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Abstract

Steerable filters have been used to analyze local orientation patterns in imagery. Such filters are

typically based on directional derivatives, whose symmetry produces orientation responses that are

periodic with period �, independent of image structure. We present a more general set of steerable filters

that alleviate this problem.

1 Introduction

Oriented linear filters are used in many vision and image processing tasks, such as edge detection, seg-

mentation, texture analysis, and motion analysis. Their basic behavior with regard to representation of

orientation may be examined by computing an “orientation map”: the squared filter response as a function

of filter orientation (e.g., [4, 3, 8, 2]). Such filters are almost always either symmetric or anti-symmetric.

The symmetry (or anti-symmetry) of the filters imposes a periodicity of period � on the orientation map,

regardless of the underlying image structure. For example, an orientation map computed at the end of a

line segment will produce a bimodal response. Such an ambiguity is undesirable for many applications.

For this reason, some authors have recently begun to explore the use of asymmetric filters for orientation

analysis [6, 7, 9].

A secondary theme in this sort of orientation analysis is that of rotation-invariance [1, 4, 5, 2, 7]. Along

these lines, Freeman and Adelson developed the concept of steerable filters, in which an oriented filter is

synthesized exactly from a linear combination of a fixed set of basis filters. They constructed such bases

using directional derivatives of Gaussians, and used these filters to compute local orientation maps. But

directional derivatives of Gaussians are either symmetric or anti-symmetric, and thus they suffer from the

periodicity problem mentioned above.
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In this article, we describe a new class of filters for local orientation and junction analysis. These filters

are both asymmetric and steerable, and are designed to produce an optimally localized oriented energy map.

A preliminary report of this work has been presented in [10].

2 Steerability and Orientation Maps

This section gives a brief overview of the principle of steerability, and describes its use in computing

orientation maps. The simplest example of a steerable filter is the partial derivative of a two-dimensional

Gaussian. In polar coordinates, the horizontal and vertical derivatives are written:

G
(0)
1 (r; �) = cos(�)(�r e�r

2=2)

G
(�=2)
1 (r; �) = sin(�)(�r e�r

2=2);

where the subscript indicates the derivative order, and the parenthesized superscript indicates the derivative

direction. It is well-known (and easy to verify, using basic trigonometric identities) that G1(r; �) can be

synthesized at an arbitrary orientation, �, using the following equation:

G
(�)
1 (r; �) = cos(�)G(0)

1 (r; �) + sin(�)G(�=2)
1 (r; �): (1)

This equation embodies the steerability of these functions: the directional derivative G1 can be generated

at an arbitrary orientation � via a linear combination of the rotated basis filters, G(0)
1 and G

(�=2)
1 . The

coefficients cos(�) and sin(�) are referred to as the interpolation functions. Since convolution is a linear

operation, the result of convolving with an arbitrarily oriented filter may be computed via a linear combination

of the results of convolving with the basis filters.

Steerability is not limited to first derivative functions. The general steerability condition, for polar-

separable functions, is written as:

f (�)(r; �) = h(�� �)g(r) =
N̂X
n=1

kn(�)h(�� �n)g(r); (2)

where h(�) is the angular portion of the steerable filter, g(�) is the radial portion, kn(�) are interpolation

functions, and �n are a fixed set of N̂ orientations. Freeman & Adelson [2] showed that this equation

is satisfied by all functions with angular components that are bandlimited to contain no more than N̂=2

harmonic terms. They presented examples of steerable filter sets consisting of higher-order directional

derivatives of a Gaussian, along with steerable approximations to their Hilbert transforms.

Results of applying a steerable 4th-order directional derivative of a Gaussian and an approximation to

its Hilbert transform1 to several synthetic images are shown in Figure 1. Orientation maps are computed

1These filters are used in [2] and are notated asG4=H4.
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as the sum of squared responses of these filters. The maps of the vertical line and cross are as expected.

However, the filters respond bimodally to the half-line at � = �=2 and � = 3�=2 (instead of exhibiting a

single peak at � = �=2). The response to the corner is bimodal, but the peaks occur near � = 3�=4 and

� = 7�=4 instead of � = �=2 and � = �. Similar problems occur with the “T-” and “Y-junctions”.

These “incorrect” responses are due primarily to the inherent symmetries of directional derivatives: an

even-order derivative is symmetric (when reflected through the origin) and an odd-order derivative is anti-

symmetric. In either case, their squared responses (as a function of orientation) will always be symmetric.

Thus, the associated orientation map will be periodic with period �.

Although the directional derivatives provide an elegant example, the principle of steerability is not

limited to such functions. Given that directional derivatives always exhibit symmetry (or anti-symmetry),

we set out to design a more general asymmetric steerable function.

3 Steerable Wedge Filters

This section discusses the design of a set of even- and odd-symmetric steerable wedge filters. We assume

a polar-separable form for the filters, and describe independent designs for the angular and radial filter

components.

3.1 Angular Function

To achieve steerability with N̂ = 2N filters, it is sufficient that the angular portion of each filter is

constrained to be a weighted sum of the first N circular harmonics2. In addition, we impose a Hilbert

transform relationship (i.e., a phase shift of �=2) between the angular portions of the two filters:

he(�) =
NX
n=1

wn cos(n�); ho(�) =
NX
n=1

wn sin(n�): (3)

Note that although these angular functions are Hilbert transforms of each other, the resulting two-

dimensional filters, fe(r; �) and fo(r; �), will not form a Hilbert transform pair.3 Nevertheless, the opposite

symmetry of the two angular functions ensures that the orientation operator will respond to both line and

step edges.

The angular functions in Equation (3) provide a generalization of the class of directional derivatives.

AnN th order directional derivative has an angular component containing a subset of the harmonics between

2Note that there is no n = 0 term, since we desire zero-mean filters.
3It is not possible to construct a pair of 2-D even- and odd-symmetric filters that are both steerable and Hilbert transforms of

each other. The even-symmetric (odd-symmetric) filter will contain only even (odd) order angular components and thus the power

spectra of the two filters cannot be exactly equated.
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Figure 1: Orientation maps computed usingG4=H4 symmetric steerable filters from [2] (full filter set contains
eleven 13-tap filters). Left column: synthetic line images. Middle column: oriented energy as a function
of angle (plotted from 0 to 2�), computed using filters centered on the corresponding image. Right column:
polar plots of the same oriented energy functions. Note the symmetry in the oriented energy maps, even when
the underlying image structure is asymmetric (half-line, corner, “T-junction”, and “Y-junction”).
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Figure 2: Top: Optimally localized even- and odd-symmetric angular components he(�) (dashed) and ho(�)
(solid), shown for N = 2; 4; 6; 8. Bottom: Corresponding oriented energy “impulse response” E(�). As
N increases, the width of the response decreases, but the number of filters required for a steerable basis set
increases.

the first and the N th. In particular, for odd N it contains only odd harmonics (up to the N th), and for even

N , only even harmonics.

The weights, wn, are chosen to maximally localize the orientation map “impulse response”: E(�) =

h2
e(�) + h2

o(�). We compute a total least squares solution, using a quadratic localization function:

P(w1; w2; : : : ; wN) =
R
d� �2(�)E(�), where �(�) is a monotonically increasing weighting function,

which we choose as �(�) = �. To facilitate computer implementation, P(w1; w2; : : : ; wN) is rewritten in

matrix form by sampling the variable � at M locations:

P (~w) = jΛC ~wj2 + jΛS ~wj2

= ~wt
h
CtΛtΛC + StΛtΛS

i
~w; (4)

where ~w is a vector whose components are the weightswn, Λ is a diagonal matrix containing the values�(�),

and S and C are matrices whose columns contain the sampled sinusoidal and cosinusoidal basis functions,

Smn = sin(2�nm=M), and Cmn = cos(2�nm=M), respectively. The unit vector ~w that minimizes P (~w)

is the minimal-eigenvalue eigenvector of the matrix [CtΛtΛC + StΛtΛS].

Examples of 1D even- and odd-symmetric angular functions, with corresponding oriented energy

responses, are shown in Figure 2. Note that as N increases (i.e., higher harmonics are added), the angular

functions and their associated oriented energy responses become narrower. Of course, this narrowing comes

at a price: the number of filters in the basis set increases by two with the addition of each harmonic term.
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3.2 Interpolation Functions

We now derive the interpolation functions, kn(�), for the even-symmetric filters; the derivation for the

odd-symmetric filters is nearly identical. From Equation (3), the angular portion of the even-symmetric

filter rotated by � is:

h(�� �) =
NX
n=1

wn cos(n(�� �))

=
NX
n=1

wn[cos(n�) cos(n�) + sin(n�) sin(n�)]

= ~k(�) � ~f(�); (5)

where the vectors ~k(�) and ~f(�) are defined as:

~k(�) =

0
BBBBBBBBBBBBBBBB@

cos(�)

sin(�)

cos(2�)

sin(2�)
...

cos(N�)

sin(N�)

1
CCCCCCCCCCCCCCCCA

t

; ~f(�) =

0
BBBBBBBBBBBBBBBB@

w1 cos(�)

w1 sin(�)

w2 cos(2�)

w2 sin(2�)
...

wN cos(N�)

wN sin(N�)

1
CCCCCCCCCCCCCCCCA

:

To construct the basis functions, we write 2N copies of Equation (5), for each of the fixed angular

locations, f�n = �n=N ; 1 � n � 2Ng, and combine these into a single matrix equation:

~h(�) = K~f(�); (6)

where ~h(�) contains the angular components of the steerable filter set:

~h(�) =

0
BBBBBB@

h(�� �1)

h(�� �2)
...

h(�� �2N )

1
CCCCCCA
;

and K is a fixed 2N � 2N matrix:

K =

0
BBBBBB@

cos(�1) sin(�1) cos(2�1) sin(2�1) : : : cos(N�1) sin(N�1)

cos(�2) sin(�2) cos(2�2) sin(2�2) cos(N�2) sin(N�2)
...

. . .
...

cos(�2N) sin(�2N) cos(2�2N) sin(2�2N) : : : cos(N�2N) sin(N�2N)

1
CCCCCCA
:

Equation (6) gives a linear relationship between the steerable basis set fh(���n); 1 � n � 2Ng and

a weighted subset of the Fourier basis fwn cos(n�); wn sin(n�); 1 � n � Ng. The matrix K is invertible
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(since it corresponds to a Discrete Fourier Transform), and thus we can solve for the weighted Fourier basis

as a function of the steerable basis:

~f(�) = K�1~h(�): (7)

Finally, combining Equation (7) with Equation (5) gives:

h(�� �) = ~k(�)K�1~h(�):

This equation describes the construction of h(�), rotated to arbitrary angle �, as a linear combination of

the basis set fh(� � �n); 1 � n � 2Ng. The interpolation functions are the components of the vector

~k(�)K�1.

We have derived interpolation functions for the even-symmetric filters; a similar derivation would

produce interpolation functions for the odd-symmetric functions. Computing oriented energy would then

require 4N filters (2N even and 2N odd). But this full basis is redundant: the entire set of 4N functions

spans only a 2N -dimensional functional subspace. As such, we can derive interpolation functions using a

combination of N even- and N odd-symmetric filters.

We denote the angular functions for the even- and odd- symmetric filters as he(�) and ho(�), respec-

tively, and then write an equation analogous to Equation (5) for each of the two filters:

he(�� �) = ~ke(�) � ~f(�) (8)

ho(�� �) = ~ko(�) � ~f (�); (9)

where ~f(�) is the same weighted Fourier basis as above, and the interpolation vectors ~kfe;og are now given

(via basic trigonometric identities) by:

~ke(�) =

0
BBBBBBBBBBBBBBBB@

cos(�)

sin(�)

cos(2�)

sin(2�)
...

cos(N�)

sin(N�)

1
CCCCCCCCCCCCCCCCA

t

; ~ko(�) =

0
BBBBBBBBBBBBBBBB@

� sin(�)

cos(�)

� sin(2�)

cos(2�)
...

� sin(N�)

cos(N�)

1
CCCCCCCCCCCCCCCCA

t

:

A collection of such equations for the reduced set of angles, f�n = 2�n=N ; 1 � n � Ng, may be combined

in matrix form:

~h0(�) = K0 ~f(�);
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where ~h0(�) contains the angular components of the steerable filter set:

~h0(�) =

0
BBBBBBBBB@

he(�� �1)

ho(�� �1)
...

he(�� �N)

ho(�� �N )

1
CCCCCCCCCA

;

and K 0 is a fixed 2N � 2N matrix:
0
BBBBBBBBB@

cos(�1) sin(�1) : : : cos(N�1) sin(N�1)

� sin(�1) cos(�1) � sin(N�1) cos(N�1)
...

. . .
...

cos(�N ) sin(�N) cos(N�N) � sin(N�N)

� sin(�N) cos(�N) : : : � sin(N�N) cos(N�N)

1
CCCCCCCCCA

:

Combining the inverse of this equation with equations (8) and (9) gives the desired linear expressions

for he and ho rotated to an arbitrary orientation �:

he(�� �) = ~ke(�)(K
0)�1~h0(�) (10)

ho(�� �) = ~ko(�)(K
0)�1~h0(�); (11)

where the basis set of both even and odd steerable filters, rotated to each of the N angles �n, is contained

in the vector ~h0(�).

3.3 Radial Function

Thus far, only the angular components of the steerable wedge filters have been specified. An arbitrary radial

function may be chosen without affecting the steerability of the resulting filters. We choose a radial function

that falls smoothly to zero in the center and at the outer edges of the filter:

g(r) =

8>>>>>>>>>>><
>>>>>>>>>>>:

0; r < R1

1
2

�
1 � cos(�(r� R1)=�1)

�
; R1 � r < R1 + �1

1; R1 + �1 � r < R2 � �2

1
2

�
1 + cos(�(r+ �2 �R2)=�2)

�
; R2 � �2 � r < R2

0; R2 � r:

(12)

To create filters of reasonable size, the polar-separable functions, f (�n)fe;og(r; �) = g(r)hfe;og(� � �n),

must be coarsely sampled. Sampling is a linear process, and thus does not affect the steerability of the filter

set. It may, however, produce spatial aliasing artifacts that destroy the desired orientation tuning properties.
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orientation: �1 �2 �3 �4 �5

even :

odd:

Figure 3: Example set of 10 steerable wedge functions for N = 5. From this basis set, a filter of either
symmetry (even or odd) may be synthesized at any orientation.

In order to avoid this, we densely sampled the functions on a lattice of 63� 63 points. For the radial portion

of the filters, we used parameter values of R1 = 2, �1 = 3, R2 = 30, and �2 = 3. These sampled functions

are shown (as grayscale images) in Figure 3. These arrays of samples were then repeatedly blurred and

subsampled by a factor of two to produce a set of 7� 7 filters.

4 Orientation Analysis Examples

The oriented energy, E(�), is defined as the sum of squared outputs of a pair of even- and odd-symmetric

filters “steered” to the angle �. Examples of this function, computed for several synthetic images, are shown

in Figure 4. These results should be compared to those of theG4=H4 steerable filter set, shown in Figure 1.

The response to the vertical line in the two figures is similar, but the response to the half-line differs: the

G4=H4 filters respond bimodally, while the wedge filters respond unimodally, as desired.

The response of the wedge filters to the cross and corner are “incorrect” due to the rather broad tuning

of the filters. Narrower tuning can be achieved by increasing the number of harmonics, N . Results for the

same set of images with a basis set of 18 filters (N = 9) are shown in Figure 5. With this larger and more

narrowly tuned basis set, the oversmoothed responses to the cross and the corner are eliminated. Also shown

in Figure 5 are responses to a “Y-junction” and a “T-junction”. The wedge filters give trimodal responses to

both, while theG4=H4 responses depicted in Figure 1 show bimodal and quadramodal responses. For tasks

such as junction analysis, detection, or classification, the response of the wedge filters is clearly favorable.

Figure 6 shows orientation responses for junctions containing step edges (as opposed to lines). These
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Figure 4: Orientation maps computed using a set of ten steerable wedge filters (i.e., N = 5) as shown in
Figure 3. Left column: synthetic line images. Middle column: oriented energy as a function of angle (plotted
from 0 to 2�), computed using filters centered on the corresponding image. Right column: polar plots of the
same oriented energy functions. The responses match the underlying images, except that the broad orientation
tuning of the filters leads to an oversmoothed response to the cross and the corner.
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Figure 5: Orientation maps computed using a set of 18 steerable wedge filters (i.e., N = 9). Left column:
synthetic line images. Middle column: oriented energy as a function of angle (plotted from 0 to 2�), computed
using filters centered on the corresponding image. Right column: polar plots of the same oriented energy
functions. Note that the narrower tuning (relative to the filters of Figure 4) produces a better representation of
the image structure.
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Figure 6: Orientation maps computed using a set of 18 steerable wedge filters (i.e., N = 9). Left column:
synthetic images containing step edges. Middle column: oriented energy as a function of angle (plotted from
0 to 2�), computed using filters centered on the corresponding image. Right column: polar plots of the same
oriented energy functions. Note that the step edges are not pixel-centered, and thus the responses do not lie
along the expected axes.

edges are not pixel-centered, and thus the maximal responses do not occur at the orientations of the edges

(see the next section for more examples of this situation). Nevertheless, the figure demonstrates that the

filters respond to both edges and lines, as desired.

Results of applying 7-tap wedge filters (N = 9) to several junction regions in a real image are shown

in Figure 7. Responses match the corresponding junctions in each case.

5 Discussion

Symmetric or anti-symmetric oriented filters produce a symmetric orientation response (with period �)

even when the underlying image structure does not have such symmetry. This type of response is clearly

not desirable for such tasks as junction analysis, detection or classification. The steerable wedge filters

presented in this article are localized in their oriented energy response and therefore respond “correctly” to

asymmetric regions in the image (e.g. line endings, corners, “T-”, “Y-junctions”).

One drawback of the wedge filters (relative to the derivative filters) is that they do not have a simple

x-y separable implementation. However, we found that 7-tap filters are sufficient to achieve satisfactory

results, and thus the computations may be performed with reasonable efficiency.

There are several issues we have left unaddressed in this article. First, we have not discussed the

processing that would be necessary to characterize junctions based on the outputs of a set of steerable

wedge filters. The examples we have shown indicate that the information necessary for characterizing
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Figure 7: Parkbench image, and orientation maps computed at selected locations using the set of 7-tap
steerable wedge filters with N = 9 (i.e., 18 basis filters). Polar plots of oriented energy maps are given for:
(a) a horizontal edge; (b) a vertical edge; (c) a corner; and (d) a “T-junction”.
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Figure 8: Left: synthetic image. Right: responses at each of nine positions. Off-center orientation maps were
computed with a set of 18 steerable wedge filters (i.e., N = 9). Maps were computed with filters centered at
each of 9 locations, separated by intervals of 2 pixels.

such junctions is contained in the filter responses. See [11] for an example of a rotation-invariant pattern

signature based on these responses.

Second, we have avoided the question of spatial location. In each of the examples, the filters are

centered over the junction. Example filter responses for an off-center junction are shown in Figure 8. These

results demonstrate that the orientation response degrades gracefully with spatial displacement. They also

suggest that junction detection or classification may require the analysis of orientation maps in a local

neighborhood.

We believe that the filters presented here will prove to be useful in analyzing the local orientation

structure of images. The results are also readily extended to three dimensions, where the resulting filters

may be used to analyze volumetric data or motion sequences. In particular, a three-dimensional set of such

filters may prove useful for identifying motion occlusion boundaries.
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