the absolute value of the abscissa.

We have observed this type of dependency in pairs of coefficients at neighboring spatial
positions, orientations and scales, and for a wide variety of imagery. We have previ-
ously used these relationships in applications of image compression, denoising, and syn-
thesis [e.g., 22]. We have also shown that this dependency may be eliminated by dividing.
Specifically, the squared coefficient, C2 may be divided by a weighted sum of the neigh-
boring squared coefficients plus a constant:

R = C2/

[

∑

k

wkP 2

k + σ2

]

. (1)

The parameters {wk} and σ are chosen to minimize squared prediction error:

{ŵ, σ̂} = arg min
{~w,σ}

IE

[

C2 −
∑

k

wkP 2

k − σ2

]2

,

where the Pk are the values of coefficients at adjacent spatial positions, orientations and
scales, and IE[·] indicates expected value (computed by integrating over the full spatial
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Figure 2: Response vs. center contrast, in the presence of a parallel surround stimulus of
varying contrast. Physiological data from [8].

0

0.13

0.5

Surround contrast

Center contrast

M
ea

n 
R

es
po

ns
e 

R
at

e

0.03 0.1 0.3 1
0

50

100

0.03 0.1 0.3 1

Center contrast

Cell Model

Figure 3: Response vs. center contrast in the presence of a perpendicular surround stimulus.
Physiological data from [8].

extent of a set of images). A joint histogram of the square roots of two normalized coef-
ficients is shown in the rightmost panel of Fig. 1, indicating that the resulting normalized
components are nearly independent.

2 Physiological Comparisons

In this section, we examine predictions of the normalization model with weights determined
from image statistics. The ability of normalization models to account for non-specific
suppression within the classical receptive field has been documented [e.g., 12, 6]. Here we
consider the influence of stimuli presented outside of the classical receptive field.

We examine electrophysiological data obtained from recordings of simple cells in area
V1 of an anesthetized Macaque monkey in two different labs [8, 15]. In each example,
an optimal drifting sinusoidal grating is presented in the classical receptive field of the
neuron. Simultaneously, another drifting sine grating is presented in a large annular region
surrounding the classical receptive field. Each experiment examines the effect of varying
one parameter of the surround stimulus on the mean firing rate of the neuron.

For comparison, we show the normalized response, R, of a vertical basis function at the
second recursion level of a wavelet pyramid, as specified by Eq. (1). Responses are av-
eraged over all phases of the sinusoidal input, and scaled by a fixed constant α to pro-
duce response levels comparable to physiological responses. The normalization signal is
a weighted combination of squared coefficients at two scales, all three orientations, and a
spatial neighborhood of diameter 65 pixels (roughly 7 receptive fields). The normalization
weights are optimized for the statistics of a set of three 512 × 512 images (“Goldhill”,
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Figure 4: Response as a function of surround orientation. Physiological data from [8].
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Figure 5: Response as a function of surround spatial frequency. Physiological data
from [15].

“Boats”, and “Lena”).

The first two examples (Figs. 2 and 3) show response as a function of center stimulus
contrast. Each curve corresponds to a different surround contrast. The physiological data
are fit with a function of the form R(c) = αcp/(cp + σp). The model curves are less
steep than those of the neurons, since the model uses a fixed exponent of two. As sur-
round contrast increases, the entire curve shifts to the right (on a log scale), indicative of
divisive suppression. The parallel surround stimulus produces a significantly larger shift
than the perpendicular surround. In the model, this behavior is a direct consequence of the
statistically-chosen normalization weights.

Figure 4 summarizes the suppressive effect of the surround (at the highest contrast) as a
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Figure 6: Response as a function of surround inner diameter. Physiological data from [8].
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function of orientation. Figure 5 shows a similar behavior with respect to surround spatial
frequency. The largest suppression is observed when the surround spatial frequency is the
same as the center (i.e., the preferred spatial frequency of the cell). Figure 6 shows the
effect of spatial proximity. As the surround stimulus is moved away from the receptive
field, the suppressive effect is reduced.

3 Conclusions

We have presented a weighted normalization model for early visual processing. Both the
form and the parameters of the model are specified by statistical measurements from natural
images. Although the comparisons we have presented are somewhat anecdotal, we find the
ability of this model to mimic physiological suppression behaviors quite remarkable.

Nevertheless, there are many tough issues to be resolved. Some of these are statistical. A
fundamental question is whether statistical independence is a reasonable goal for neural
processing. Additionally, one might ask if there is a statistical justification for cascaded
sequences of normalization computations, as has been proposed in some models of cortical
processing [e.g., 24]. More practically, the normalization procedure needs to be exam-
ined in the context of a proper independent components basis. The orthonormal wavelet
approximation that we have used here has the disadvantage that the diagonal bands contain
a mixture of orientations. Preliminary tests indicate substitution of a better basis produces
qualitatively similar results.

An essential feature that is missing from our description is time. In particular, our normal-
ization computation is simultaneous and instantaneous, and we have only modeled steady-
state firing rates. A more realistic implementation would involve normalization of a pop-
ulation of neurons in parallel using feedback or lateral connections (necessarily delayed),
and would thus introduce temporal dynamics as well as higher-order effects such as dis-
inhibition. Furthermore, our modeling and implementation are based on still images and
static receptive fields. This should be augmented to include spatio-temporal behaviors such
as direction-selectivity: we suspect that these properties may be derived from statistics of
image sequences.

Finally, an interesting issue is the plasticity of the normalization weights: Are these fixed
(i.e., globally optimized over all images), or are they modified according to the statistics of
the recent visual context? Our preliminary investigations indicate that such plasticity may
account for adaptation effects that have been observed physiologically.
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