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14.1 Introduction

Images are formed as projections of the three-dimensional world onto a
two-dimensional light-sensing surface. The brightness of the image at each
point indicates how much light was absorbed by the surface at that spatial
position at a particular time (or over some interval of time). When an
object in the world moves relative to the sensor surface, the two-dimensional
projection of that object moves within the image. The movement of the
projection of each point in the world is referred to as the image velocity or
the motion �eld .
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The estimation of the image motion �eld is generally assumed to be the
�rst goal of motion processing in machine vision systems. Motion estima-
tion is also crucial for compression of image sequences (e.g., the MPEG
video compression standard uses motion-compensated prediction). There
is also evidence that this sort of computation is performed by biological
systems. As an approximation to this, computer vision techniques typi-
cally compute an estimate of the motion �eld known as the optical 
ow .
The idea is to measure the apparent motion of local regions of the image

brightness pattern from one frame to the next. In doing this, one is assum-
ing that these intensity patterns are preserved from frame to frame. As
many authors have pointed out, the optical 
ow f is not always the same
as the motion �eld v (eg, [1; 2]).

There are many methods of computing optical 
ow. The most com-
mon are correlation, gradient, spatiotemporal �ltering, and Fourier phase
or energy approaches. Although based on somewhat di�erent assumptions,
these approaches are closely related, and can be made identical with proper
formulation and choice of parameters [3; 4]. Correlation (usually over a lo-
cal window) is by far the most prevalent technique. This is presumably due
to a combination of intuitive directness and ease of hardware implementa-
tion. But a recent study by Barron et. al. suggests that gradient-based
implementations have been the most accurate [5]. In addition, the gradi-
ent solution is eÆcient (because the solution can be computed analytically
rather than via optimization), and produces sub-pixel displacement esti-
mates. A drawback of the gradient approach is that it may only be used
for small displacements. But this diÆculty can be alleviated using a multi-
scale coarse-to-�ne algorithm. This chapter provides a practical description
of a Bayesian multi-scale gradient-based optical 
ow estimation algorithm,
based on work previously published in [6; 4; 7].

14.2 Di�erential formulation

Gradient formulations of optical 
ow begin with the di�erential brightness
constancy constraint equation [8]:

r
Tg f + gt = 0; (14.1)

whererg and gt are the spatial image gradient and temporal derivative, re-
spectively, of the image at a given spatial location and time (for notational
simplicity, these parameters are omitted). The equation places a single
linear constraint on the two-dimensional velocity vector f (at each point
in space and time). As such, one cannot solve for velocity without impos-
ing some additional constraint. This inherent indeterminacy is commonly
known as the aperture problem.1 In locations where the spatial gradient

1The expression refers to the fact that the motion of a moving one-dimensional pattern
viewed through a circular aperture is ambiguous. Actually, the problem is not really due
to the aperture, but to the one-dimensionality of the spatial image structure.
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vanishes, the equation provides no constraint on the velocity vector. This
is sometimes called the blank wall problem.

Typically, the aperture problem is overcome by imposing some form
of smoothness on the �eld of velocity vectors. Many formulations use
global smoothness constraints [8], which require global optimization2. Al-
ternatively, one may assume locally constant velocity and combine linear
constraints over local spatial (or temporal) regions [10]. This is accom-
plished by writing a weighted sum-of-squares error function based on the
constraints from each point within a small region, where the points are
indexed by a subscript i 2 f1; 2; : : : ng:

E(f ) =
X
i

wi

h
r

Tg(xi; t)f + gt(xi; t)
i2
; (14.2)

where wi is a set of positive weights.
To compute a linear least-squares estimate (LLSE) of f as a function

of measurements rg and gt, consider the gradient (with respect to f) of
this quadratic expression:

rfE(f ) = 2
X
rg

h
r

Tg f + gt

i
= 2 [Mf + b] (14.3)

where

M =
X
rgrTg =

" P
g2x

P
gxgyP

gxgy
P

g2y

#
; b =

" P
gxgtP
gygt

#
: (14.4)

and all of the summations are over the patch, weighted by wi as in (14.2)).
The (xi; t) parameters have been omitted to simplify notation.

Setting the gradient expression equal to the zero vector gives the least-
squares velocity estimate:

f̂ = �M�1b; (14.5)

assuming that the matrix M is invertible. Notice that matrix M and the
vector b are both composed of blurred quadratic combinations of the spatial
and temporal derivatives.

Despite the combination of information over the patch, it is important to
recognize that the matrixM can still be singular. In particular, one cannot
solve for the velocity in regions of the image where the intensity varies only
one-dimensionally (the extended aperture problem) or zero-dimensionally
(the extended blank wall problem). In addition, this basic formulation has
diÆculties at occlusion boundaries (where two motions can coexist within
the same local region), or when image brightness changes are due to pho-
tometric e�ects.

2Although Weiss has recently shown that some solutions may be localized through
the use of Green's functions (eg, [9]).
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Before introducing a model for uncertainty, it should be noted that
the basic gradient approach may be extended in a number of ways. One
can incorporate higher-order di�erential measurements (e.g., [11; 12]), or
impose stronger constraints on the velocity �eld (for example, aÆne motion
[13] or rigid-body motion [14]). A total least squares formulation is given
in [15], although this solution is diÆcult to stabilize. The least-squares
combination of local constraints may be replaced with a robust combination
rule to give improved handling of occlusion boundaries [16]. The most
promising recent development are techniques that simultaneously estimate
motion and segment the scene into coherently moving regions (e.g., [17; 18;
19; 20; 21; 9]). Finally, gradient-based approaches have been shown to to
be closely related to visual motion processing in mammals (e.g., [3; 22; 23;
24; 25; 26]).

14.3 Uncertainty model

Each of the quantities in (14.1)) is an idealization. First, we do not have
the actual spatial or temporal derivatives, but estimates of these deriva-
tives that are corrupted by image noise, �lter inaccuracies, quantization,
etc. Second, the equation is a constraint on the optical 
ow, but we are
interested in estimating the motion �eld. As explained earlier, these two
quantities often di�er because changes in image intensities can be caused
by non-motion e�ects.

These idealizations can be made explicit by introducing a set of additive
random variables. De�ne ~f as the optical 
ow, and f as the actual veloc-
ity �eld. The di�erence between these may be described using a random
variable, n1,

~f = f + n1

Similarly, let ~gt be the actual temporal derivative, and gt the measured
derivative. Then

gt = ~gt + n2

with n2 a random variable characterizing the uncertainty in this measure-
ment relative to the true derivative. We assume that the spatial derivatives
are measured more accurately than the temporal derivatives, and thus the
equation does not include any term for uncertainty in these quantities.

Now the gradient constraint applies to the actual derivatives, and the
optical 
ow vector, and so we may write:

0 = r
Tg ~f + ~gt

= r
Tg(f � n1) + gt � n2

) r
Tg f + gt = r

Tg n1 + n2: (14.6)
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This equation gives us a probabilistic relationship between the image mo-

tion �eld and the measurements of spatiotemporal gradient. It accounts for
errors in our derivative measurements, and for deviations of the velocity
�eld from the optical 
ow. But it still assumes that the underlying optical

ow constraint is valid.

In order to make use of this formulation, we must characterize the ran-
dom variables ni in our de�nitions. It is desirable to choose these probabil-
ity distributions such that f may be estimated analytically (as opposed to
numerically). A common choice is to use independent zero-mean Gaussian
distributions. The right side of (14.6)) is a zero-mean Gaussian random
variable with variance equal to rTg �1rg + �2, where �1 and �2 are a
covariance matrix and a variance corresponding to n1 and n2, respectively.
We interpret the equation as providing a conditional probability expression:

P(gt j f ;rg) / exp

�
�
1

2
(rTg f + gt)(r

Tg �1rg +�2)
�1(rTg f + gt)

�

Bayes' rule may be used to write the desired conditional probability:

P(f j rg; gt) =
P(gt j f ;rg)P(f)

P(gt)
:

For the prior distribution P(f), we choose a zero-mean Gaussian with
covariance �p. This imposes a preference for slower speeds3. The de-
nominator, P(gt), is only present for normalization purposes and doesn't
a�ect the relative probabilities. The resulting distribution P(f jrg; gt) is
Gaussian:

P(f jrg; gt) (14.7)

/ exp

�
�
1

2
(rTg f + gt)

T (rTg �1rg +�2)
�1(rTg f + gt)

�
(14.8)

� exp

�
�
1

2
fT��1

p f

�

= exp

�
�
1

2
fT

h
rg(rTg �1rg +�2)

�1
r

Tg +��1
p

i
f

� gt(r
Tg �1rg +�2)

�1
r

Tg f

�
1

2
gt(r

Tg �1rg +�2)gt

�

= exp

�
�
1

2
(�f � f )

T��1
f (�f � f)

�
: (14.9)

3Such a preference has been suggested to play a role in human perception(e.g., [4; 26]).
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The covariance matrix, �f , and mean vector, �f may be derived by com-
pleting the square in the exponent:

�f =
h
rg(rTg �1rg +�2)

�1
r

Tg +��1
p

i
�1

�f = ��frg(rTg �1rg +�2)
�1gt:

The advantage of the Gaussian form is that it is parameterized by these
two quantities that are computed in analytic form from the derivative mea-
surements.

If �1 is assumed to be a diagonal matrix with diagonal entry �1, and
the scalar variance of n2 is rewritten as �2 � �2, then the solution becomes:

�f =

�
M

(�1krgk2 + �2)
+��1

p

�
�1

(14.10)

�f = ��f
b

(�1krgk2 + �2)
:

where matrix M and vector b are de�ned as in (14.4)), but without the
summations. Note that multiplying �p, �1 and �2 by a common scale
factor will not a�ect the mean, �f , of the distribution (although it will

scale the variance).
The maximum a posteriori (MAP) estimate is simply the mean, �f ,

since the distribution is Gaussian. This solution is very similar to that
speci�ed by (14.3)). The di�erences are that (1) the addition of the prior
variance�p ensures the invertibility of the matrixM , and (2) the quadratic
derivative terms in M and b are modi�ed by a compressive nonlinearity.
That is, for regions with low contrast (i. e., small krgk2), the �2 term
dominates the divisor of M . For high-contrast regions, the �1krgk2 term
will normalize the magnitude of the quadratic terms in M . This seems
intuitively reasonable: When the contrast (SNR) of the signal is low, an
increase in contrast should increase our certainty of the velocity estimate.
But as the contrast increases above the noise level of the signal, the cer-
tainty should asymptotically reach some maximum value rather than con-
tinuing to rise quadratically. The noise term n2 accounts for errors in the
derivative measurements. At low signal amplitudes, these will be the dom-
inant source of error. The term n1 accounts for failures of the constraint
equation. At high contrasts, these will be the dominant source of error.

The solution described thus far computes velocity for one point in iso-
lation. As described in Sect. 14.2, the constraint at a single location is
insuÆcient to uniquely specify a solution. We may therefore only compute
the component of 
ow that is normal (perpendicular) to the local orienta-
tion. In the solution above, the mean will be (approximately) the normal


ow vector, and the width of these distributions in the direction perpen-
dicular to the normal direction will be determined by �p. The variance in
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the normal direction will be determined by both �p and the trace of M
(i. e., the sum of the squared magnitudes of the spatial derivatives).

If normal 
ow (along with variance information) does not provide a
satisfactory input for the next stage of processing, then one can combine
information in small neighborhoods (as in (14.2)). We now need an uncer-
tainty model for the entire neighborhood of points. The simplest assump-
tion is that the noise at each point in the neighborhood is independent.
In practice this will not be correct. Nevertheless, as a �rst approximation,
if we treat the uncertainties as pointwise independent, then the resulting
mean and variance are easy to calculate:

�f =

"X
i

wiM i

(�1krg(xi; t)k2 + �2)
+��1

p

#
�1

(14.11)

�f = ��f

X
i

wibi

(�1krg(xi; t)k2 + �2)
; (14.12)

where, as before, wi is a weighting function over the patch, with the points
in the patch indexed by i. Here, the e�ect of the nonlinearity on the com-
bination of information over the patch is to provide a type of gain control
mechanism. If we ignore �2, the solution above normalizes the informa-
tion, equalizing the contribution from each point in the neighborhood by
the magnitude of the spatial gradient. We will refer to this in later sections
as the basic solution.

In the basic solution, information is combined over �xed size patches, us-
ing a �xed weighting function. An adaptive version of this algorithm could
proceed by blurring over larger and larger regions (i. e., di�usion) until the
magnitude of the variance (determinant of the variance matrix) is below
some threshold. Since the variance matrix �f describes a two-dimensional
shape, this could be done directionally (i. e., anisotropic di�usion), averag-
ing pixels which lie in the direction of maximal variance until the variance
in this direction was below a threshold.

To illustrate the solution given in (14.12), we consider the response to
a moving square. We have added a small amount of Gaussian-distributed
white noise. Figure 14.1a shows one frame of the input image, along with
the resulting distributions near the corner, on a side, and in the center.
In the corner, the output is a fairly narrow distribution centered near the
correct velocity. The error in the mean is due to the noise in the input.
On the side, the ambiguity of the motion along the edge (i. e., the aperture
problem) is indicated by the elongated shape of the distribution. In the
center, the motion is completely ambiguous and the resulting distribution is
essentially the prior. We also show the response for a low-contrast moving
square, with the same amount of Gaussian noise, in Fig. 14.1b. Note that
the velocity distribution corresponding to the corner is now substantially
broader, as is that of the edge.
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a

v

b

v

Figure 14.1: Output of the Bayesian algorithm in di�erent regions of a moving
square image at two di�erent contrasts. Each plot shows a Gaussian density over
the space of image velocities, computed using (14.12). The noise added to both
sequences was of the same amplitude.

14.4 Coarse-to-�ne estimation

The estimation of gradients from discretely sampled image sequences is
prone to error. Some of the errors are due to poor choice of �lter kernels:
we address the issue of �lter kernel design in the next section. For now, we
focus on the problem of large translations. If motion from one frame of an
image sequence to the next is too large (typically, more than 2 pixels), one
cannot estimate the gradient accurately. The problem may be viewed easily
in the Fourier domain, where it is evident as temporal aliasing. Consider
a one-dimensional signal that is moving at a constant velocity. The power
spectrum of this signal lies on a line through the origin [27]. We assume that
the spatial sampling is dense enough to avoid aliasing (i. e., the images are
spatially band-limited before sampling, at a rate above the Nyquist limit).
The temporal sampling of the imagery causes a replication of the signal
spectrum at temporal frequency intervals of 2�=T radians, where T is the
time between frames. This is illustrated in Fig. 14.2.



14.4 Coarse-to-�ne estimation 405

ωt

ωx

ωt

ωx

2π/T

Temporal sampling, period T

Figure 14.2: Illustration of the temporal aliasing problem. On the left is an
idealized depiction of the power spectrum of a one-dimensional pattern translating
at speed v. The power spectrum is distributed along the heavy line, which has
a slope of v. Temporally sampling the signal causes a replication of its power
spectrum in the Fourier domain at temporal frequency intervals of 2�=T . When
the velocity of the signal is high, the replicas of the spectrum will interfere with
the �lter (gradient) measurements.

Now consider the gradient-based estimation of optical 
ow, in the Fourier
domain. In particular, the energy function given in (14.2) may be rewritten:

E(f ) =
X
x

���fTrg + gt

���2

=
X
k

���ĝ(k)(fTk) + ĝ(k)!
���2

=
X
k

h
(fTk) + !

i2
jĝ(k)j

2
(14.13)

where the sum on the �rst line is over all image pixels and the sums on the
latter two lines are over all frequencies, k. We have used Parseval's rule to
switch to the Fourier domain, and the fact that the Fourier transform of
the derivative operator in, for example, the x� direction is ik1. The term
in square brackets is the squared !-distance between the point k and the
plane de�ned by fTk = �!. This equation is precisely in the form of a
least-squares planar regression error function, weighted by the image power
spectrum, jĝ(k)j2. Thus, the replicated spectra of Fig. 14.2 can confuse a
motion estimation algorithm.

An important observation concerning this type of temporal aliasing is
that it a�ects the higher spatial frequencies of an image. In particular, for
a �xed global velocity, those spatial frequencies moving more than half of
their period per frame will be aliased, but the lower spatial frequencies will
be left intact. This suggests a simple, but e�ective approach for avoiding
the problem of temporal aliasing: Estimate the velocity of a lowpass �ltered
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copy of the image. Note that this \pre�lter" must be quite large in spatial
extent, in inverse proportion to its small spatial-frequency extent. Given
imagery that contains only a single global motion, or a motion �eld that
varies slowly, we could stop our computation at this point. But typical
scenes contain more complex motion �elds, which will not be captured by
these low-frequency estimates.

In order to get better estimates of local velocity, higher-frequency bands
must be used, with spatially smaller �lters. What we would like to do is to
use the coarse motion estimate to \undo" the motion, roughly stabilizing
the position of the image over time. Then higher frequency �lters can be
used to extract local perturbations to the large-scale motion. Speci�cally,
we can use higher frequency �lters to estimate optical 
ow on the warped
sequence, and this \optical 
ow correction" may then be composed with the
previously computed optical 
ow to give a new optical 
ow estimate. This
correction process may be repeated at �ner and �ner scales of a multi-scale
pyramid representation.

There are two mechanisms that one could imagine using to stabilize the
image. In an interactive setting (i. e., a biological or robotically controlled
visual system), the sensors can be moved so as to track a given point or
object in the scene. This action reduces the image velocity of the object to
zero.

Alternatively, in image-processing situations, where the image-gathering
has already occurred, we can warp a spatially and temporally localized re-
gion of the image content in a direction opposite to the computed motion.
For our purposes, we compute the warped image sequence:

Wfg;fg(x; t+�t) = g(x� f�t; t+�t);

where f is the warp vector �eld corresponding to the velocity estimated
from the coarser scale measurements. Note that the warping only need be
done over a range of �t that covers the temporal extent of the derivative
�lters that will be applied.

We will concentrate on the warping approach here, although many of
the observations apply to the tracking case as well. The warping procedure
may be applied recursively to higher and higher frequency subbands. This
\coarse-to-�ne" estimation process is illustrated in Fig. 14.3. This type of
approach has been suggested and used by a number of authors [10; 28; 29;
30; 31].

As described above, in order to generate estimates at di�erent scales,
we can apply the di�erential algorithm to lowpass pre�lters of di�erent
bandwidth. To illustrate the e�ectiveness of this technique, consider a
simple test pattern containing a disk of high-frequency texture moving at
a fairly high velocity. This is illustrated in Fig. 14.4. A local operator
attempting to compute motion in the center of the disk would fail. But
the multi-scale algorithm is able to lock onto the coarse scale motion of the
disc.
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ωt

ωx

warp

ωt

ωx

Figure 14.3: Illustration of the coarse-to-�ne approach for eliminating temporal
aliasing. On the left is an idealized illustration of the (aliased) power spectrum
of the signal. A low frequency subband is used to estimate the motion of this
signal. These estimates are then used to \undo" the motion, leaving a smaller,
unaliased residual motion (shown on the right { note that the spectrum lies on a
line of smaller slope). This motion may then be estimated using higher frequency
derivative �lters.

a

 

b c

Figure 14.4: a The stimulus, a rapidly moving disc containing �ne-scale tex-
ture. b Optical 
ow computed, direct gradient algorithm. c Optical 
ow computed
using coarse-to-�ne gradient algorithm. The single dots correspond to optical 
ow
vectors of length zero.

As we have described, a coarse-to-�ne algorithm can be used to han-
dle problems of temporal aliasing. It is also a technique for imposing a
prior smoothness constraint (see, for example, [32]). This basic technique
does, however, have a serious drawback. If the coarse-scale estimates are
incorrect, then the �ne-scale estimates will have no chance of correcting
the errors.

To �x this, we must have knowledge of the error in the coarse-scale
estimates. Since we are working in a probabilistic framework, and we have
information describing the uncertainty of our measurements, we may use
this information to properly combine the information from scale to scale.
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We de�ne a state evolution equation with respect to scale:

f (l + 1) = E(l)f(l) + n0(l); n0(l) � N(0;�0)

where l is an index for scale (larger values of l correspond to �ner scale),
E(l) is the linear interpolation operator used to extend a coarse scale 
ow
�eld to �ner resolution, and ~n0 is a random variable corresponding to the
certainty of the prediction of the �ne-scale motion from the coarse-scale
motion. We assume that the ~n0(l) are independent, zero-mean, and nor-
mally distributed. This type of scale-to-scale Markov relationship has
been explored in an estimation context (e. g., [33]).

We also de�ne the measurement equation:

�gt(l) =r
Tg(l)f(l) + (n2 +r

Tg(l)n1)

as in Sect. 14.3. We will assume, as before, that the random variables are
zero-mean, independent and normally distributed. Remember that this
equation is initially derived from the total derivative constraint for optical

ow. This equation is a bit di�erent than the measurement equation used
in most estimation contexts. Here, the linear operator relating the quantity
to be estimated to the measurement gt is also a measurement.

Given these two equations, we may write down the optimal estimator
for f(l+1), the velocity at the �ne scale, given an estimate for the velocity
at the previous coarse scale, �f (l), and a set of �ne scale (gradient) mea-
surements. The solution is in the form of a standard Kalman �lter [34],
but with the time variable replaced by the scale, l:

�f (l + 1) = E(l)�f (l) + �(l + 1)�(l + 1)

�f (l + 1) = �0(l + 1)� �(l + 1)rTg(l+ 1)�0(l + 1)

�(l + 1) =
�0(l + 1)rg(l + 1)

r
Tg(l+ 1)

�
�0(l + 1) +�1

�
rg(l + 1) + �2

�(l + 1) = �gt(l + 1)�rTg(l+ 1)E(l)�f (l)

�0(l + 1) = E(l)�f (l)E(l)
T +�0

Here, �(l) is the Kalman gain, and �(l) corresponds to an innovations pro-
cess which represents the new information contributed by the measurements
at level l.

The problem with the equations given above is that we cannot compute
the derivative measurements at scale l without making use of the velocity
estimate at scale l � 1, due to the temporal aliasing problem. In order to
avoid this problem, we must write �(l) in terms of derivatives of the warped
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sequence. We rewrite �(l) as follows:

�(l + 1) = �gt(l + 1)�rg(l + 1) �E(l)�f (l)

= �
d

dt
g
�
x+ tE(l)�f (l); t

�
� �

@

@t
Wfg(l+ 1);E(l)�f (l)g(x; y; t)

Thus, the innovations process is computed as the temporal derivative of the
the image at scale l+1, after it has been warped with the interpolated 
ow
�eld from scale l. In order to make the solution computationally feasible, we
ignore the o�-diagonal elements in �0(l+1) (i. e., the correlations between
adjacent interpolated 
ow vectors).

Now the Kalman solution may be put into the alternative "update"
form by use of the following matrix identity [34]:

B�1 + CTA�1C =
�
B �BCT (CBCT +A)�1CB

��1
:

The left side corresponds to the inverse of the updated covariance matrix
given in the Kalman equations above:

�f (l + 1) =
h
�0(l + 1)�1 +rg(rTg �1rg +�2)

�1
r

Tg
i
�1

=

�
�0(l + 1)�1 +

M

(�1krgk2 + �2)

�
�1

; (14.14)

Similarly, we may rewrite the updated mean vector as:

�f (l + 1) = E(l)�f (l) +�f (l + 1)rg(rTg �1 +�2)
�1�(l + 1)

= E(l)�f (l) +�f (l + 1)
b0

(�1krgk2 + �2)
; (14.15)

where the vector b0 is de�ned by

b0 =rg�(l + 1):

These mean and covariance expressions are the same as those of (14.10)
except that: (1) the prior covariance �p has been replaced by �0(l + 1),
(2) the vector b has been replaced by b0, which is computed in the same
manner but using the warped temporal derivative measurements, and (3)
the mean �f (l + 1) is augmented by the interpolated estimate from the
previous scale.

Figure 14.5 illustrates the e�ectiveness of this \Kalman �lter over scale".
The stimulus is a slowly moving textured disk, with noise added. The
ordinary coarse-to-�ne gradient algorithm gives terrible results, because the
noise leads to large errors in the coarse-scale velocity estimates that cannot
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a

 

b

c d

 

Figure 14.5: Example using the covariance-propagating coarse-to-�ne algorithm.
a The stimulus, a slowly moving disc containing �ne-scale texture in the presence
of additive Gaussian white noise. b Optical 
ow computed using standard coarse-
to-�ne gradient algorithm. c Optical 
ow computed using Kalman-like coarse-to-
�ne gradient algorithm with covariance propagation. d The determinant of the
terminal covariance matrix, indicating uncertainty of the estimate.

be corrected at �ner scales. The covariance-propagating version de�ned
by (14.14) and 14.15) produces better estimates (i. e., the mean vectors
are closer to the actual 
ow), and the covariance information accurately
indicates the more uncertain vectors.

Given that the derivative measurements will fail when the image velocity
is too high, a more sophisticated version of this algorithm could prune
the tree during the coarse-to-�ne operation. That is, we can terminate
the recursion at a given location (x; y; t) and level l if the interpolated
covariance estimate from the previous scale, �0(l) is too large.

14.5 Implementation issues

In this section we will discuss some important issues that arise when im-
plementing the algorithms discussed thus far.
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Table 14.1: First-order derivative kernels. Shown are pairs of derivative (D)
and interpolator (B) kernels of various sizes.

3B 0.223755 0.552490 0.223755

3D {0.453014 0 0.453014

4B 0.092645 0.407355 0.407355 0.092645

4D {0.236506 {0.267576 0.267576 0.236506

5B 0.036420 0.248972 0.429217 0.248972 0.036420

5D {0.108415 {0.280353 0 0.280353 0.108415

6B 0.013846 0.135816 0.350337 0.350337 0.135816 0.013846

6D {0.046266 {0.203121 {0.158152 0.158152 0.203121 0.046266

14.5.1 Derivative �lter kernels

The choice of convolution kernels used to estimate gradients can have a sub-
stantial impact on the accuracy of the estimates [35; 36; 37], and yet many
authors do not even describe the �lters that they use. The most common
choice in the literature is a �rst-order di�erence. This type of di�erentiation
arises naturally from the de�nition of continuous derivatives, and is rea-
sonable when the spacing between samples is well below the Nyquist limit.
But simple �rst order di�erences are likely to produce poor results for the
optical 
ow problem when applied directly to the input imagery, especially
in highly textured regions (i. e., regions with much �ne-scale content).

In the digital signal processing community, there has been a fair amount
of work on the design of discrete di�erentiators (see e.g., [38]). This work
is usually based on approximating the derivative of a continuous sinc func-
tion. The diÆculty with this approach is that the resulting kernels typically
need to be quite large in order to be accurate. In the computer vision liter-
ature, many authors have used sampled Gaussian derivatives which exhibit
better di�erentiation than simple di�erences, but are less computationally
expensive than sinc functions.

We have previously described a simple design procedure for matched
pairs of one-dimensional kernels (a lowpass kernel and a di�erentiator) suit-
able for gradient estimation [4; 36; 37].4 Let B̂(k) be the Discrete Fourier
transform (DFT) of the interpolator (often called the \pre�lter"), and D̂(k)
the DFT of the derivative �lter. Then our design method attempts to meet
the following requirements:

1. The derivative �lters must be good approximations to the derivative of
the pre�lter. That is, for a derivative along the x-axis, we would like

4Fleet and Langley have designed recursive �lters for these purposes [39].
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jk1B̂(k) � D̂(k), where k1 is the component of the frequency coordinate
in the x direction.

2. The lowpass pre�lter should be symmetric, with B̂(0) = 1.

3. For computational eÆciency and ease of design, the pre�lter should be
separable. In this case, the derivatives will also be separable, and the
design problem will be reduced to one dimension.

4. The design algorithm should include a model for signal and noise statis-
tics (e.g., [40]).

Table 14.1 gives sample values for a set of derivative kernels and their
associated pre�lters, at three di�erent sizes [37]. These give signi�cantly
improved performance in optical 
ow or orientation estimation tasks.

14.5.2 Averaging �lter kernels

The algorithm also requires averaging over a patch, which is equivalent to
applying a lowpass �lter. We desire this lowpass �lter to have only positive
weights, since it will be used combine a set of squared constraints and should
produce a positive value. There is a tradeo� in choosing the spatial extent
of the �lter. A large �lter will produce better power spectral estimates by
combining information over a larger region. But it is also more likely to
combine inconsistent motions. The question can only be properly settled
given a knowledge of the statistics of the motion of the imagery to be ana-
lyzed. We experimented with binomial blurring �lters and found that sep-
arable application of the kernel [0:0625; 0:25; 0:375; 0:25; 0:0625] produced
reliable results without over-blurring.

14.5.3 Multi-scale warping

In Sect. 14.4, we discussed the implementation of coarse-to-�ne algorithms
to reduce temporal aliasing. Conceptually, this approach operates by using
pre�lters of varying bandwidths.

A more eÆcient technique for generating multi-scale representations is
to construct an image pyramid [41], by recursively applying lowpass �ltering
and subsampling operations. In this case, the images at di�erent scales are
also represented at di�erent sampling rates. Assuming the lowpass �lter
prevents aliasing, the e�ect of the subsampling in the Fourier domain is to
stretch the spectrum out. This allows us to use the same derivative �lters
at each scale, rather than designing a whole family of derivative �lters at
di�erent scales.

The algorithm begins by building a multi-scale pyramid on each frame of
the input sequence, and computing the optical 
ow on the sequence of top
level (lowest frequency) images using the computation speci�ed by (14.12).
An upsampled and interpolated version of this coarse, low-resolution 
ow
�eld must then be used to warp the sequence of images in the next pyramid
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level. We used a simple bilinear interpolator in this case, since the optical

ow is somewhat smooth due to the blurring operation. Optical 
ow is
then computed on this warped sequence, and this \optical 
ow correction"
is composed with the previously computed optical 
ow to give a new optical

ow estimate. This correction process is repeated for each level of the
pyramid until the 
ow �elds are at the resolution of the original image
sequence.

The warping equation is fairly unambiguous in the continuous case. But
there are many ways in which one can implement a warping algorithm on
discretely sampled image data. Consider the task of warping a frame at
time t1 back to time t0. The primary issues are:

Indexing Should we use the velocity estimate at t0 or t1 (or a velocity
estimate between the frames) as the warp �eld? Assuming the velocity
vectors are in units of pixels/frame, does the velocity estimate at posi-
tion (x; t) correspond to the displacement of intensity at (x� f ; t� 1)
to (x; t), or from (x; t) to (x+ f ; t� 1)?

Order If our �lters are several frames long and thus require warping of
several frames, should we use the velocity estimates at each of these
frames, or just the velocity estimate of the central frame?

Interpolation Given that velocity vector components are typically not
multiples of the pixel spacing, how should we interpolate the intensities
of the warped images?

We compared several di�erent variants and chose a simple and eÆcient
warping scheme. We assume an odd-length temporal derivative �lter of
length 2Nt + 1, and we use a velocity �eld estimate associated with the
center frame. Since our derivative �lters are separable, we apply the
spatial portion toNt frames centered at frame 0. Let g

0(x; t);�Nt � t � Nt

be the set of spatially �ltered frames. We then combine the temporal
di�erentiation operation with the warping operation as follows:

g0t(x; 0) =

NtX
t=�Nt

d(t)I
n
g0
�
x+ t f̂ (x; 0); t

�o

where d(t) is the temporal derivative kernel, f̂ is the previous estimate of
optical 
ow, and If�g is a bi-cubic spline interpolator used to evaluate g0

at fractional-pixel locations.

14.5.4 Boundary handling

Convolution operations are used to compute the derivative �lter responses,
and to blur the energies. They are also used in coarse-to-�ne schemes to
construct the multi-resolution image pyramid. Traditionally, convolution
boundaries are handled by computing circular convolution. That is, the
image is treated as one period of a periodic signal. This often produces
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poor results because it associates the image content near one boundary
with that near the opposite boundary.

There are many alternatives for handling edges. Let h(n) be a one-
dimensional signal, indexed by the discrete variable n, with n = 0 corre-
sponding to the leftmost sample. Then we de�ne an edge-handling mecha-
nism (for the left edge) by assigning a value for the function f at negative
values of n. Several example methods that we have experimented with are:

1. Re
ect the image about its edge pixel (or just beyond the edge pixel):
h(�n) = h(n) (or h(�n) = h(n� 1) ).

2. Imbed the image in a \sea of zeros": h(�n) = 0, for each n > 0.

3. Repeat the edge pixel: h(�n) = h(0)

4. Re
ect and invert (so as to preserve zeroth and �rst-order continuity):
h(�n) = 2h(0)� h(n).

5. Return zero for the convolution inner product whenever the �lter kernel
overhangs an edge of the image.

For the blurring and pyramid �ltering operations we have found that re-

ection (item 1) is preferable. For the derivative operations, we choose to
repeat the edge pixel (item 3).

14.6 Examples

We computed velocity �eld estimates for a set of synthetic and real image
sequences in order to examine the behavior of the basic (�rst derivative)
solution of (14.12).

14.6.1 Performance measures

In cases where we the velocity �eld is known, we can analyze the errors
in our estimates. There are a number of ways to do this. The simplest
measure is the squared magnitude of the di�erence between the correct
and estimated 
ow:

Emag2 = jf̂ � f j2:

where f is the actual velocity, and f̂ is the estimate. Viewing an image
containing these values at each spatial location often provides useful infor-
mation about the spatial structure of the errors. Errors in optical 
ow are
sometimes reported as a ratio of the error magnitude to magnitude of the
actual 
ow, but this is problematic when the actual 
ow vectors are small.

Fleet and Jepson [42] used an error criterion based on the unit vector
normal to the velocity plane in spatiotemporal frequency:

Eangular = arccos
h
�u(f̂) � �u(f )

i
;
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where �u(�) is a function producing a three-dimensional unit vector:

�u(f) =
1p

jf j2 + 1

2
4 f1

f2

1

3
5 ;

and the resulting angular error is reported in units of degrees.
We also de�ne a measure of bias in order to quantify characteristic over-

or under- estimation of velocity magnitudes:

Ebias =
f � (f � f̂)

jf j
:

Positive values of this measure, for example, indicate that the algorithm is
overestimating the velocity magnitude.

In situations where we have estimated velocity �eld covariances, �f , as
well as means, �f , we can check that the covariance information adequately
describes the errors in the 
ow estimates. The appropriate technique here
is to normalize each of the errors according to the covariance information:

Enormalized =
q
(factual � fest)

T
��1
f (factual � fest):

If the 
ow �eld errors are exactly modeled by the additive Gaussian
noise model, then a histogram of the values of the Enormalized values should
be distributed as a two-dimensional univariate Gaussian integrated over its
angular coordinate:

h(x) / xe�x
2=2; x > 0:

That is, a � statistic.

14.6.2 Synthetic sequences

We generated a series of very simple synthetic test sequences to study the
error behavior of the algorithm. These stimuli involve only translation of
the image patterns, and therefore fully obey (modulo intensity quantization
noise) the total derivative (14.1) for optical 
ow. Furthermore, since the
entire image translates with a single velocity, the combination of informa-
tion in a neighborhood is fully justi�ed. Thus, these examples are primarily
a test of the �lters used to measure the derivatives, and the prior proba-
bility constraint used to determine a solution when there is an aperture or
blank-wall problem. For this section, we used only the single-scale basic
gradient algorithm, and we set the noise parameters as �1 = 0; �2 = 1, and
�p = 1e�5.

To illustrate the spatial behavior of the algorithm, we estimated the
velocity �eld of an impulse image moving at one pixel per frame. The 
ow
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 Figure 14.6: Velocity �eld estimated for a spatial impulse moving rightward at
one pixel/frame. Dots correspond to zero velocity vectors.

�eld is shown in Fig. 14.6. The estimated velocity is correct in the center of
the image (at the location of the impulse). The �nite size of the derivative
�lters (�ve-tap kernels were used for this example) and the blurring of the
energies leads to the situation shown, in which the impulse drags part of
the background along. The velocity surrounding the impulse is consistent
with the image intensities: since the image is zero everywhere except at
the impulse, the motion is completely indeterminate.

Next, we examined a sinusoidal plaid pattern, taken from Barron et.
al. [5]. Two sinusoidal gratings with spatial frequency 6 pixels/cycle are
additively combined. Their normal orientations are at 54Æ and �27Æ with
speeds of 1.63 pixels/frame and 1.02 pixels/frame, respectively. The 
ow is
computed using the multi-scale algorithm. We built a one-level Gaussian
pyramid on each frame, using the following �ve-tap kernel: [0:0625; 0:25; 0:375; 0:25; 0:0625].
Derivative �lters used are the �ve-tap �rst derivative kernels given in Ta-
ble 14.1. The covariance parameters were set as follows: �1 = 0; �2 =
1; �p = 1e�5, and �0 = 0:15. One frame of the sequence, the estimated

ow, and the error magnitude image are shown in Fig. 14.7.

Also shown is a table of error statistics. The errors compare quite
favorably with the mean angular errors reported by Barron et. al. [5]. Our
mean angular error is an order of magnitude less than all the methods
examined, except for that of Fleet and Jepson for which the value was
0:03Æ. But Barron et. al. point out that the Fleet and Jepson results are
computed with �lters that are tuned for the sinusoids in the stimulus and
that for a stimulus composed of di�erent sinusoids, the algorithm would
exhibit biases.

We also note also that our algorithm is signi�cantly more eÆcient than
most of the algorithms in [5]. For example, the Fleet and Jepson algorithm
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a

 

b

 

c

 

Mean Emag2 1:597 � 10�4

Mean Eangular 0:2746

St. dev. Eangular 0:300

Mean Ebias 0:004378

Figure 14.7: Velocity �eld estimates for sinusoidal plaid sequence: a example
frame from the sequence, b estimated velocity �eld, and c error magnitude image.
Note that the error is concentrated at the boundaries, where derivative measure-
ment is diÆcult. Error statistics for this computation are given in the table (see
text for de�nitions).

is implemented with a set of 46 kernels. These are implemented separably
as 75 convolutions with one-dimensional 21-tap kernels. Our solution re-
quires 8 convolutions (with one-dimensional kernels) for the �rst derivative
measurements with kernels that are only three or �ve taps in length.

Moving one step closer to real imagery, we estimated velocity �elds for a
\texture-mapped" 
y-through sequence of the Yosemite valley 5. Starting
with an aerial photograph and a range (height) map of the Yosemite valley,
a sequence of images was rendered for a series of camera positions. Pho-
tometric e�ects are not included in this rendering process: the image pixel
values are interpolated directly from the intensities of the original photo-
graph. Thus, the sequence contains all of the standard problem sources
except for lighting e�ects (i. e., singular regions, temporal aliasing, and
multiple motions at occlusions). Note that we have the camera motion and
the depth of each point in the image, we can compute the actual image
motion �elds.

Again, we computed velocity �elds using the multi-scale solution. This
time, we build a three-level Gaussian pyramid. Parameter settings were as
follows: �1 = 2e�5; �2 = 0:004; �p = 0:5, and �0 = 0:15. The results are
illustrated in Fig. 14.8. We show a frame from the original sequence, the
correct velocity �eld, the estimated velocity �eld, and the error magnitude

5This sequence was generated by Lyn Quam at SRI International.
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a b

c

 

d

Mean Emag2 0:031747

Mean Eangular 3:8105

St. dev. Eangular 7:09378

Mean Ebias �0:01083

Figure 14.8: Results of applying the algorithm to the synthetic \Yosemite" se-
quence: a example frame from the original sequence, b correct 
ow �eld, c esti-
mated velocity �eld, and d error magnitude image. Note that errors are concen-
trated near occlusion boundaries.

image. Also given is a table of statistics. The statistics do not include the
points closer than 10 pixels to the border.

The results are quite accurate, with most errors occurring (as expected)
at occlusion boundaries, and at the borders of the image (which may be
viewed as a type of occlusion boundary). But qualitative comparisons with
the results of the Heeger or Fleet and Jepson algorithm indicate that the
errors near these boundaries are contained within smaller regions near the
boundaries, since the support of the �lters is much smaller.

Furthermore, the error statistics compare quite favorably to those re-
ported in [5]. In particular, the best result reported is that of Lucas and
Kanade, with a mean angular error of 3:55Æ and standard deviation of
7:09Æ. This is almost identical to our result, but the 
ow vector density is
only 8.8%. The best result reported at 100% is that of Uras, which had a
mean angular error of 10:44Æ, and standard deviation of 15:00Æ. The values
given in Fig. 14.8 are signi�cantly lower.
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0 1 2 3 4 5

c
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Figure 14.9: a Image of Enormalized for the Yosemite sequence velocity estimates.
b Histogram of Enormalized values. c Expected distribution h(x) for this histogram
(see text).

To analyze the appropriateness of the noise model, we computed a
Enormalized at each point. We show this image in Fig. 14.9, along with
the histogram of values. If the 
ow �eld errors were exactly modeled by
the simple additive gaussian noise terms, then this histogram would be in
the form of the � statistic distribution (also plotted in Fig. 14.9). Qual-
itatively, the error histogram is seen to match, suggesting that the noise
model is not unreasonable.

14.7 Conclusion

In this chapter, we described a Bayesian estimator for motion �elds. We
combine di�erential constraints over local spatial regions (thereby assuming
a smooth motion �eld), and we assume a Gaussian prior probability density
in which slower speeds are more likely. The output of the algorithm is a
Gaussian distribution over the space of image velocities, at each position in
the image. The mean of the distribution is a gain-controlled modi�cation of
the basic di�erential optical 
ow solution. The covariance matrix captures
directional uncertainties, allowing proper combination of the output with
other sources of information.

We developed a coarse-to-�ne estimation algorithm for handling the
problem of large displacements (temporal aliasing). Here we are able to
take advantage of the uncertainty information provided by the covariance
estimates, propagating this information using a Kalman �lter over scale.
Propagation of motion �elds (and their covariances) over time has been
described in [43].

We discussed the details of algorithm implementation, and showed sev-
eral diagnostic examples, designed to demonstrate the various strengths
and weaknesses of the algorithm we have developed. We generated accu-
rate velocity �eld estimates for a number of synthetic sequences.
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