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Abstract

Electrophysiological studies indicate that neurons in the Middle Temporal (MT) area
of the primate brain are selective for the velocity of visual stimuli. This paper describes a
computational model of MT physiology, in which local image velocities are represented via
the distribution of MT neuronal responses. The computation is performed in two stages,
corresponding to neurons in cortical areas V1 and MT. Each stage computes a weighted lin-
ear sum of inputs, followed by rectification and divisive normalization. V1 receptive field
weights are designed for orientation and direction selectivity. MT receptive field weights
are designed for velocity (both speed and direction) selectivity. The paper includes com-
putational simulations accounting for a wide range of physiological data, and describes
experiments that could be used to further test and refine the model.
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1 Introduction

Visual motion perception has been the subject of extensive research in the fields
of perceptual psychology, visual neurophysiology, and computational vision. It is
widely believed that the brain contains mechanisms specifically devoted to the
processing of motion (Maunsell & Newsome, 1987; Albright, 1993), and that this
processing occurs in a “motion pathway” consisting of at least two stages. The
primary visual cortex (area V1) constitutes the first stage. Information passes from
there to the middle temporal (MT or V5) visual area (Dubner & Zeki, 1971).

Many neurons in area MT are tuned for retinal image velocity; they respond vig-
orously to a visual stimulus moving with a particular speed and direction, and
are somewhat indifferent to the stimulus’ spatial pattern (Movshon et al., 1986).
An empirical link has been established between neural activity in area MT and the
perception of motion (Siegel & Andersen, 1986; Newsome & Pare, 1988; Logothetis
& Schall, 1989; Newsome et al., 1989; Salzman et al., 1990; Salzman et al., 1992; Brit-
ten et al., 1992). Area MT is also known to be involved in pursuit eye movements
(Newsome et al., 1985; Dursteler et al., 1986; Movshon et al., 1990).

This paper describes a computational model for neural extraction and representa-
tion of visual motion. The model is derived from fundamental properties of motion
information encoded in visual signals, and consists of two stages, corresponding
to cortical areas V1 and MT. The input to the model is a time-varying visual stim-
ulus, and the output corresponds to the steady-state firing rates of a population of
neurons. These values form a distributed representation (population encoding) of
image velocity for each local spatial region of the visual stimulus.

The purpose of this paper is to define a precisely parameterized version of this
model, to investigate its ability to account for the known physiology of MT neu-
rons, and to propose physiological experiments that might be used to falsify or
further extend it. Some of the material in this article has been reported previously
(Simoncelli, 1993; Simoncelli and Heeger, 1994; Heeger, Simoncelli and Movshon,
1995). A software implementation of the model is available on the Internet at
http://www.cns.nyu.edu/ �eero/MT-model.html .

2 The Model

The model consists of two primary stages corresponding to cortical areas V1 and
MT. The basic form of computation is identical in each of these two stages: A
weighted sum of input values followed by rectification, squaring and response
normalization. In the following sections, we describe these computations in detail,
and link them to their intended physiological correlates.
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2.1 V1 Simple Cells

V1 neurons have been classified into two primary categories: simple cells and com-
plex cells (Hubel & Wiesel, 1962). There is a long tradition in which simple cell
responses have been characterized using linear receptive fields (Hubel & Wiesel,
1962; Campbell et al., 1968; Campbell et al., 1969; Movshon et al., 1978b). In such
a model, the neuronal response is a weighted sum (over local space and recently
past time) of the local stimulus contrast. Linear models are commonly used to ex-
plain simple cell selectivity for stimulus orientation and spatial frequency. More
recently, researchers have also used linear models to explain direction selectivity
by incorporating suitable timing differences (delays) in the responses evoked from
different parts of the receptive field (Fahle & Poggio, 1981; Watson & Ahumada,
1983; Watson & Ahumada, 1985; Adelson & Bergen, 1985; van Santen & Sperling,
1985; Burr et al., 1986; McLean & Palmer, 1989; DeAngelis et al., 1993; McLean et al.,
1994).

Typical linear receptive fields can have negative responses, since they combine
inputs using both positive and negative weights, but extracellular response mea-
surements (firing rates) are by definition positive. This deficiency is usually ad-
dressed by imposing a form of rectification on the linear output. Our model uses a
half-squaring operation (halfwave-rectification followed by squaring) for these pur-
poses (Heeger, 1992b). Half-squaring does not drastically alter the tuning proper-
ties of the model neuron, which are primarily determined by the underlying linear
receptive field. This particular form of rectification is chosen for mathematical con-
venience, as described in the next section and in the Appendix.

Rectified linear receptive field models do not account for several important sim-
ple cell nonlinearities, such as response saturation and cross-orientation inhibition.
Many of these behaviors can be accounted for by incorporating response normaliza-
tion (Robson, 1988; Bonds, 1989; Albrecht and Geisler, 1991; Heeger 1991, 1992a,b,
1993; DeAngelis et al., 1992; Carandini and Heeger, 1994; Carandini et al., 1997;
Tolhurst and Heeger, 1997a,b; Nestares and Heeger, 1997). In our model, this is
achieved by dividing the half-squared linear response of each neuron by a quan-
tity proportional to the summed activity of a pool of neurons within a cortical
“neighborhood”. The neighborhood includes cells tuned for the full range of ori-
entation, direction, and spatio-temporal frequency. The result is that the response
of each neuron is normalized with respect to stimulus contrast, thereby limiting
the dynamic range. Nevertheless, the normalization operation does not alter the
relative responses of neurons in the pool, since they are each normalized by the
same factor. In addition, the tuning characteristics of most of the neurons are un-
affected by the normalization, since the normalization factor is constant over the
full range of orientation, direction and spatio-temporal frequency. The complete
simple cell model (at a single spatial location) is illustrated in Fig. 1.
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FIGURE 1: Model of V1 simple cells. Each neuron computes a weighted sum of its
inputs followed by halfwave rectification, squaring, and response normalization.
The underlying linear receptive fields (depicted as monochrome images) are local-
ized in space and time, and are tuned for spatio-temporal orientation. An additive
constant, �1, is included in the summation, allowing for a spontaneous firing rate.
The divisive normalization factor is computed as a sum of half-squared responses
and a squared semi-saturation constant, �1.

2.2 V1 Complex Cells

Complex cells are similar to simple cells, in that they are selective for spatio-temporal
orientation. But their responses are relatively independent of the precise stimulus
position within the receptive field. It is widely believed that complex cells combine
the responses of a set of underlying linear receptive field subunits (e.g., Movshon
et al., 1978a). In particular, the “motion energy” model accounts for a number of
properties of complex cell responses (Pollen & Ronner, 1983; Adelson & Bergen,
1985; Emerson et al., 1992; Heeger, 1992a). In its simplest form, a motion energy
neuron sums the responses of four half-squared, linear receptive field subunits
with phases in steps of 90�, but with otherwise identical tuning properties. In ad-
dition to combination over phase, Emerson et al. (1992) found that spatial pooling
(i.e., combination of subunits distributed over a localized spatial region) is needed
to explain some aspects of complex cell responses. In our model, complex cell re-
sponses are computed as a weighted sum of simple cell afferents distributed over
a local spatial region, but each having the same space-time orientation and phase.
There is evidence that complex cells do not receive input from simple cell afferents,
but directly from the LGN (see Heeger, 1992b for review). Likewise, our model
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complex cell responses could be computed directly, although this essentially du-
plicates the processing that is performed by the simple cells.

2.3 MT Pattern Cells

The V1 neurons described thus far are not selective for stimulus velocity. Rather,
they are selective only for the component of velocity orthogonal to their preferred
spatial orientation (Adelson & Movshon, 1982). A velocity-selective neuron may
be constructed by combining the outputs of a set of direction-selective V1 com-
plex cells 1 whose preferred space-time orientations are consistent with the desired
velocity, as illustrated in Fig. 2. This mechanism for velocity selectivity is a neu-
ral implementation of the “intersection-of-constraints” construction (Fennema &
Thompson, 1979; Adelson & Movshon, 1982), and is conceptually the same as that
proposed by Albright (1984). We emphasize, however, that the velocity selectiv-
ity in our model is not an explicit intersection-of-constraints calculation. Although
each of our velocity-selective (MT) neurons has a preferred velocity (speed and di-
rection), it will also respond (to a somewhat lesser degree) to non-optimal stimuli.

The details of this mechanism for velocity selectivity may also be described in
the spatio-temporal frequency domain. The power spectrum of a translating two-
dimensional pattern lies on a plane (Watson and Ahumada, 1983, 1985), and the
tilt and spatial orientation of this plane depend only on the translational velocity.
A model complex cell is selective for a localized band of spatio-temporal frequen-
cies. A velocity-selective (MT) neuron is constructed by summing the responses of
a particular set of V1 neurons, whose bands are bisected by a plane. The summa-
tion is over both orientation and spatial frequency. This construction is illustrated
in Fig. 3, and is the same as that described (spatio-temporally) in Fig. 2. Because
of the summation over spatial frequency, the resulting MT neurons have broader
spatial frequency bandwidths than the V1 neurons, consistent with physiological
data (Newsome et al., 1983). We also subtract the responses of V1 neurons with
bands that are far from the the plane (see Appendix).

In addition to the summation over spatio-temporal frequency illustrated in Figs. 2
and 3, each MT neuron sums the responses of V1 neurons with receptive field
positions in a local spatial neighborhood. This is consistent with physiological ev-
idence that MT receptive field diameters are roughly ten times those reported at
corresponding eccentricities in V1 (Maunsell & van Essen, 1987; Albright & Des-
imone, 1987). The exact range of spatial pooling in the model is not critical for
this paper, because our experimental simulations (see Results) are based on spa-
tially homogeneous stimuli (moving and flickering gratings, plaids, and random

1 Not all V1 neurons are direction-selective, but there is physiological evidence that those
V1 neurons that project to MT have this property (Movshon & Newsome, 1996).
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FIGURE 2: Construction of MT pattern cell velocity selectivity via combination
of V1 complex cell afferents. A: Random dot field stimulus, drifting upward. B:
Fourier decomposition of the dot stimulus. The stimulus is written as a sum of
drifting sinusoidal components with appropriate normal velocities. A small subset
of these are shown. C: Intersection of constraints (IOC) construction. The motion of
a grating is ambiguous, since the component of velocity along the grating stripes
produces no change in image intensity. Each arrow corresponds to the normal com-
ponent of velocity for two of the gratings shown in B, and the dashed lines indicates
the set of velocities consistent with the motions of those gratings. The intersection
point of these constraint lines is the only velocity consistent with the motion of
all of the components, and corresponds to the velocity of the dot stimulus. D: Set
of V1 complex receptive fields selective for each of the components shown in B.
The summed responses of such V1 neurons yields a pattern MT response that is
selective for this stimulus velocity.

dot patterns).

The complete MT pattern cell construction is illustrated in Fig. 4. In addition to the
weighted sum of complex cell afferents, a small additive constant, denoted �2 is
included to provide a spontaneous firing rate. Finally, the MT responses are half-
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FIGURE 3: Construction of MT pattern cell velocity selectivity via combination
of V1 complex cell afferents, shown in the Fourier domain. A: Selectivity of a V1
neuron corresponds to a pair of localized spatio-temporal frequency bands, sym-
metrically arranged about the origin. B: Selectivities of V1 neurons tuned for four
orientations and three spatial scales, each consistent with a common velocity. The
illustrated plane corresponds to the power spectrum of a stimulus moving at this
common velocity. Responses of these V1 neurons are summed using positive (exci-
tatory) weights to yield an MT response selective for this velocity. Not shown are a
set of V1 neurons whose tuning bands lie off of the plane: these are combined us-
ing negative (inhibitory) weights. Also not indicated is the fact that the summation
is performed over V1 neurons with receptive fields distributed over a local spatial
region.

squared and normalized, as in the V1 stage of the model. The additional squaring
nonlinearity leads to an MT contrast-response function that is steeper than that of
the V1 cells, consistent with data reported by Sclar et al. (1990).

2.4 Model Implementation

This section provides the equations used to simulate neuronal responses. Addi-
tional mathematical details are given in the Appendix. A visual stimulus projected
on the retina can be described by its light intensity distribution, I(x; y; t), a function
of two spatial dimensions (x,y) and time t. This representation ignores the color of
the stimulus and assumes monocular viewing, but is in all other respects complete.
The stimulus can also be characterized by its local contrast,

A(x; y; t) = [I(x; y; t)� �I]=�I; (1)

where �I is the average stimulus intensity (over space and time). This characteriza-
tion is particularly relevant because (to first approximation) the retina produces a
“neural image” of local contrast (Shapley & Enroth-Cugell, 1984).

The underlying linear response Ln(t) of the nth simple cell is a weighted sum of
the local contrast and a constant value, �1:

Ln(t) =
Z Z Z

sn(x; y; T ) A(x; y; t� T ) dx dy dT + �1: (2)
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FIGURE 4: Model of MT pattern cells. Each neuron computes a weighted sum of
V1 complex cell afferents, followed by half-squaring, and normalization. The V1
afferents are weighted to give a velocity-selective response, as described in Figs. 2
and 3. A constant, �2, is added to provide a spontaneous firing rate. The divisive
normalization factor is computed as a sum of half-squared responses and a squared
semi-saturation constant, �2.

The weighting functions, sn(x; y; t), are a set of directional third derivatives of a
Gaussian, with 28 different space-time orientations, replicated at all spatial loca-
tions. These functions contain both positive and negative values corresponding to
the excitatory and inhibitory subregions of the receptive field, and are similar to
linear operators used in previous receptive field models (Gabor functions, for ex-
ample). The motivations for this particular choice of receptive field function are
primarily computational, and are detailed in the Appendix.

The response of the nth simple cell, Sn(t), is expressed as:

Sn(t) =
K1bLn(t)c2P

mbLm(t)c2 + �2
1

; (3)

where �1 is the semi-saturation constant of the normalization, K1 determines the
maximum attainable response, and b�c denotes the half-squaring operation:

bL(t)c2 � max[0; L(t)]2: (4)

We interpret the response, Sn(t), as the model equivalent of a post-stimulus time
histogram (PSTH), a measure of the neuron’s firing rate. Note that each neuron
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suppresses itself (i.e., the summation in the denominator includes the numerator
term). Assuming �1 is nonzero, the normalized response will always be a value
between 0 and K1, saturating for high contrasts. In our simulations, the responses
Sn(t) are computed directly, using Eqn. (3). Physiologically, these responses could
be computed via inhibitory feedback mechanisms (for example, see Heeger, 1992b,
1993; Carandini and Heeger, 1994; Carandini et al., 1997).

V1 complex cell responses are computed as local averages of simple cell responses:

Cn(t) =
X
m

cnm Sm(t);

where the simple cell subunits are distributed over a local spatial region, but have
the same space-time orientation and phase. The weights cnm are all positive.

The underlying linear velocity-selective response Qn(t) of an MT pattern cell is
expressed as:

Qn(t) =
X
m

pnmCm(t) + �2; (5)

where the pnm are a set of weights (as illustrated in Figs. 2 and 3, and described in
the Appendix), and �2 determines the maintained (spontaneous) response level.
Note that the summation includes pooling over spatial position, and that the weights
pnm assume both positive and negative values.2 The index, n, parameterizes both
the neuron’s spatial position and velocity selectivity.

Finally, the nth pattern MT neuron’s response, Pn(t), is expressed as:

Pn(t) =
K2bQn(t)c2P

mbQm(t)c2 + �2
2

; (6)

where �2 and K2 are constants that determine, respectively, the semi-saturation
level and the maximum attainable response of the MT neuron. Again, we interpret
the response, Pn(t), as the model equivalent of a PSTH.

2.5 Model Parameters and Simulation

We have thus far described the basic computational structure of the model. The
remaining details of the computation are determined by the following adjustable

2 The spatial pooling in this summation is computationally redundant with that of the V1
Complex cells. As such, our implementation performs both summations simultaneously.
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parameters:

(i) The spatio-temporal frequency coverage of the full set of V1 simple cells. The
Appendix explains this in detail.

(ii) The velocity coverage of the full set of MT pattern cells. Again, details are
provided in the Appendix.

(iii) The spatial pooling regions used in the V1 normalization, in the V1 complex
cell summation, in the linear summation of the MT pattern cells, and in the
MT normalization. For our simulations, we pooled over the entire stimulus
region, since the stimuli are all spatially homogeneous.

(iv) The constants, �1 and �2, that determine the semi-saturation contrast levels.
(v) The constants, �1 and �2, that determine the spontaneous firing rates.

(vi) The scale factors, K1 and K2, that determine the maximum attainable firing
rates. These were set to give maximal firing rates of one.

The scalar parameters were hand-adjusted to qualitatively match the physiological
data:

�1 = 0:2, �1 = 0:07, K1 = 4,

�2 = 1, �2 = 0:8, K2 = 1:8.

This set of values was retained for all of the simulation results, except where specif-
ically noted.

V1 responses to some stimuli (transparent dots, square gratings, stochastic dot
patterns, etc.) were computed by creating a movie of the stimulus and convolv-
ing with spatio-temporal filters. Time-averaged V1 responses to grating and plaid
stimuli, on the other hand, were computed analytically in the Fourier domain, us-
ing expressions for the frequency responses of the V1 receptive fields. Responses
to drifting dot fields are also computed analytically in the Fourier domain. These
simulations were checked for consistency by performing simulations on movies
of the same stimuli. Simulations are quite efficient due to the choice of linear op-
erators (see Appendix): simulation times are typically on the order of seconds or
minutes, even for full population responses such as those shown in Figs. 5–8.

2.6 Distribution of Responses

A single MT neuron cannot encode stimulus velocity. First, in addition to veloc-
ity, a neuron’s response depends on stimulus contrast and spatial pattern. Second,
even for a fixed contrast and spatial pattern, there are families of velocities (ar-
ranged in concentric contours around the preferred velocity) that evoke the same
response. Thus, the representation of velocity in our model is implicitly encoded in
the simultaneous responses of a population of neurons. The responses of this pop-
ulation may be interpreted as discrete samples of a continuous two-dimensional
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A B

FIGURE 5: A: Drifting random dot field stimulus. Arrow indicates direction
of motion. B: Distribution of model MT neuronal responses. Each point in the
monochrome image corresponds to an MT neuron with a different preferred ve-
locity. Intensity is proportional to the neuron’s response. For example, the intensity
at the center of the figure corresponds to the response of an MT neuron tuned for
zero motion and the intensity at the top-right corner of the figure corresponds to
the response of an MT neuron tuned for motion upward and to the right.

response distribution.

Figure 5 shows such a response distribution for a drifting dot field stimulus. Each
point in Fig. 5B corresponds to an MT neuron with a different preferred veloc-
ity; intensity in the figure is proportional to the neuron’s response. The location of
the response distribution peak corresponds to the stimulus velocity. Note that the
breadth of this response distribution does not imply a poor ability to distinguish
different pattern velocities based on the population response, just as the broad
spectral sensitivity of human photoreceptors does not imply poor ability to distin-
guish monochromatic lights.

The collection of MT responses provides a population code for local image veloc-
ity, similar to those that have been studied in motor areas. For example, population
coding of motor commands has been investigated by Sparks et al. (1976) for sac-
cadic eye movements, by Groh et al. (1995) for pursuit eye movements, and by
Georgopoulos et al. (1986) for arm movements.

Figure 6 shows the distribution of MT responses for a drifting sine grating stimu-
lus. Note that the response distribution is elongated: Such an elongation will oc-
cur for any one-dimensional stimulus pattern (e.g., an extended edge, grating, or
striped pattern) because the two-dimensional velocity of any such pattern is in-
herently ambiguous. The ambiguity of one-dimensional patterns has been termed
the “aperture problem”, since the motion of a moving one-dimensional pattern
viewed through a small circular aperture is ambiguous. Of course, the problem is
not really due to the aperture, but to the one-dimensional structure of the stimulus.

Figure 7 shows that the motion is disambiguated when there is more spatial struc-
ture. A sine grating plaid stimulus is composed of two moving gratings. Each grat-
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FIGURE 6: A: Drifting sinusoidal grating stimulus. B: Distribution of model MT
neuron responses (same format as Fig. 5). The distribution is elongated because the
stimulus velocity is inherently ambiguous.

A B

FIGURE 7: A: Plaid stimulus composed of two drifting sinusoidal gratings. B: Dis-
tribution of model MT neuron responses (same format as Fig. 5).

ing, displayed by itself, would evoke an elongated (ridge shaped) response distri-
bution. When the two gratings are superimposed to produce a plaid, there is a peak
in the response distribution at the intersection of the two ridges. We note, however,
that the individual ridges associated with the two gratings are still visible.

Figure 8 shows the response distribution for a transparent motion stimulus com-
posed of two texture fields moving in different directions. Large responses are
evoked in two different subsets of velocity-selective MT neurons, each tuned for
one of the texture velocities. We do not address the interpretation of population
responses in this paper, but bimodal responses such as this suggest that interpre-
tation of sensory population codes might be different than that of motor popula-
tions. In particular, there is experimental evidence that the mean of the response
distribution (also known as the “vector average”) of a motor population ultimately
determines the motor activity (see references above). Since stimuli such as that of
Fig. 8 are known to produce multiple motion percepts (i.e., motion transparency)
in human observers, condensing the population response to a single peak or mean
value may be inappropriate. It seems plausible that the full response distribution
might be propagated forward to later stages of processing and ultimately used to
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FIGURE 8: A: Transparent motion stimulus composed of a sum of two random
texture fields moving in different directions. B: Distribution of model MT neuron
responses (same format as Fig. 5). The bimodal population response distribution
represents both motions.

drive behavior (i.e., psychophysical judgments).

3 Results

As described in the previous section, the model is designed to represent velocity
via the relative responses of neurons within a population. Thus the most direct
method of examining the model’s behavior is to compute responses of all neurons
in the population to a single stimulus. In order to compare with single-cell elec-
trophysiological data, however, we must examine the responses of a single model
neuron to a parameterized set of stimuli. This section reviews the single-cell phys-
iology of MT neurons and compares the behavior of model cells with that of real
cells.

3.1 Direction Tuning

A V1 neuron will respond to complex stimuli containing multiple oriented compo-
nents when any one of the components is near the neuron’s preferred orientation
and direction of motion (Movshon et al., 1986; Gizzi et al., 1990). Figures 9A and
9B show polar plots of direction tuning for a particular V1 neuron using two stim-
uli: (1) drifting sinusoidal gratings, and (2) drifting plaid patterns composed of two
gratings. The direction tuning curve for gratings is unimodal, but the direction tun-
ing curve for plaids shows two distinct lobes. Each lobe corresponds to one of the
plaid’s component gratings. Movshon et al. (1986) used the phrase “component-
motion selective” to characterize this behavior, which was common to all of the V1
neurons in their sample. Model V1 neurons behave similarly, as shown in Figs. 9C
and 9D.
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FIGURE 9: Component-motion selectivity and pattern-motion selectivity. A, B, C,
D: Direction tuning curves of a real V1 neuron (re-plotted from Movshon et al.,
1986) and a model V1 neuron. Stimuli are drifting gratings, and plaid patterns com-
posed of two gratings. Response is plotted radially and the direction of stimulus
motion is indicated by the angular coordinate. Circles indicate the spontaneous fir-
ing rates. The direction tuning for plaids is bimodal, indicating that these neurons
respond separately to the motions of the two component gratings. E, F, G, H: Direc-
tion tuning curves for a real MT neuron (re-plotted from Movshon et al., 1986) and a
model MT neuron. The direction tuning curves for plaids are unimodal indicating
that these neurons respond to the combined motion of the entire plaid pattern, not
to the motions of the component gratings. Pattern-motion selectivity arises in the
model because each model MT neuron combines inputs from several V1 afferents,
each selective for a different component motion (see text).

In area MT, Movshon et al. (1986) found that roughly one third of the neurons were
component-motion selective. But another third exhibited a different behavior, in
which the direction tuning curves for grating and plaid stimuli were similar. They
used the phrase “pattern-motion selective” to describe this behavior. An example
is shown in Figs. 9E and 9F. This MT neuron responded to the motion of the en-
tire plaid pattern rather than to the motions of the individual component gratings.
Figures 9G and 9H show that an example model MT pattern neuron behaves simi-
larly. In order to match the spontaneous rate of the model neuron to this particular
real neuron, we had to use a modified value for the additive constant: �2 = 0:15.

Albright (1984) classified MT neurons into two types using an alternative criterion.
Both types are selective for the direction of motion of a dot field and for the orien-
tation of a (flashed, stationary) bar. For Type I neurons, the preferred dot direction
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is perpendicular to the preferred bar orientation. For Type II neurons, however, the
preferred dot direction is parallel to the preferred bar orientation. Rodman and Al-
bright (1989) demonstrated that the Type II classification is highly correlated with
Movshon et al.’s pattern-motion classification. The behavior of Type II neurons is
also consistent with the velocity selectivity of our model MT neurons; the neurons
“interpret” a stationary bar as if it is moving parallel to its orientation.

3.2 Speed Tuning

The speed tuning properties of MT neurons have been measured by a number of
researchers (e.g., Maunsell & van Essen, 1983a; Lagae et al., 1993). Rodman and Al-
bright (1987) divided MT neurons into three distinct classes based on their speed
tuning properties. Figures 10A, 10C, and 10E show speed tuning curves of repre-
sentative neurons. The first neuron (Fig. 10A) was broadly tuned for speed when
the stimulus moved in the preferred direction; the tuning width is approximately
three octaves at half-height. This is comparable to tuning widths measured in other
labs (e.g., Maunsell and van Essen, 1983), although for both real and model neu-
rons the tuning width depends on the particular neuron being examined. In ad-
dition, this neuron was suppressed by motion in the anti-preferred (opposite) di-
rection; the suppression was strongest when the stimulus moved in the opposite
direction at roughly the preferred speed.

The other two neurons (Figs. 10C and 10E) responded to motion in both preferred
and anti-preferred directions. One of them (Fig. 10C) exhibited a preference for low
speeds in both directions. The other (Fig. 10E) responded to high speed stimuli in
both directions. In addition to the behaviors depicted here, Mikami et al. (1986a) re-
ported that some MT neurons are suppressed by motion in the preferred direction,
but at non-preferred speeds.

The model is capable of producing quite similar speed tuning curves, as illustrated
in Figs. 10B, 10D, and 10F. The shapes of the simulated speed tuning curves are
most easily explained in the Fourier domain. Each model MT neuron receives ex-
citatory input from a particular set of V1 neurons with preferred spatio-temporal
frequency lying on a plane in the Fourier domain. Each MT neuron also receives
inhibitory input from V1 neurons with preferred spatio-temporal frequency lying
off the plane. This subtractive inhibition is responsible for the suppressive effects
observed in Fig. 10. The two stages of response normalization in the model have
little effect on speed tuning, since changing the speed of the stimulus does not sig-
nificantly alter the total activity of the neurons in either of the two normalization
pools.

The Fourier planes corresponding to low speed motions in opposite directions are
both close to the !t = 0 plane, and thus close to each other. This means that a model
MT neuron with a low preferred speed in one direction (e.g., Fig. 10D) will also re-
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FIGURE 10: A, C, E: Speed tuning curves of MT neurons (re-plotted from Rodman
and Albright, 1987) for bar stimuli moving in the preferred (closed symbols) and
anti-preferred (open symbols) directions, after subtracting the spontaneous firing
rate. The three neurons exhibited different speed tuning characteristics: “speed-
tuned”, “low-pass”, and “high-pass”, respectively. B, D, F: Speed tuning curves of
model MT neurons, tuned for three different speeds. V1 afferents in D/F are tuned
for spatial frequencies four times lower/higher than those in B (see Appendix).

spond to low speed stimuli moving in the opposite direction. Such a neuron will
be suppressed by fast stimuli (in either direction). Similarly, a neuron with a high
preferred speed in one direction (e.g., Fig. 10F) will be excited by fast stimuli mov-
ing in the opposite direction and also by flickering stimuli, but will be suppressed
by slow stimuli in either direction.3

3 The definitions of “fast” and “slow” depend on the relative spatial and temporal fre-
quency tuning of the underlying population of V1 neurons.
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FIGURE 11: MT response as a function of motion signal strength. A: Response of
an MT neuron as a function of the percentage of coherently moving dots (re-plotted
from Britten et al., 1993). Horizontal line is the spontaneous firing rate. Filled sym-
bols correspond to motion in the preferred direction. Open symbols correspond
to motion in the anti-preferred (opposite) direction. B: Simulated responses of a
model MT neuron.

3.3 Response versus Motion Signal Strength

Newsome and colleagues (Newsome et al., 1989; Salzman et al., 1990, 1992; Brit-
ten et al., 1992) recorded activity of MT neurons in response to stimuli consisting
of a field of coherently moving dots superimposed on a field of randomly mov-
ing dots. The strength of the motion signal was controlled by varying the ratio of
coherent to random dots.

Figure 11 shows the response of an MT neuron as a function of motion signal
strength (percentage of coherently moving dots). In both the real and simulated
data sets, the response function of most cells rises nearly linearly with stimulus
coherence for motion in the preferred direction, and falls nearly linearly with stim-
ulus coherence for motion in the opposite direction.

Britten et al. (1993) explain that an opponent motion energy neuron would behave
similarly provided that its spatio-temporal frequency bandwidth is broad enough.
The linear increase/decrease in response arises because the distribution of spectral
power depends on stimulus coherence. For 100% coherence, the spectral power
is concentrated on a plane in the spatio-temporal frequency domain. For 0% co-
herence, the spectral power is distributed uniformly throughout the frequency do-
main. Between these two extremes, the percentage of spectral power in the plane
is proportional to the coherence level. Thus, the response of an energy neuron will
be proportional to stimulus coherence.

The suppression of response below the spontaneous rate is due primarily to the
inhibitory region of the MT receptive field. The slight bend in the model response
curves is due to the squaring and normalization of the MT stage of the model.
The V1 normalization factor depends very little on coherence level: Although the
distribution of spectral power varies with coherence level, the total power does not.
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FIGURE 12: Suppression of MT responses. A: Responses of an MT neuron to super-
imposed pairs of drifting dot fields (re-plotted from Snowden et al., 1991). One field
moved in the preferred direction and the other moved in the anti-preferred (oppo-
site) direction. The number of dots drifting in each directions was varied. Response
was suppressed in the presence of anti-preferred dots. B: Simulated responses of a
model MT neuron.

There is a minor discrepancy between the the real and simulated data in Fig. 11.
Most MT neurons respond well above their spontaneous rate for the 0% coherence
stimulus. For model MT neurons, the spontaneous rate and the 0% coherence rate
are equal. In our current implementation, the excitatory and inhibitory weights
in the MT receptive fields are exactly balanced. Since the 0% coherence stimulus
has a flat power spectral density, it will excite all of the V1 neurons equally, and
thus will provide equal amounts of excitation and inhibition to each MT cell. One
could introduce a model parameter to control the balance between excitatory and
inhibitory weights, in order to try to fit these data quantitatively.

3.4 Suppression by Non-Preferred Motions

A number of physiological experiments conclude that opponency (mutual inhibi-
tion and/or suppression between cells tuned for opposite directions of motion) is
an essential aspect of the behavior of MT neurons (Mikami et al., 1986; Rodman
& Albright, 1987; Snowden et al., 1991; Qian & Andersen, 1994). Snowden et al.,
for example, investigated this suppression by recording MT neuronal activity in
response to superimposed pairs of drifting dot fields. One dot field moved in the
preferred direction and the other dot field moved at the same speed in the anti-
preferred (opposite) direction. The curves in Fig. 12 show the response of an MT
neuron as a function of the density, or number, of dots drifting in the preferred
direction. Each curve corresponds to a different density of anti-preferred dots. The
responses of both real and model MT neurons show suppression in the presence
of a dot field drifting in the anti-preferred direction.

The computation embodied in our model includes two types of motion oppo-
nency: subtractive (due to the underlying weighting of V1 afferents in the MT
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FIGURE 13: A: Responses of an MT neuron to superimposed pairs of drifting dot
fields (re-plotted from Snowden et al., 1991). One field moved in the preferred di-
rection and the other (mask) field moved in variable directions. Dashed horizontal
line indicates the response to the preferred dot field alone. Solid horizontal line
indicates the spontaneous firing rate. Response was suppressed when the second
(mask) dot field moved in non-preferred directions. B: Simulated responses of a
model MT neuron.

stage of the model) and divisive (due to the normalization in both stages of the
model). Both of these types of motion opponency contribute to the suppressive
behavior observed in Fig. 12B. The change in gain (slope) of the curves is due to
divisive opponency, as was suggested by Snowden et al.(1991). The suppression
below the spontaneous firing rate for stimuli containing mostly anti-preferred mo-
tions is primarily due to the inhibitory portion of the MT receptive field weights.
This behavior is not seen in the real neuron. But, as in the previous simulations, the
model behavior could be adjusted by introducing a parameter to vary the balance
of excitatory and inhibitory weighting.

Figure 13 demonstrates motion opponency in another manner. The dashed hori-
zontal line indicates the response to a dot field moving in the preferred direction.
The solid curve shows the effect of superimposing a second (mask) dot field. The
response of the neuron was suppressed by the presence of a second field moving
in a non-preferred direction.

Figure 14 demonstrates this suppression in yet a third manner. Snowden et al. (1991)
measured the direction tuning for drifting dot fields. They repeated the direction
tuning measurements in the presence of a second (masking) dot field moving in
the anti-preferred direction. Responses in the presence of this masking stimulus
(open symbols) are suppressed below those of the original direction tuning curve
(closed symbols).

Finally, there is some evidence that suppression contributes to the speed and di-
rection tuning of MT neurons (Mikami et al., 1986; Rodman & Albright, 1987). As
discussed above (see Speed Tuning), suppression does indeed contribute to sim-
ulated tuning curves. For some model MT neurons, the suppression is strongest
at the preferred speed, but in the opposite direction (Fig. 10B). For other model
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FIGURE 14: A: Responses of an MT neuron to superimposed pairs of drifting dot
fields (re-plotted from Snowden et al., 1991). Closed symbols indicate the direction
tuning curve for a single drifting dot field stimulus. Open symbols indicate the
direction tuning curve when a second (mask) dot field was superimposed, drifting
in the anti-preferred direction of motion. Horizontal line is the spontaneous firing
rate. B: Simulated responses of a model MT neuron.

MT neurons, the suppression is strongest for motion in the preferred direction at
non-preferred speeds, either too fast (Fig. 10D) or too slow (Fig. 10F).

4 Discussion

The simulations of the previous section demonstrate that the proposed model is
consistent with a variety of physiological data. This section reviews several as-
pects of the physiology that have not been addressed in the simulations, examines
some failures of the current model along with potential solutions, compares the
model to models proposed by other researchers, and describes a set of physiologi-
cal experiments that are motivated by the model.

4.1 Unmodeled Results

Early Nonlinearities. According to the model, V1 complex cells combine the
responses of a set of underlying linear receptive field subunits. Hence, we have
implicitly assumed that LGN neurons have linear receptive fields. This assumption
does not hold for the relevant LGN neurons. In particular, although parvocellular
neurons are quite linear, magnocellular neurons exhibit significant nonlinearities
(Derrington & Lennie, 1984; Shapley, 1990; Benardete et al., 1992). Parvocellular
neurons constitute approximately 90% of the LGN in monkeys, but the majority
of MT afferents appear to be magnocellular in origin (Tootell et al., 1988; Maunsell
et al., 1990).

This contradicts the precise structure (anatomy) of the present model, but may not
have a substantial effect on the simulated physiological responses. The nonlinear-
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ity in magnocellular neurons appears to be a gain-control mechanism analogous
to the contrast normalization in the V1 stage of the model (Carandini, 1996). Thus,
some of the effects of normalization that we have attributed to cortical interactions
could be occurring in earlier stages.

Spatio-temporal Frequency Tuning. For V1 neurons, spatial-frequency tuning
(measured with drifting grating stimuli) is largely independent of stimulus tem-
poral frequency (e.g., Hamilton et al., 1989), a property that has been referred to as
“separability” of spatial- and temporal-frequency tuning. Since speed is the ratio
of temporal frequency divided by spatial frequency, this means that a V1 neuron’s
preferred speed depends on the spatial structure of the stimulus.

For our model V1 neurons, however, the preferred speed remains constant under
changes in spatial frequency (at least over the relatively narrow range of spatial
frequencies to which the neuron responds). This is due to the particular linear re-
ceptive field weights underlying the V1 responses. These receptive field weights
were chosen for mathematical and computational convenience, but alternate re-
ceptive fields with separable spatio-temporal frequency tuning curves could be
used instead (see Appendix).

Our model MT neurons also have inseparable spatio-temporal frequency tuning,
since they are designed to have a constant preferred speed regardless of the under-
lying spatial structure of the stimulus. This is consistent with physiological data
indicating that some MT neurons maintain a constant preferred speed over a broad
range of spatial and temporal frequencies (Newsome et al., 1983).

MT Component Motion Cells. MT neurons have been categorized into two dis-
tinct classes: component-motion selective and pattern-motion selective neurons
(Movshon et al., 1986). Although we have discussed only the latter category in
this paper, MT component cells could also be included in our model, either as an
intermediate stage before the pattern cell computation, or as an independent par-
allel computation. Such a model for component cells is illustrated in Fig. 15. These
model neurons combine V1 afferents over spatial position and spatial frequency,
but not over orientation. Thus, they are orientation- and speed-tuned, but with a
broad spatial frequency bandwidth. Model MT pattern cell responses could poten-
tially be computed as a weighted sum of these component cell responses.

Second-Order Motion. “First-order” motion perception models determine ve-
locity primarily from the distribution of power in the Fourier domain. Our model
MT neurons, for example, are designed to respond when spectral power is concen-
trated on a plane through the origin in the spatio-temporal frequency domain.
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FIGURE 15: Model of MT component cells. Each neuron computes a weighted sum
of V1 complex cell afferents, followed by half-squaring, and normalization. The
complex cells are all tuned for the same spatial orientation and speed, but a range of
spatial frequencies and receptive field locations. A constant, �, is added to provide
a spontaneous firing rate. The divisive normalization factor is computed as a sum
of all of the half-squared responses and a squared semi-saturation constant, �.

There are however a number of stimuli, known as “non-Fourier” or “second-order”
motion stimuli, whose appearance is inconsistent with a first-order motion model.
(Chubb and Sperling, 1988, 1989; Cavanaugh and Mather, 1989; Fleet and Langley,
1994). In the most standard examples, human subjects see movement despite the
fact that the spectral power of the stimulus is directionally balanced. This observa-
tion has been used to refute simple energy models of motion perception.

The role of MT neurons in the perception of second-order motion is unclear. Al-
bright (1992) found that many MT neurons respond to second-order motion stim-
uli, and that their selectivity for second-order motion is similar to their selectivity
for first-order motion. O’Keefe et al. (1993), using a different suite of second-order
motion stimuli, found that very few MT neurons respond in a direction-selective
manner to second-order motion.

Current models of second-order motion perception are based on the first-order mo-
tion models. They include an additional early nonlinearity (typically a form of rec-
tification) which transforms the second-order motion signal into a first-order mo-
tion signal. Many of the models also include another linear filter prior to the non-
linearity. A motion response is subsequently computed via an appropriate first-
order motion computation (Chubb and Sperling, 1988, 1989; Cavanaugh and Mather,
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1989; Wilson et al., 1992, 1994; Fleet and Langley, 1994). In a similar fashion, our
model may be extended to properly compute motion of second-order stimuli by
inserting an additional (nonlinear) stage of computation.

Motion Coherence. The motion of plaid stimuli, formed via superposition of two
drifting periodic gratings, can be perceived as coherent (i.e., as a single moving
pattern) or non-coherent (as two separate component gratings), depending on a
variety of stimulus parameters (e.g., Adelson & Movshon, 1982; Movshon et al.,
1986; Stoner et al., 1990). As shown in Fig. 8, our model can produce a bimodal
response distribution for some types of transparently combined stimuli. But the
current model cannot directly explain the numerous psychophysical observations
concerning coherent versus non-coherent motion.

Stoner and Albright (1992) performed the only published physiological study com-
paring MT responses for coherent and non-coherent motion stimuli. They used
three square-wave plaid patterns, differing only in the intensity of the diamond-
shaped regions at the intersections of the dark bars of the two gratings. One of
these intensities corresponded to an additive combination of the gratings, and an-
other to a multiplicative combination. The multiplicative pattern appeared non-
coherent, and the other two patterns appeared coherent (to human observers).
Consistent with this percept, MT direction tuning curves were more component-
like for the multiplicative plaids (i.e., the responses in the component directions
were larger, and the response in the pattern direction was smaller).

Stoner et al. (1990) explain that a model based on stimulus Fourier components
predicts that the additive plaid should appear most transparent. Our model also
makes this prediction. The response distribution for an additive plaid stimulus is
shown in Fig. 7. Note the faint ridges emanating from the peak in the population.
Increasing or decreasing the luminance of the grating intersections is equivalent
to superimposing a stimulus composed of a moving pattern of diamonds. These
moving diamonds are a strong stimulus for an MT neuron. Superimposing this
pattern on the plaid stimulus sharpens the response peak (and suppresses the faint
ridges), resulting in a sharper direction tuning curve. The point of maximal trans-
parency could be shifted toward the multiplicative plaid by including an early
compressive nonlinearity in the model (e.g., a logarithm) that would convert the
multiplicative signal combination into an additive one.

Disparity-Dependent Suppression. MT neurons are also selective for binocular
disparity (Maunsell & van Essen, 1983b), but we have not included binocular tun-
ing in the current model. In some MT neurons, suppression occurs mainly between
motion signals with similar disparities (Bradley et al., 1995). This type of behavior
could be replicated by incorporating disparity tuning, and by using separate nor-
malization pools for each range of preferred disparities.
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MT Surround Antagonism. The behavior of some MT neurons can be greatly in-
fluenced by stimuli outside the classically defined receptive field. Stimuli in these
surrounding regions do not by themselves evoke a response, but can strongly mod-
ulate the response to a stimulus within the receptive field (Allman et al., 1985a,
1985b; Tanaka et al., 1986; Born and Tootell, 1992). The most common effect is a
suppression of the response to optimal stimulation of the classical receptive field
when the surround is stimulated by motion in the same direction. For some of
these neurons, surround motion in the opposite direction enhances the response to
stimulation in the classical receptive field.

Our model currently does not address center-surround antagonism. Suppression
in the MT stage of our model is both subtractive (due to the linear combination of
V1 afferents) and divisive (due to normalization). Both forms of suppression are
spatially restricted to the classical receptive field. The simplest means of incorpo-
rating surround antagonism would be to enlarge the scope of the normalization
pool to include neurons with surrounding receptive fields and with direction pref-
erences opposite to the preferred direction in the center. This would produce a
divisive interaction between the center (classical receptive field) and the surround,
and yet stimulation of the surround in isolation would not evoke a response.

4.2 Relationship to Other Models

A number of models have been proposed to describe visual motion computations
performed in area MT. The present model incorporates many concepts from these
previous models. Below, we describe some of the similarities and differences.

Adelson and Bergen (1985) developed a two-dimensional (x-t) spatio-temporal en-
ergy model based on space-time oriented quadrature pairs of linear filters. They
subtracted rightward from leftward motion energy to produce an opponent en-
ergy response, and demonstrated that this response could be made identical to
that of an elaborated Reichardt detector (van Santen and Sperling, 1985), given a
suitable choice of filters for each model. Our model shares much of the conceptual
framework of the Adelson/Bergen work. In particular, our complex cells compute
a form of motion energy, and the linear weighting function in the MT stage of
our model has both positive and negative lobes, and therefore may be viewed as
computing a form of opponent motion energy. An essential difference is that our
model includes an additional spatial (y) dimension, thus allowing orientation tun-
ing in V1 neurons, and an intersection-of-constraints calculation (i.e., summation
over orientation) in the MT neurons. In addition, we use a set of third-derivative
spatio-temporal filters, and include response normalization.

A number of authors (e.g., Albright, 1984; Heeger, 1987; Grzywacz & Yuille, 1990;
Smith & Grzywacz, 1993) have used neural implementations of the intersection-
of-constraints construction to describe the behavior of MT neurons. Heeger (1987)
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and Grzywacz and Yuille (1990) developed and implemented models for pattern
velocity computation based on spatio-temporal energy computed via quadrature
pairs of Gabor filters. The present model is conceptually similar, although quite
different in implementation. In addition to the use of both subtractive and divisive
opponency, we have used directional derivatives for our V1 receptive fields so that
responses may be properly interpolated from a small set of neurons. This provides
an unbiased velocity representation (Simoncelli, 1993), and allows efficient simu-
lation (see Appendix).

Sereno (1993) and Nowlan and Sejnowski (1995) adopted two-stage architectures
similar to our own, in which V1 neurons compute motion energy, and MT re-
sponses are computed from a linear combination of V1 afferents. Unlike our model,
the underlying linear receptive fields of these MT model neurons were determined
via an artificial neural network learning algorithm. In addition, the dynamic range
of neurons in these models is limited by static sigmoidal nonlinearities, that pro-
duce behaviors inconsistent with physiological data (see Model for citations). An
important contribution of the Nowlan and Sejnowski model is that it performs
simultaneous motion estimation and motion-based segmentation.

A number of authors have devised biological models based on the “gradient con-
straint” that is commonly used in computer vision for motion estimation (e.g.,
Wang et al., 1989; Johnston et al., 1992; Young & Lesperance, 1993). This constraint
provides a relationship between local image velocity and the spatial and temporal
derivatives of image intensity. Gradient-based velocity estimation may be written
in terms of normalized opponent motion energy computations (Adelson & Bergen,
1986; Simoncelli, 1993), similar to those used in our model. But whereas our model
represents both speed and direction implicitly (via a population code), the mod-
els referenced above represent speed (and in some cases, direction) explicitly. The
resulting MT responses increase monotonically with stimulus speed, inconsistent
with speed tuning curves such as those depicted in Figs. 10A or 10C.

Wilson et al. (1992, 1994) developed a model with two parallel pathways that com-
pute Fourier motion (via a Reichardt detector) and non-Fourier motion (via a Re-
ichardt detector preceded by rectified oriented filtering). These pathways include a
type of divisive normalization. The MT stage of the model combines the responses
of these two pathways. Competitive inhibition allows the most active neurons to
encode the motion direction. This model differs markedly from our own. The Re-
ichardt motion detectors are spatially one-dimensional, and there are two parallel
computations which are fused in the output. Most importantly, these model neu-
rons encode direction, but not speed.

Qian et al. (1994a) observed that MT responses are strongly suppressed by super-
imposing drifting dot fields, particularly when the dots moving in opposite direc-
tions were “paired”. The authors explained these results using a two-dimensional
(x-t) opponent motion energy model, in which they incorporated either subtractive
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or divisive opponency. Our model differs by incorporating a second spatial (y) di-
mension, by using a different set of spatio-temporal filters, and by incorporating
both subtractive and divisive opponency.

4.3 Proposed Experiments

An important role for a computational model of this type is to provide a frame-
work for experimentally characterizing the physiological behavior of an MT neu-
ron. For example, responses of an MT neuron to drifting sinusoidal gratings of
varying spatio-temporal frequency could be used to estimate MT receptive field
weights (including the subtractive inhibitory regions). This could be checked for
consistency against the velocity tuning of the cell, as measured with texture stim-
uli drifting at a range of speeds and directions. In addition to providing this type
of characterization framework, a number of predictions are made by the model
which could be examined experimentally:

� The model predicts that speeds evoking the maximal suppression should vary
inversely with the preferred speed for MT neurons. That is, neurons with high
preferred speeds should be suppressed most by slow stimuli moving in the anti-
preferred direction, and vice versa. In addition, neurons with high preferred
speeds should give an excitatory response to fast stimuli in the “anti-preferred”
direction, and show some suppression for slow stimuli in the preferred direction.
Similarly, neurons with slow preferred speeds should respond to slow stimuli in
the opposite direction, and should be suppressed by high speeds in the preferred
direction. This is due to the construction of the MT linear weights. As shown in
Fig. 10, this behavior is consistent with some data (Rodman and Albright, 1987;
Lagae et al., 1993), but it has not been studied systematically.

� The model predicts that broadband stimuli (such as drifting dots) should elicit
the strongest responses from pattern cells, but that sinusoidal stimuli (of equiv-
alent spectral power) should produce more effective suppression. This is due to
the linear weighting of our model MT neurons, which subtracts spectral power
lying off of the plane. A broadband stimulus moving in the anti-preferred di-
rection will simultaneously contribute some suppression and a small amount
of excitation. A sinusoidal stimulus moving in the anti-preferred direction will
only contribute suppressively.

� The model predicts that MT pattern cells should have bimodal direction-tuning
curves for gratings moving significantly slower than the preferred speed. Al-
bright (1984) made a similar prediction, but subsequent investigations (Rodman
& Albright, 1987) did not find the predicted behavior in a sample of 13 “Type II”
neurons. Rubin and Hochstein (1992) concluded from these findings that IOC-
motivated models of MT neurons were probably incorrect, and proposed an
alternative strategy. But the stimuli in the Rodman and Albright (1987) exper-
iments were moving bars, rather than gratings. Preliminary data using drifting

26



sine gratings (Simoncelli et al., 1996) indicate that some MT pattern cells clearly
exhibit the predicted bimodality.

� The model also predicts that component motion cells (both V1 complex cells and
MT component cells) should have unimodal direction tuning curves for gratings
of all speeds, and bimodal direction tuning curves for rapidly moving texture
patterns. This behavior is typical of complex cells in cat area 17 (Hammond &
Reck, 1980; Hammond & Smith, 1983). Preliminary data (Simoncelli et al., 1996)
indicate that some MT component cells exhibit this behavior.

4.4 Conclusions

We have presented a two-stage physiological model for local image velocity repre-
sentation in visual area MT. The model is functionally motivated, and its behavior
is determined by a small number of free parameters. The computations are simple
enough that one can understand and make predictions about its behavior. An ad-
ditional feature is the commonality of computation in the two sequential stages. It
is often noted that neocortical areas throughout the cortex exhibit common struc-
ture: The types, arrangements, and connections of neurons are highly stereotyped.
Despite its simplicity, the model is able to account for much of the physiology of
MT neurons.

One drawback of this simplicity is that the population of model neurons is unreal-
istically homogeneous. For example, the underlying linear receptive field of each
V1 cell is perfectly anti-symmetric, and there are identical collections of neurons at
each spatial position (i.e., in each “hypercolumn” of V1 and MT). Receptive fields
of real neurons are quite irregular in comparison. Heterogeneity could be incorpo-
rated into the model (at great computational expense) without altering the overall
functionality. We could, for example, use a different collection of linear receptive
fields for each patch of the visual field. Each new collection of linear receptive
fields would be related to our current collection of linear receptive fields via an
invertible linear transformation, and would thus represent the same information
in a modified format.

In addition to the potential model enhancements described in Unmodeled Results,
we note that the squaring nonlinearities could be replaced by fullwave-rectification
(Pollen & Ronner, 1983), or an exponent greater than 2 (Albrecht et al., 1984; Sclar
et al., 1990; Albrecht & Geisler, 1991), if warranted by the physiological data. Such
modifications would make the simulations more expensive computationally, and
would induce small quantitative changes. But the qualitative behavior of the model
would be unaffected.

One notable deficiency of the model is the lack of realistic temporal dynamics. In
the current implementation, outputs correspond to steady-state firing rates. The
model should be extended to include more realistic temporal behavior. For ex-

27



ample, one might try to model adaptation by including a slow temporal average
in the computation of the normalization factor. Experimental examination of neu-
ronal response dynamics may provide evidence for both the functional form and
the implementation of these computations (Carandini, 1996).

Finally, we believe this model should be able to account for a number of psy-
chophysical findings. Previous incarnations of the model have been used to ac-
count for biases in the perception of speed and direction of plaid patterns (Simon-
celli & Heeger, 1992; Simoncelli, 1993; Heeger & Simoncelli, 1993). In order to use
the current model for such purposes, one must compute an estimated (or “per-
ceived”) velocity from the responses of the MT population.
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5 Appendix

This appendix describes additional mathematical and implementational details of
the model.

5.1 V1 Linear Receptive Field Weights

The linear receptive field weights underlying the V1 responses are designed to
satisfy two fundamental constraints:

– The sum of the V1 responses (as a function of stimulus spatio-temporal fre-
quency) should be roughly constant over a desired frequency range. This func-
tion corresponds to the spatio-temporal frequency sensitivity of the overall sys-
tem. We refer to this as the tiling property.

– The set of V1 neurons includes receptive fields tuned for a predetermined set
of space-time orientations, but the response of a V1 neuron tuned to any inter-
mediate space-time orientation may be precisely interpolated from this set. In
other words, the information represented by the V1 neurons does not depend
on the specific choice of space-time orientations. We refer to this as the interpola-
tion property.

These two constraints are, in fact, independent. Both constraints are satisfied by
linear receptive fields that are directional derivatives of a differentiable function,
g(x; y; t). For example, the first derivative taken in the direction of a unit vector û
may be written as:

Dufg(x; y; t)g = ux
@g(x; y; t)

@x
+ uy

@g(x; y; t)

@y
;+ut

@g(x; y; t)

@t
;

where the fux; uy; utg are the components of the unit vector û. This equation states
that the partial derivative in an arbitrary direction û is a linear combination of the
partial derivatives in the x, y, and t directions. In other words, it is possible to
interpolate any directional first derivative as a linear combination of a fixed set of
three derivatives.

The tiling property of the first derivatives is easily seen in the frequency domain.
Computing a partial derivative (of space or time) corresponds to multiplication by
a linear ramp function in the frequency domain. For example, the Fourier trans-
form of the x derivative of g(x; y; t) is:

F
(
@g(x; y; t)

@x

)
= �i!xG(!x; !y; !t);
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FIGURE 16: Distribution of the Fourier power spectra corresponding to our pop-
ulation of 28 V1 neurons. The spectra lie on the surface of a sphere in the spatio-
temporal frequency domain, and correspond to space-time oriented linear recep-
tive fields. The vertical line at the top indicates the temporal frequency axis.

where i is the imaginary number, and G(!x; !y; !t) is the Fourier transform of
g(x; y; t). Summing the power spectra of the derivatives in the (x; y; t) directions
gives:

j!xG(!x; !y; !t)j2 + j!yG(!x; !y; !t)j2 + j!tG(!x; !y; !t)j2
= [!2

x + !2

y + !2

t ] jG(!x; !y; !t)j2
= !2

r jG(!x; !y; !t)j2 ;

where !r =
q
!2
x + !2

y + !2
t , the radial frequency. A suitable choice of g(x; y; t)

can give nearly any desired coverage of spatio-temporal frequency. For example,
G(!x; !y; !t) = 1=!r produces uniform coverage of the entire spatio-temporal fre-
quency domain.

The tiling and interpolation properties extend to higher-order (either separable
or directional) derivatives (Freeman & Adelson, 1991). Higher-order directional
derivatives have narrower directional tuning curves than the first derivatives, and
require a larger set to tile and interpolate all space-time orientations. In particular,
in three dimensions, (x; y; t), a full set of N th-order directional derivatives is of size
(N+1)(N+2)=2. The interpolation property also extends to the squared directional
derivatives (Simoncelli, 1993), but one needs to use an even larger set.

The V1 linear receptive fields in our current model are third derivatives of a spatio-
temporal Gaussian. 4 The derivative order is chosen to match the typical orien-
tation bandwidths of V1 neurons (e.g., see Fig. 9). Receptive fields at different
scales are formed by adjusting the variance of the underlying Gaussian by fac-
tors of 2. The full set of V1 receptive fields includes 28 space-time orientations that
are evenly distributed on the surface of a sphere in the spatio-temporal frequency
domain, as illustrated in Fig. 16. The tiling region is approximately a spherical an-

4 See Koenderink (1987) for a general characterization of receptive fields in terms of dif-
ferential operators.
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nulus, with bandwidth of roughly 1.5 octaves, and with reduced sensitivity near
the temporal frequency axis. Frequency units are fixed such that the peak of the
annulus crosses the temporal frequency axis at !t = 8 cycles/sec and the spa-
tial frequency axes at !x = 0:5 cycles/deg. The spatial frequency intercept was
increased/decreased by a factor of 4 to give the results shown in Figs. 10D/F, re-
spectively.

Note that the choice of a Gaussian function for g(x; y; t) is computationally con-
venient, as it allows separable convolution computations. But it has three clear
disadvantages. First, Gaussian derivatives at different scales produce an uneven
tiling of the Fourier domain. Second, the resulting spatial and temporal frequency
tuning curves are not separable; in fact, the spatio-temporal frequency responses
are polar-separable. As mentioned in the Discussion, this is inconsistent with V1
physiology. This problem may be partially ameliorated by substituting a function,
g(x; y; t), that is temporally low-pass but spatially band-pass. Such a change might
affect other aspects of model behavior and we have not, as of yet, systematically ex-
amined this issue. Third, Gaussian derivative receptive fields are non-causal (i.e.,
the response depends both on past and future stimulus intensities). This problem
can easily be alleviated by introducing a time delay, but a more appropriate solu-
tion is to use recursive (i.e., feedback-based) temporal derivative filters (e.g., Adel-
son & Bergen, 1985; Fleet & Langley, 1995).

5.2 MT Linear Receptive Field Weights

Each MT neuron linearly combines a set of V1 afferents such that the MT response
is velocity-selective. In particular, an MT neuron with preferred velocity ~v sums
the responses of four V1 neurons at the following space-time orientations:

û1 =

0
B@�vx�vy

s2

1
CA =

p
s4 + s2, û2 =

0
B@�vyvx

0

1
CA =s,

û3 = [û1 + û2] =
p
2, û4 = [û1 � û2] =

p
2,

where s = j~vj =
q
v2x + v2y . These four space-time orientations are equally dis-

tributed around a plane in the spatio-temporal frequency domain, as illustrated
in Fig. 3, and the sum of the underlying V1 receptive field power spectra forms a
smooth annular ring. Since the fixed population of V1 neurons may not include
these particular space-time orientations, the responses corresponding to the de-
sired space-time orientations must be interpolated as described earlier. The inter-
polated V1 responses are linear sums of the fixed set of V1 responses, which can be
combined together such that the full MT linear response is expressed as a weighted
linear sum of the fixed set of 28 V1 neurons.
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Finally, the MT neuron subtracts the responses of V1 neurons that do not lie near
its preferred velocity plane. This is accomplished by subtracting the mean of the
28 weights from each of the weights (thus producing an overall set of weights
with zero mean). These 28 zero-mean weights correspond to the final linear re-
ceptive field weights of the MT neuron. The resulting spatio-temporal frequency
response function is smooth and depends only on the Euclidean distance to the
plane. The weighting could be adjusted if warranted by physiological data (see
Proposed Experiments). For the MT normalization pool, we used a population of
19 MT neurons that approximately tile the velocity space. One neuron is tuned for
zero velocity, six for moderate speeds (16 deg/sec), and twelve for high speeds
(120 deg/sec).
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