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We present a parametric statistical characterization of
texture images in the context of an overcomplete complex
wavelet frame. The characterization consists of the local
autocorrelation of the coefficients in each subband, the lo-
cal autocorrelation of the cofficent magnitudes, and the cross-
correlation of coefficient magnitudes at all orientations and
adjacent spatial scales. We develop an efficient algorithm
for sampling from an implicit probability density conform-
ing to these statistics, and demonstrate its effectiveness in
synthesizing artificial and natural texture images.

Many applications in image processing, computer graph-
ics, and computer vision can benefit from a statistical model
for visual images. But the dimensionality of the space of
images is overwhelmingly large, and thus density inference
is very difficult unless one makes several restrictive assump-
tions. The most common assumptions are locality (the char-
acterization is specified on local spatial neighborhoods), sta-
tionarity (the statistics depend only on relative spatial posi-
tion), and restricted forms of density (e.g., Gaussian). The
subclass of images that we commonly call “visual texture”
seems most directly amenable to local stationary (i.e. Markov
random field) density models, since most textures can be
described as a set of repeating structural elements subject to
some randomness in location, size, color, orientation, etc.

Julesz pioneered the statistical characterization of tex-
tures by proposing that theN th-order statistics (for some
unspecifiedN ) of texture pixels, when considered as sam-
ples of a stationary source, might suffice to partition tex-
tures into classes that are indistinguishable by a human ob-
server [15]. First and second order statistics (of pixels,
or of coefficients in a fixed linear basis) have been used
extensively for describing and synthesizing textures [e.g.,
8, 12, 10, 5, 11]. In addition, some authors have used adap-
tive linear representations, in which the basis set is adjusted
according to the image statistics, either by tuning the filters
to the dominant frequencies of the image [2, 7, 24], or using
adaptive filter bandwidths [19]. Second-order statistical ap-

proaches, however, are clearly unable to capture significant
structures that occur in many textures.

A number of authors have noted that image wavelet sub-
bands have non-Gaussian densities with long tails, and sharp
peaks at zero [9, 16, 21, 17, 29]. This is presumably due to
the fact that images consist of smooth areas interspersed
with occasional edges or other “features”. Several recent
advances in texture representation are based on the marginal
statistics of the responses of a set of filters [8, 25, 13, 29].
In particular, Heeger and Bergen [13] used a fixed over-
complete linear basis to synthesize textures by iteratively
alternating between matching the subband histograms, and
matching the pixel histogram. This method can reproduce
the random features of many natural textures, as well as
the dominant scales and orientations, but fails to reproduce
extended structural elements (e.g., straight or curved con-
tours) or highly regular patterns. Zhu et. al. [29] used Gibbs
sampling to draw from the maximal-entropy density with
marginals matching those estimated from subbands of an
example image. The subband filters are chosen adaptively
to minimize entropy. This technique may be used with both
linear and non-linear operators and gives excellent results
for a variety of textures, but its computational cost is exces-
sive.

Although the set of marginals along all possible axes are
sufficient to uniquely constrain a high-dimensional proba-
bility density1, the marginals of a fixed finite linear basis
are often insufficient. In particular, long-range structures
(such as straight or curved contours), pseudo-periodic pat-
terns, and second-order textures are not well represented in
typical bases. Figure 1 shows an example of two images
whose marginal statistics in a wavelet decomposition are
identical. Nevertheless, the synthesized image on the right
does not capture the texture shown in the left image.

In recent work, we have studied the joint statistics of
wavelet coefficients [3, 20]. In particular, we have exam-
ined the joint histograms of pairs of coefficientamplitudes

1This statement is a variant of the Fourier projection-slice theorem used
for tomographic reconstruction.



Figure 1. Textures with matching marginal statistics.

at adjacent spatial locations, orientations, and scales of an
orthonormal wavelet basis. We find that these are highly
correlated, even when the raw coefficients are uncorrelated.
There is an intuitive explanation for this: the “features”
of real images give rise to large coefficients in local spa-
tial neighborhoods, as well as at adjacent scales and ori-
entations. These relationships (in addition to the marginal
statistics) may thus be important for characterizing struc-
tural patterns in texture.

The use of joint statistics of rectified subband coeffi-
cients for texture analysis appears often in the human vi-
sion literature in the form of “second-order” texture ana-
lyzers and models [e.g., 1, 27, 4]. In addition to motivation
from human visual experiments, there are many textures for
which this sort of processing is sensible. The classic exam-
ple is a set of locally oriented patterns arranged spatially,
such as the herringbone fabric shown in figure 1. Recent
nonlinear joint models have given impressive synthesis re-
sults. Popat and Picard [18] have developed a probability
model for densities of local coefficient clusters (including
those at different scales), which they have applied to com-
pression, classification, restoration, and synthesis. DeBonet
and Viola [6] recently developed a fast heuristic synthe-
sis technique which captures such joint relationships across
scale. Their method is very successful at capturing repeat-
ing structures.

In this paper, we describe a synthesis technique that is
capable of capturing both structural and random aspects of
textures. In particular, we characterize textures in terms
of a set of statistical measurements on a complex analytic
wavelet representation: (1) the local spatial correlation of
coefficients within each subband, (2) the local spatial cor-
relation of coefficient magnitudes, (3) the cross-correlation
between coefficient magnitudes at adjacent scales and all
orientations, and (4) The first few moments of the pixel his-
togram. Note that we have assumed both spatial locality and
stationary, but not Gaussianity. We develop an efficient al-
gorithm for synthesizing images subject to these constraints
via iterative projection onto solution sets. We show striking
examples of texture synthesis and constrained texture syn-
thesis, demonstrating the power and flexibility of the model.

Wavelet Decomposition
Our texture characterization is based on a fixed overcom-

plete linear decomposition whose basis functions are spa-
tially localized, oriented, and roughly one octave in band-
width. We chose to use a “steerable pyramid” [23, 22],
since this transform has nice reconstruction properties (specif-
ically, it is a tight frame), in addition to properties of translation-
and rotation-invariance. Similar representations have been
used by Unser for texture segmentation [26]. Although our
algorithm may be implemented using a real-valued pyra-
mid, we have found that the results are improved when we
utilize complex analytic (i.e., quadrature pair) filters. That
is, the real and imaginary parts of the filters form a Hilbert
transform pair.

The transform is implemented using a set of oriented
complex analytic filters that are polar-separable when ex-
pressed in the Fourier domain:
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wherer; � are polar frequency coordinates. Subbands are
subsampled by a factor of2n along both axes. In addition,
one must retain (non-oriented) highpass and lowpass resid-
ual bands, which are computed using the following filters:
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We usedK = 4 orientation bands, andN = 4 pyramid lev-
els for our examples. The transformation may be inverted
by convolving each complex subband with its associated
complex-conjugated filter and adding the results. Alterna-
tively, one may reconstruct from either the real or imaginary
portions alone.

Texture Parameterization
Our texture description is based on a set of statistical

measurements on the image pixels, the raw wavelet coeffi-
cients, and the wavelet coefficient magnitudes:
� Image pixel statistics: Mean, variance, skewness, kurto-
sis, minimum and maximum values (6 parameters).
� Raw coefficient statistics: Central samples of the autocor-
relation of each subband (N �K � M

2+1
2 parameters), and
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Figure 2. Diagram of texture synthesis algorithm.

mean, variance, minimum and maximum of lowpass and
highpass residual bands (8 parameters). These characterize
the regularity (linear predictability) of the texture.
� Coefficient magnitude statistics: Central samples of the
autocorrelation of each subband (magnitude) (N �K � M

2+1
2

parameters), cross-correlation of each subband with other
orientations at the same scale (N � K(K�1)

2 parameters), and
cross-correlation of each subband with other orientations at
a coarser scale (4K2(N � 1) parameters). These repre-
sent significant structures in images, such as edges, bars,
repeated patterns and “second order” structure.

For our texture examples, we have made choices ofN=4,
K=4 andM=7, resulting in a total of1034 parameters. This
set represents the union of the parameters we found to be
necessary for each of our example textures. Comparable
results may be achieved for many of the individual textures
using substantially fewer parameters.

Synthesis Technique
We now address the problem of sampling from a density

that is constrained by the set of statistical measurements
taken from an example image. Ideally, we would like to
sample from a density that has maximal entropy subject to
these constraints, but the computational cost is prohibitive.
Instead, we start with an image of Gaussian white noise, and
force this image to satisfy the measurements listed above.
Our technique uses repeated projections onto the statistical
constraint surfaces, and bears a close resemblance to the
projection onto convex sets (POCS) approaches that have
been used in image restoration [28, 14]. The order of con-
straint enforcement is illustrated in figure 2. For the adjust-
ment of magnitude statistics, we first adjust the autocorre-
lation, and then the joint correlation with other orientation
bands and the next coarser scale.

Consider first the problem of imposing joint correlations

between a set of coefficient magnitudes at different orienta-
tions. We use a linear transform to impose correlations, and
we choose this transform so as to minimize the expected
change in the coefficients. That is, we seek an orthogonal
projection onto the constraint surface. Let~x be a random
vector corresponding to a set of coefficient magnitudes at
the set ofK orientations, but at the same image position
and scale. We wish to modify~x such that the new vector
has correlation matrixCx. We seek matrixM such that
E
�
M~x~xTMT

�
= Cx, whereE (�) is the expectation oper-

ator. LetBx = E
�
~x~xT

�
, and letfEC ; EB ; DC ; DBg be

appropriate eigenvector/eigenvalue matrices such that:

Bx = EBDBD
T
BE

T
B ; Cx = ECDCD

T
CE

T
C : (1)

Then the complete set of solutions may be specified as:

M = ECDCOD
�1
B ETB ; (2)

whereO is any orthonormal matrix. We would like to choose
O to minimize the expected change in the vector~x. A rea-
sonable (but not optimal) choice is:O = ETBEC . An anal-
ogous solution exists for the problem of adjusting~x to have
an appropriate correlation matrix, as well as an appropriate
joint correlation with another random vector~y, correspond-
ing to the set of coefficient magnitudes at the next coarser
scale. We applied this solution to the orientation bands at
each scale of the pyramid, proceeding from coarse to fine.

We also impose localM � M autocorrelation within
each subband (both on the raw coefficients, and their mag-
nitudes). We solve for aM �M convolution kernel,h�;�,
that most nearly satisfies

Dn;m =
X
�;�

h�;�Cn��;m�� ;

in a least-squares sense. Here,Cn;m is the initial auto-
correlation image, andDn;m is the desired autocorrelation.
We then perform the convolution in the Fourier domain by
multiplication with the (positive) square root of the kernel
Fourier transform.

Finally, the pixel mean and variance are adjusted by sub-
tracting and dividing the image by the appropriate constants.
The skew and kurtosis are imposed (sequentially) by mov-
ing in the direction of the gradient (of the moment) until the
desired moment is achieved.

Although we make no formal claim of convergence, we
have not observed any failures. Our examples typically set-
tled in 50-100 iterations, requiring a few minutes of com-
putation on a typical computer workstation.

Examples
We show some example textures in figure 3. Note that

the algorithm successfully captures randomness and repeat-
ing structures. It even captures the “visual flavor” of an im-
age of a crowd of people, although this would not typically
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be considered a texture. Figure 4 shows two examples of
synthesis failures. In the first example, an image of soap
bubbles, the synthesized image fails to capture the three-
dimensional appearance of the original texture. In the sec-
ond, a synthetic image of polygonal gray patches, the syn-
thesized image contains bright and dark lines in addition to
intensity edges. Figure 5 shows examples of constrained
synthesis, in which we extend an image beyond its bound-
aries. We accomplish this by including an extra projection
step in our iterative loop. After collapsing the pyramid, we
replace the central pixels of the synthesized image by those
of the correct image.

We have presented a characterization of visual texture,
and developed an algorithm for synthesizing textures from
this characterization. The resulting synthesized images are
quite striking, especially when compared against typical
second order synthesis results in the literature. The tech-
nique is flexible, and may prove useful in the context of
other applications such as compression or “super-resolution”
enhancement. Nevertheless, the parameterization needs re-
finement: The failure images (especially the polygonal patches)
indicate that some textural aspects are missing. In addi-
tion, one would like a more concrete test of the quality of
the results. The only true test of texture synthesis system
is whether the results appear (to a human observer) to be
“the same” as the original example. Thus, the performance
of the algorithm should be experimentally verified through
subjective measurements.
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