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Abstract. We describe a novel formulation of the range recovery prob-
lem, based on computation of the di�erential variation in image intensi-
ties with respect to changes in camera position. The method uses a single
stationary camera and a pair of calibrated optical masks to directly mea-
sure this di�erential quantity. The subsequent computation of the range
image is simple and should be suitable for real-time implementation. We
also describe a variant of this technique, based on direct measurement of
the di�erential change in image intensities with respect to aperture size.
These methods are comparable in accuracy to other single-lens ranging
techniques. We demonstrate the potential of our approach with a simple
example.

1 Introduction

Visual images are formed via the projection of light from the three-dimensional
world onto a two-dimensional sensor. In an idealized pinhole camera, all points ly-
ing on a ray passing through the pinhole will be imaged onto the same image po-
sition. Thus, information about the distance to objects in the scene (i.e., range)
is lost. Range information can be recovered by measuring the change in appear-
ance of the world resulting from a change in viewing position. Traditionally, this
is accomplished via simultaneous measurements with two cameras (binocular
stereo), or via a sequence of measurements collected over time from a moving
camera (structure from motion).

The recovery of range in these approaches frequently relies on an assump-
tion of brightness constancy, which states that the brightness of the image of a
point in the world is constant when viewed from di�erent positions [Horn 86].
Consider the formulation of this assumption in one dimension (the extension to
two dimensions is straightforward). Let f(x; v) describe the intensity function
measured through a pinhole camera system. The variable v corresponds to the
pinhole position (along the direction perpendicular to the optical axis). The vari-
able x parameterizes the position on the sensor. This con�guration is illustrated
in Figure 1. According to the assumption, the intensity function f(x; v) is of the
form:

f(x; v) = I
�
x� vd

Z

�
; (1)

where I(x) = f(x; v) jv=0, d is the distance between the pinhole and the sensor
and Z is the range (distance from the pinhole to a point in the world). Note
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Fig. 1. Geometry for a binocular stereo system with pinhole cameras. The variable V
parameterizes the position of the camera pinholes. According to the brightness con-
stancy constraint, the intensity of a point in the world, as recorded by the two pinhole
cameras, should be the same.

that this assumption will typically be violated near occlusion boundaries, where
points visible from one viewpoint are invisible from another.

Several complications arise in these approaches. The degree to which the
brightness constancy assumption holds will, in general, decrease with increasing
camera displacement. This is due to larger occluded image regions, and increased
e�ects of the non-Lambertianity of surface re
ectances. Violations of the bright-
ness constancy assumption lead to di�culties in matching corresponding points
in the images (the so-called \correspondence problem"). Furthermore, a two-
camera stereo system (or a single moving camera) requires careful calibration of
relative positions, orientations, and intrinsic parameters of the camera(s).

These problems are partially alleviated in techniques utilizing a single station-
ary camera. A number of these techniques are based on estimation of blur or rela-
tive blur from two or more images (e.g., [Krotkov 87, Pentland 87, Subbarao 88,
Xiong 93, Nayar 95]). Adelson [Adelson 92] describes an unusual method in
which a lenticular array is placed over the sensor, e�ectively allowing the cam-
era to capture visual images from several viewpoints in a single exposure. Dowski
[Dowski 94] and Jones [Jones 93] each describe range imaging systems that use
an optical attenuation mask in front of the lens. By observing local spectral
information in a single image, they are able to estimate range. Both techniques
rely on power spectral assumptions about the scene.

In this paper, we propose a single-camera method which avoids some of
the computational and technical di�culties of the single-camera approaches dis-
cussed above. In particular, we propose a \direct" di�erential method for range
estimation which computes the image derivative with respect to viewing po-
sition using a single stationary camera and an optical attenuation mask. We
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also present a variation based on the derivative with respect to aperture size
(i.e., di�erential range-from-defocus). These approaches avoid the correspon-
dence problem, make no spectral assumptions about the scene, are relatively
straightforward to calibrate, and are computationally e�cient.

2 Direct Viewpoint Derivatives

For the purpose of recovering range, we are interested in computing the change in
the appearance of the world with respect to change in viewing position. It is thus
natural to consider di�erential measurement techniques. Taking partial deriva-
tives of f(x; v) with respect to the image and viewing positions, and evaluating
at v = 0 gives:

Ix(x) �
@f(x;v)
@x

jv=0
= I0(x); (2)

and

Iv(x) �
@f(x;v)
@v

jv=0

= � d
Z I

0(x); (3)

where I0(�) indicates the derivative of I(�) with respect to its argument. Com-
bining these two expressions gives:

Iv(x) = � d
Z Ix(x): (4)

Clearly, an estimate of the range, Z, can be computed using this equation. Note
that in the case of di�erential binocular stereo (e.g., [Lucas 81]), the derivative
with respect to viewing position, Iv, is replaced by a di�erence, Iv1�Iv2 . A similar
relationship is used in computing structure from motion (for known camera
motion), where Iv is typically replaced by di�erences of consecutive images.

We now show a direct method for measurement of this derivative through the
use of an optical attenuation mask. Consider a world consisting of a single point
light source and a standard lens-based imaging system with a variable-opacity
optical mask, M (u), placed directly in front of the lens (left side of Figure 2).
The light striking the lens is attenuated by the value of the optical mask function
at that particular spatial location.1 With such a con�guration, the image of the
point source will be a scaled and dilated version of the optical mask function:

I(x) = 1
�M ( x�); (5)

as illustrated in Figure 2. The scale factor, �, is a monotonic function of the
distance to the point source, Z, and may be derived from the imaging geometry:

� = 1� d
f
+ d

Z
; (6)
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Fig. 2. Direct di�erential range determination for a single point source. Images of a
point light source are formed using two di�erent optical masks, corresponding to the
function M(u) and its derivative, M 0(u). In each case, the image formed is a scaled and
dilated copy of the mask function (by an amount �). Computing the spatial (image)
derivative of the image formed under mask M(u) produces an image that is identical
to the image formed under the derivative mask, M 0(u), except for a scale factor �.
Thus, � may be estimated as the ratio of the two images. Range is computed from �

using the relationship given in Equation (6).

where d is the distance between lens and sensor, and f is the focal length of the
lens.

In the system shown on the left side of Figure 2, the e�ective viewpoint may
be altered by translating the mask, while leaving the lens and sensor stationary.2

The generalized intensity function, for a mask centered at position v is written
as:

f(x; v) = 1
�
M ( x

�
� v); (7)

assuming that the non-zero portion of the mask does not extend past the edge
of the lens.

1 For our purposes, we assume that the values of such a mask function are real numbers
in the range [0,1].

2 For example, consider a mask which contains a single pinhole; di�erent views of the
world are obtained by sliding the pinhole across the front of the lens.
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The di�erential change in the image (with respect to a change in the mask
position) may be computed by taking the derivative of this equation with respect
to the mask position, v, evaluated at v = 0:

Iv(x) �
@
@v

f(x; v)jv=0
= � 1

�M
0( x� ); (8)

where M 0(�) is the derivative of the mask function M (�) with respect to its
argument. The derivative with respect to viewing position, Iv(x), may thus be

computed directly by imaging with the optical mask M 0(�).3

Finally, notice that the spatial derivative of I(x) is closely related to the
image Iv(x):

Ix(x) �
@
@x

f(x; v)jv=0
= 1

�2M
0( x� )

= � 1
� Iv(x): (9)

From this relationship, the scaling parameter � may be computed as the ratio of
the spatial derivative of the image formed through optical mask M (u), and the
image formed through the derivative of that optical mask,M 0(u). This computa-
tion is illustrated in Figure 2. The distance to the point source can subsequently
be computed from � using the monotonic relationship given in Equation (6).
Note that the resulting equation for distance is identical to that of Equation (4)
when d = f (i.e., when the camera is focused at in�nity).

The necessity of the brightness constancy assumption can now be made ex-
plicit. For our system, brightness constancy means that the light emanating
from a point is of constant intensity across the surface of the mask. A point light
source that violates this assumption has a directionally varying light emission,
L(�), and when imaged through the pair of optical masks will produce images of
the form:

I(x) = 1
�
L( x

�
) �M ( x

�
) (10)

Iv(x) =
1
�L(

x
� ) �M

0( x� ): (11)

As before, computing the derivative of I(x) yields:

Ix(x) =
1
�2

�
L( x� )M

0( x�) + L0( x� )M ( x�)
�
: (12)

Thus, if the light is not constant across the aperture (i.e., L0(�) 6= 0) then the
simple relationship between Iv(x) and Ix(x) (given in Equation (9)) will not
hold.

3 In practice, M 0(u) cannot be directly used as an attenuation mask, since it contains
negative values. This issue is addressed in Section 4.
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3 Range Estimation

Equation (9) embodies the fundamental relationship used for the direct di�er-
ential computation of range of a single point light source. A more realistic world
consisting of a collection of many such uniform intensity point sources imaged
through an optical mask will produce an image consisting of a superposition
of scaled and dilated versions of the masks. In particular, we can write an ex-
pression for the image by summing the images of the visible points, p, in the
world:

f(x; v) =

Z
dxp

1
�p
M
�
x�xp
�p

� v
�
L(xp); (13)

where the integral is performed over the variable xp, the position in the sensor
of a point p projected through the center of the lens. The intensity of the world
point p is denoted as L(xp), and �p is monotonically related to the distance to p
(as in Equation (6)). Note again that we must assume that each point produces
a uniform light intensity across the optical mask.

Again, consider the derivatives of f(x; v) with respect to viewing position, v,
and image position, x:

@
@vf(x; v) =

@
@v

Z
dxp

1
�p
M
�
x�xp
�p

� v
�
L(xp)

= �

Z
dxp

1
�p
M 0

�
x�xp
�p

� v
�
L(xp); (14)

and

@
@xf(x; v) =

@
@x

Z
dxp

1
�p
M
�
x�xp
�p

� v
�
L(xp)

=

Z
dxp

1
�2p
M 0

�
x�xp
�p

� v
�
L(xp); (15)

where (as before) M 0(�) is the derivative of M (�) with respect to its argument.
As in the previous section, the following two partial derivative images are

de�ned:

Iv(x) �
@
@v
f(x; v) jv=0

= �

Z
dxp

1
�p
M 0

�
x�xp
�p

�
L(xp); (16)

and

Ix(x) �
@
@xf(x; v) jv=0

=

Z
dxp

1
�2p
M 0

�
x�xp
�p

�
L(xp): (17)

Equations (16) and (17) di�er only in a multiplicative term of 1
�p
. Unfortu-

nately, solving for �p is nontrivial, since it is embedded in the integrand and
depends on the integration variable. Consider, however, the special case where
all points in the world lie on a frontal-parallel plane relative to the sensor.4 Un-

4 In actuality, this assumption need only be made locally.
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der this condition, the scaling parameter �p is the same for all points xp and
Equations (16) and (17) can be written as:

Iv(x) =
1
�

Z
dxp M

0

�
x�xp
�

�
L(xp) (18)

Ix(x) =
1
�2

Z
dxp M

0

�
x�xp
�

�
L(xp): (19)

The scaling parameter, �, a function of the distance to the points in the world
(Equation (6)) can then be computed as the ratio:

Iv(x) = ��Ix(x): (20)

As in the single-point case, this expression is identical to that of Equation (4)
with d = f .

In order to deal with singularities (i.e., Ix = 0), a least-squares estimator can
be used for � (as in [Lucas 81]). Speci�cally, we minimizeE(�) =

P
P (Iv+�Ix)

2,
where the summation is performed over a small patch in the image, P . Taking
the derivative with respect to �, setting equal to zero and solving for � yields
the minimal solution:

� = �

P
P
IvIxP
P
I2x

: (21)

The algorithm easily extends to a three-dimensional world: we need only
consider two-dimensional masks M (u;w), and the horizontal partial derivative
M 0(u;w) = @M (u;w)=@u. For a more robust implementation, the vertical partial
derivative mask @M (u;w)=@w may also be included. The least-squares error
function becomes:

E(�) =
X
P

(Iu + �Ix)
2 + (Iw + �Iy)

2: (22)

Solving for the minimizing � gives:

� = �

P
P (IuIx + IwIy)P

P (I
2
x + I2y )

: (23)

4 Aperture Mask Design

Thus far, the only restriction placed on the aperture masks,M (u;w) andM 0(u;w),
is that the second be the derivative of the �rst. Figure 3 contains a matched
pair of masks based on a two-dimensional Gaussian. In practice, the function
M 0(u;w) has negative values and thus is not feasible for use as an optical at-
tenuation mask. Furthermore, a positive constant cannot simply be added to
M 0(u;w), since this will destroy the required derivative relationship between the
two masks.

Due to the linearity of the imaging process, however, we can use masks that
are linear combinations of the masks M 0(u;w) and M (u;w). In particular, a
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Fig. 3. Gaussian aperture masks. Top left: A two-dimensional Gaussian mask,M(u;w).
Top right: Gaussian partial derivative, M 0(u;w). Bottom row: Two non-negative aper-
ture masks, M1(u;w) and M2(u;w). These are computed from the top masks using
Equations (24) and (25).

scalar multiple of M (u;w) can be added to M 0(u;w) in order to form a mask
function that is entirely positive. The new mask, M1(u;w), shown in Figure 3,
is given by:

M1(u;w) = �M (u;w) + 
M 0(u;w); (24)

where �, 
 are scaling constants chosen to force the function M1(u;w) to �ll the
range [0; 1]. A second symmetrical mask can be formed by subtracting M 0(u;w)
from M (u;w):

M2(u;w) = �M (u;w)� 
M 0(u;w): (25)

Note that M2(u;w) is equal to M1(u;w) rotated 180 degrees about its center,
and that

M (u;w) = M1(u;w)+M2(u;w)
2� (26)

M 0(u;w) = M1(u;w)�M2(u;w)
2


: (27)

Again, by linearity of the imaging process, the images that would have been
obtained with the masks M (u;w) and M 0(u;w) can be recovered from images
obtained with two masks M1(u;w) and M2(u;w). In particular, let I1(u;w) be
the image obtained through the mask M1, and I2(u;w) the image obtained
through the mask M2. Then:

I(u;w) = I1(u;w)+I2(u;w)
2� (28)

Iv(u;w) =
I1(u;w)�I2(u;w)

2
 ; (29)
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Fig. 4. Experimental camera con�guration. Shown are a pair of planar-convex lenses,
placed back-to-back, with an optical attenuation mask sandwiched between them. The
imaging sensor is mounted on a rail that is aligned with the optical axes of the lenses.

where I(u;w) and Iv(u;w) are the desired quantities for estimating the range
image using Equation (21).

There are still several mask design issues that need to be resolved. First,
our example of Gaussian-based optical masks was somewhat arbitrary. A pair of
masks should be designed from a set of optimality constraints based on derivative
accuracy, e�ective baseline, light transmittance, etc. Once an optimal function
is determined, the construction of the actual optical masks must be calibrated
to include nonlinearities in the printing process (e.g., halftoning), and the e�ects
of the intrinsic point spread function of the camera. In particular, the image
of a point light source recorded by the camera with mask M 0(u; v) must be
equal to the spatial derivative of the image recorded with maskM (u; v). Finally,
noise in the image measurements, I1(u;w) and I2(u;w), will be ampli�ed by the
computations in Equation (28) and Equation (29): small values of � or 
 are
thus undesirable.

5 Results

We have constructed a preliminary system for computing aperture derivatives
and estimating range. The con�guration consists of a pair of planar-convex lenses
(50mm diameter, 50mm focal length), a Gaussian-based non-negative optical
mask (Figure 3) printed onto a transparency from a 600 dpi laser printer, and a
standard CCD sensor array (SONY XC-77R). The optical mask was sandwiched
between the pair of lenses, placed back-to-back, and mounted along an optical
rail in front of the CCD array (Figure 4).

A pair of images I1(u;w) and I2(u;w) are acquired by imagingwith the masks
M1 andM2. A linear combination of the images (Equations (28) and (29)) yields
the required I(u;w) and Iv(u;w). The range image is computed from a ratio of
Iv(u;w) and the spatial derivative, Ix(u;w), of I(u;w) (Equation (21)). Spatial
derivatives were computed using optimized 5�5 derivative �lters [Simoncelli 94].

Illustrated in Figure 5 are results from a frontal-parallel target 250 mm from
the lens, consisting of an intensity step edge. Shown are the pair of intensity
images, I1(u;w) and I2(u;w), and the images Iv(u;w) and Ix(u;w). Shown also

9



−0.17

0

0.17

Fig. 5. Top: images obtained through masks M1(u;w) and M2(u;w). The scene is a
frontal-parallel plane containing an intensity step edge placed 250 mm in front of the
focal plane. Middle, left: image Iv(x; y), the derivative with respect to viewing position
(computed directly from M1(u;w) and M2(u;w)). Middle, right: image Ix(x; y), the
derivative with respect to image position. Bottom, left: the image �(x;y). Bottom,
right: slices through �-map shown at left. Also shown is a slice through another �-map
for the same target placed 100mm further from the sensor (behind the focal plane).

is the computed \�-map", where � is monotonically related to the distance to
the target. For comparison, the same target was translated by 100mmaway from
the sensor and the process repeated. Illustrated in Figure 5 are 1-D slices of the
computed \�-maps". Notice that since the target moved through the focal plane,
the � values are negated, that is, there is no ambiguity between objects equally
spaced in front of and behind the focal plane.

6 Range from Aperture Size Derivatives

An interesting variant of the technique arises when considering a Gaussian mask,
and its derivative with respect to �:

G(u;w) = 1
�2
e�(u2+w2)=2�2 ; (30)

G�(u;w) =
@
@�G(u;w)

= � 2
�3 e

�(u2+w2)=2�2 + (u2+w2)
�5 e�(u2+w2)=2�2 : (31)
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Let I(x; y) and I�(x; y) be the images obtained through the masks G(u;w)
and G�(u;w), respectively. Using the same techniques as in Section 2, it can be
shown that these two images obey the following constraint:

I�(x; y) = �2� [Ixx(x; y) + Iyy(x; y)] ;

= �2�r2I(x; y); (32)

where Ixx(x; y) and Iyy(x; y) correspond to the horizontal and vertical second
partial derivatives of I(x; y), and r2 is the Laplace operator. As before, � is
inversely proportional to range, and is given by Equation (6). This formulation
provides a di�erential algorithm for range-from-defocus. Unlike previous formu-
lations (e.g., [Pentland 87]), this solution avoids the artifacts arising from the
computation of local Fourier transforms.

7 Discussion

An optical mask placed in front of a lens-based imaging system produces an
image which is a superposition of scaled and dilated copies of the mask function.
The derivative of this image is related by a scale factor to a second image created
with the derivative of the �rst optical mask. The scale factor is monotonically
related to range. This simple observation has lead us to a direct di�erential
method for estimating range from a single stationary camera. In particular, the
derivative with respect to viewing position is computed directly: it is simply the
image formed under the derivative mask.

Two assumptions have been made in our solution to this problem. Both
of these assumptions are made (although often not explicitly) in nearly every
structure from stereo or motion algorithm. The �rst assumption is that the light
emanating from each point in the scene is constant across the lens (i.e., the
brightness constancy assumption). Note that this assumption will typically be
violated at occlusion boundaries, because the light emanating from a partially
occluded point will hit only a portion of the lens. One potential solution to this
problem is to expand the function describing the light emanating from a point
in a Taylor series. The coe�cients of these terms may be estimated by collecting
additional measurements (i.e., images) with higher-order derivative masks.

The second assumption is that of locally frontal-parallel surface orientation.
This assumption was necessary in order to solve for �p given the two image
measurements described by Equations (16) and (17). Solving without this as-
sumption is a nonlinear optimization problem (since the �p appears inside the
argument of M (�)), which should be amenable to an iterative solution.

The accuracy of our technique has not yet been tested empirically, but we
expect it to be comparable to other single-lens techniques (e.g., [Pentland 87,
Adelson 92, Jones 93, Dowski 94]). As with most ranging techniques, accuracy
behaves according to the rules of triangulation. In particular, errors will be pro-
portional to the square of the range, and inversely proportional to both the focal
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length and baseline.5 We have veri�ed these relationships via simple simulations.
As in many other range-imaging systems, the accuracy may be improved with
the use of structured illumination.

A counterintuitive aspect of our technique is that it relies on the defocus of
the image. In particular, a perfectly focused image corresponds to � = 0, leading
to a singularity in Equation (9). In practice, this may be alleviated by focusing
the camera at in�nity (i.e., d = f), thus ensuring that points at distances within
the operating range of the algorithm will be su�ciently blurred.

Finally, since the calculations required for recovering range are simple (con-
volution followed by arithmetic combination of a pair of images), we believe it
will be appropriate for real-time implementation. A computer-controlled liquid-
crystal lattice could be used in place of a �xed optical attenuation mask, and
could be switched back and forth between the two masks at video frame rates.
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