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ABSTRACT

We describe an architecture for efficient and accurate
linear decomposition of an image into scale and orien-
tation subbands. The basis functions of this decom-
position are directional derivative operators of any de-
sired order. We describe the construction and imple-
mentation of the transform. 1

Differential algorithms are used in a wide variety
of image processing problems. For example, gra-
dient measurements are used as a first stage of
many edge detection, depth-from-stereo, and op-
tical flow algorithms. Higher-order derivatives
have also been found useful in these applications.
Extraction of these derivative quantities may be
viewed as a decomposition of a signal via terms
of a local Taylor series expansions [1].

Another widespread tool in signal and image
processing is multi-scale decomposition. Apart
from the advantages of decomposing signals into
information at different scales, the typical recur-
sive form of these algorithms leads to large im-
provements in computational efficiency.

Many authors have combined multi-scale decom-
positions with differential measurements (eg., [2,
3]). In these cases, a multi-scale pyramid is con-
structed, and then differential operators (typi-
cally, differences of neighboring pixels) are ap-
plied to the subbands of the pyramid. Since both
the pyramid decomposition and the derivative
operation are linear and shift-invariant, we may
combine them into a single operation. The advan-
tages of doing so are that the resulting derivatives
may be more accurate (see [4]). In this paper, we
propose a simple, efficient decomposition archi-
tecture for combining these two operations.

The decomposition is the latest incarnation of

1Source code and filter kernels for implementation of the
steerable pyramid are available via anonymous ftp from
ftp.cis.upenn.edu:pub/eero/steerpyr.tar.Z

“steerable pyramid”, as developed in [5, 6]. Sim-
ilar representations have been developed by Per-
ona and collaborators [7]. In this linear decompo-
sition, an image is subdivided into a collection of
subbands localized in both scale and orientation.
The scale tuning of the filters is constrained by a
recursive system diagram (described below). The
orientation tuning is constrained by the property
of steerability [5]. A set of filters form a steerable
basis if (1) they are rotated copies of each other,
and (2) a copy of the filter at any orientation may
be computed as a linear combination of the basis
filters. The simplest example of a steerable basis
is a set of N +1 N th-order directional derivatives.

In addition to having steerable orientation sub-
bands, the transform we describe is designed to
be ”self-inverting” (i.e., the matrix corresponding
to the inverse transformation is equal to the trans-
pose of the forward transformation matrix)2, and
is essentially aliasing-free. Most importantly, the
pyramid can be designed to produce any number
of orientation bands, k. The resulting transform
will be overcomplete by a factor of 4k/3.

A summary of these properties, in compari-
son with two well-known multi-scale decompo-
sitions is given in table 1. Note that the steer-
able pyramid retains some of the advantages of
orthonormal wavelet transforms (eg., basis func-
tions are localized in space and spatial-frequency;
the transform is a tight frame), but improves
on some of their disadvantages (eg., aliasing is
eliminated; steerable orientation decomposition).
One obvious disadvantage is in computational
efficiency: the steerable pyramid is substantially
overcomplete.

We now describe the steerable pyramid in more
detail. The decomposition is most easily defined
in the Fourier domain, where it is (ideally) polar-

2In the wavelet literature, such a transform is known as a
tight frame [8]



Laplacian Pyramid Dyadic QMF/Wavelet Steerable Pyramid
self-inverting (tight frame) no yes yes
overcompleteness 4/3 1 4k/3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice [9] yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with k = 4. Frequency axes range from
−π to π. The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

separable. Figure 1 contains a diagram of the ide-
alized frequency response of the subbands, for
k = 4. We write the Fourier magnitude of the ith
oriented bandpass filter in polar-separable form:

Bi(~ω) = A(θ − θi)B(ω),

where θ = tan−1(ωy/ωx), θi = 2π
k

and ω = |~ω|.
Below, we describe the constraints on the two
components A(θ) and B(ω).

1. ANGULAR DECOMPOSITION

The angular portion of the decomposition, A(θ),
is determined by the desired derivative order. A
directional derivative operation in the spatial do-
main corresponds to multiplication by a linear
ramp function in the Fourier domain, which we
rewrite in polar coordinates as follows:

−jωx = −jω cos(θ)

(note that we have described a derivative opera-
tor in the x direction). We ignore the imaginary
constant, and the factor of ω, which is absorbed
into the radial portion of the function. The rele-
vant angular portion of the first derivative oper-
ator (in the x direction) is thus cos(θ).

Higher-order directional derivatives correspond
to multiplication in the Fourier domain by the

ramp raised to a power, and thus the angular
portion of the filter is cos(θ)N for an N th-order
directional derivative. Knuttson and Granlund
have also developed polar-separable filters with
such angular components [10]. The steerability
of such functions has been discussed in our pre-
vious work [5, 6].

2. RADIAL DECOMPOSITION

The radial function, B(ω), is constrained by both
the desire to build the decomposition recursively
(i.e., using a “pyramid” algorithm), and the need
to prevent aliasing from occurring during sub-
sampling operations. The recursive system dia-
gram for B(ω) is given in figure 23.

The filters H0(ω) and L0(ω) are necessary for pre-
processing the image in preparation for the recur-
sion. The recursive portion of the diagram corre-
sponds to the subsystem contained in the dashed
box. This subsystem decomposes a signal into
two portions (lowpass and highpass). The low-
pass portion is subsampled, and the recursion is
performed by repeatedly applying the recursive
transformation to the lowpass signal.

The constraints on the filters in the diagram are
as follows:

1. Bandlimiting (to prevent aliasing in the sub-
sampling operation):

L1(ω) = 0 for|ω| > π/2.

2. Flat System Response:

|H0(ω)|2 + |L0(ω)|2
[

|L1(ω)|2 + |B(ω)|2
]

= 1.

3. Recursion:

|L1(ω/2)|2 = |L1(ω/2)|2
[

|L1(ω)|2 + |B(ω)|2
]

.

Typically, we choose L0(ω) = L1(ω/2), so that
the initial lowpass shape is the same as that used
within the recursion. An idealized illustration of
filters that satisfy these constraints is given in fig-
ure 3. Note that L1(ω) is strictly bandlimited, and
B(ω) is power-complementary.

3This system diagram is modified from that of [6].
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Figure 2. System diagram for the radial portion of the steerable pyramid, illustrating the filtering and sam-
pling operations, and the recursive construction. Boxes containing “2D” and “2U” correspond to downsam-
pling and upsampling by a factor of 2. All other boxes correspond to standard 2D convolution. The circles
correspond to the transform coefficients. The recursive construction of a pyramid is achieved by inserting
a copy of the diagram contents enclosed by the dashed rectangle at the location of the solid circle (i.e., the
lowpass branch).
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Figure 3. Idealized depiction of filters satisfying the constraints of the block diagram in figure 2. Plots show
Fourier spectra over the range [0, π].

3. IMPLEMENTATION

We have designed filters using weighted least
squares techniques in the Fourier domain to ap-
proximately fit the constraints detailed above.
The resulting filters are fairly compact (typically
9 × 9 taps) and accurate (reconstruction error on
the order of 45dB). Such filters may be designed
for different values of k, depending on the appli-
cation. For example, a design with a single band
at each scale (k = 1) serves as a (self-inverting)
replacement for the Laplacian pyramid. A design
with two bands (k = 2) will compute multi-scale
image gradients, which may be used for com-
putations of local orientation, stereo disparity or
optical flow. Higher values of k correspond to
higher order terms in a multi-scale Taylor series.

Figure 4 illustrates a 3-level steerable pyramid
decomposition of a disk image, with k = 1.
Shown are the bandpass images and the final
lowpass image (the initial highpass image is not
shown). As noted above, this pyramid may be
used in applications where the Laplacian pyra-
mid has been found useful, such as in image cod-
ing. The advantage is that the steerable pyramid
is self-inverting, and thus the errors introduce by
quantization of the subbands will not appear as
out-of-band distortions upon reconstruction.

Figure 5 illustrates a 3-level steerable pyramid
decomposition with k = 3. The filters are
directional second derivatives oriented at θ ∈
{−2π/3, 0, 2π/3}. Such a decomposition can be

 

Figure 4. A 3-level k = 1 (non-oriented) steer-
able pyramid. Shown are the bandpass images
and the final lowpass image.

used for orientation analysis, edge detection, etc.

We have explored the use of this decomposition
in a number of applications, including image en-
hancement, orientation decomposition and junc-
tion identification, texture blending, depth-from-
stereo, and optical flow. Space limitations pre-
vent full description of these applications here;
some previous results are described in [5, 6].
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Figure 5. A 3-level k = 3 (second derivative)
steerable pyramid. Shown are the three band-
pass images at each scale and the final lowpass
image.
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