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Abstract

Steerable filters have been used to analyze local orientation patterns in imagery. Such filters are
typically based on directiona derivatives, whose symmetry produces orientation responses that are
periodic with period 7, independent of image structure. We present amore general set of steerablefilters
that alleviate this problem.

1 Introduction

Oriented linear filters are used in many vision and image processing tasks, such as edge detection, seg-
mentation, texture analysis, and motion analysis. Their basic behavior with regard to representation of
orientation may be examined by computing an “orientation map”: the squared filter response as afunction
of filter orientation (e.g., [4, 3, 8, 2]). Such filters are amost always either symmetric or anti-symmetric.
The symmetry (or anti-symmetry) of the filters imposes a periodicity of period = on the orientation map,
regardless of the underlying image structure. For example, an orientation map computed at the end of a
line segment will produce a bimodal response. Such an ambiguity is undesirable for many applications.
For this reason, some authors have recently begun to explore the use of asymmetric filters for orientation
analysis|[6, 7, 9].

A secondary themein thissort of orientation analysisisthat of rotation-invariance[1, 4, 5, 2, 7]. Along
these lines, Freeman and Adelson devel oped the concept of steerable filters, in which an oriented filter is
synthesized exactly from alinear combination of a fixed set of basis filters. They constructed such bases
using directional derivatives of Gaussians, and used these filters to compute local orientation maps. But
directional derivatives of Gaussians are either symmetric or anti-symmetric, and thus they suffer from the

periodicity problem mentioned above.
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Inthisarticle, we describe anew class of filtersfor local orientation and junction analysis. Thesefilters
are both asymmetric and steerable, and are designed to produce an optimally localized oriented energy map.
A preliminary report of thiswork has been presented in [10].

2 Steerability and Orientation M aps

This section gives a brief overview of the principle of steerability, and describes its use in computing
orientation maps. The simplest example of a steerable filter is the partia derivative of a two-dimensional

Gaussian. In polar coordinates, the horizonta and vertical derivatives are written:

GP(r,0) = cos(B)(~r e )
GTP(r,0) = sno)(-r e,

where the subscript indicates the derivative order, and the parenthesi zed superscript indicates the derivative
direction. It is well-known (and easy to verify, using basic trigonometric identities) that G1(r, ) can be

synthesized at an arbitrary orientation, ¢, using the following equation:
AP0 = cos()GO(r,0)+ sin()GTP(r,0). 1)

This equation embodies the steerability of these functions: the directiona derivative 1 can be generated
at an arbitrary orientation ¢ via a linear combination of the rotated basis filters, G(10) and G(f/ 2 The
coefficients cos(¢) and sin(¢) are referred to as the interpolation functions. Since convolution is a linear
operation, theresult of convolving with an arbitrarily oriented filter may be computed viaalinear combination
of the results of convolving with the basisfilters.

Steerability is not limited to first derivative functions. The general steerability condition, for polar-

separable functions, iswritten as:

N
F(r,0) = h(¢ = a)g(r) = > ku(@)h(¢ — ay)g(r), (2)
n=1

where h(-) is the angular portion of the steerable filter, ¢(-) is the radia portion, &, (-) are interpolation
functions, and a,, are a fixed set of N orientations. Freeman & Adelson [2] showed that this equation
is satisfied by all functions with angular components that are bandlimited to contain no more than N /2
harmonic terms. They presented examples of steerable filter sets consisting of higher-order directional
derivatives of a Gaussian, along with steerable approximationsto their Hilbert transforms.

Results of applying a steerable 4th-order directional derivative of a Gaussian and an approximation to

its Hilbert transform? to several synthetic images are shown in Figure 1. Orientation maps are computed

"Thesefilters are used in [2] and are notated as G4/ Ha.



as the sum of sguared responses of these filters. The maps of the vertical line and cross are as expected.
However, the filters respond bimodally to the half-lineat ¢ = /2 and ¢ = 37 /2 (instead of exhibiting a
single peak at ¢ = w/2). The response to the corner is bimodal, but the peaks occur near ¢ = 37 /4 and
¢ = Trn/4dinstead of ¢ = 7/2and ¢ = =. Similar problems occur with the “T-" and “ Y-junctions’.

These“incorrect” responses are due primarily to theinherent symmetriesof directional derivatives: an
even-order derivative is symmetric (when reflected through the origin) and an odd-order derivative is anti-
symmetric. In either case, their squared responses (as a function of orientation) will always be symmetric.
Thus, the associated orientation map will be periodic with period 7.

Although the directiona derivatives provide an elegant example, the principle of steerability is not
limited to such functions. Given that directional derivatives always exhibit symmetry (or anti-symmetry),

we set out to design a more general asymmetric steerable function.

3 Steerable Wedge Filters

This section discusses the design of a set of even- and odd-symmetric steerable wedge filters. We assume
a polar-separable form for the filters, and describe independent designs for the angular and radial filter

components.

3.1 Angular Function

To achieve steerability with N = 2N filters, it is sufficient that the angular portion of each filter is
constrained to be a weighted sum of the first N circular harmonics®. In addition, we impose a Hilbert

transform relationship (i.e., a phase shift of 7 /2) between the angular portions of the two filters:

N N
he(¢) = Z w,, COS(ne), ho(¢) = Z wy, SIN(Ne). (3)
n=1 n=1

Note that although these angular functions are Hilbert transforms of each other, the resulting two-
dimensiond filters, f.(r, ¢)and f,(r, ), will not form aHilbert transform pair.3 Nevertheless, the opposite
symmetry of the two angular functions ensures that the orientation operator will respond to both line and
step edges.

The angular functions in Equation (3) provide a generalization of the class of directiona derivatives.

An Nthorder directional derivativehas an angular component containing asubset of the harmonicsbetween

2Note that thereis no n = 0 term, since we desire zero-mean filters.
31t is not possible to construct a pair of 2-D even- and odd-symmetric filters that are both steerable and Hilbert transforms of

each other. The even-symmetric (odd-symmetric) filter will contain only even (odd) order angular components and thus the power

spectra of the two filters cannot be exactly equated.
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Figure 1: Orientation maps computed using G4/ H4 symmetric steerablefiltersfrom [2] (full filter set contains
eleven 13-tap filters). Left column: synthetic line images. Middle column: oriented energy as a function
of angle (plotted from 0 to 27), computed using filters centered on the corresponding image. Right column:
polar plots of the same oriented energy functions. Notethe symmetry in the oriented energy maps, even when
the underlying image structureis asymmetric (half-line, corner, “T-junction”, and “Y-junction”).



Figure 2: Top: Optimally localized even- and odd-symmetric angular components /. (¢ ) (dashed) and h,(¢)
(solid), shown for N = 2,4,6,8. Bottom: Corresponding oriented energy “impulse response’ E(¢). As
N increases, the width of the response decreases, but the number of filters required for a steerable basis set
increases.

thefirst and the Nth. In particular, for odd &V it contains only odd harmonics (up to the Nth), and for even
N, only even harmonics.

The weights, w,,, are chosen to maximally localize the orientation map “impulseresponse’: E(¢) =
R2(¢) + h?(¢). We compute a total least squares solution, using a quadratic localization function:
P(wy, wa,...,wy) = [do \()E(6), where \(¢) is a monotonically increasing weighting function,
which we choose as A(¢) = ¢. To facilitate computer implementation, P (w1, wy, ..., wy ) iSrewritten in

matrix form by sampling the variable ¢ at M locations:

P(@) INCB]? + |AST|?

= [Cf/\f/\c + sf/\f/\s] @, (4)

where @ isavector whose componentsare theweightsw,,, A isadiagona matrix containingthevalues \(¢),
and S and C' are matrices whose columns contain the sampled sinusoidal and cosinusoidal basis functions,
Simn = SiN(2rnm /M), and C,,,, = cos(2rnm /M ), respectively. The unit vector « that minimizes ()
is the minimal-eigenval ue eigenvector of the matrix [C'A'AC + STATAS].

Examples of 1D even- and odd-symmetric angular functions, with corresponding oriented energy
responses, are shown in Figure 2. Notethat as N increases (i.e., higher harmonics are added), the angular
functionsand their associated oriented energy responses become narrower. Of course, thisnarrowing comes

at aprice: the number of filtersin the basis set increases by two with the addition of each harmonic term.



3.2 Interpolation Functions

We now derive the interpolation functions, k,(«), for the even-symmetric filters; the derivation for the
odd-symmetric filters is nearly identical. From Equation (3), the angular portion of the even-symmetric

filter rotated by « is:

™=

h(o—a) = ) wnco8(n(¢—a))

1

n

I
™=

wy[cos(n¢) cog(na) + sin(ng) sin(na)]
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N

—
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—

where the vectors k(a) and f(¢) are defined as:

cos(a) \ " w1 Co8(¢)

sina) wrsin(o)

cos(2a) w2 COS(26)

Fa)=| sin@2a) |, fl¢)=| wasin(29)
cos( N a) wy COS(N @)
sin(Na) wy SIN(N ¢)

To construct the basis functions, we write 2N copies of Equation (5), for each of the fixed angular
locations, {«,, = 7n/N;1 < n < 2N}, and combine these into a single matrix equation:

— —

h¢) = K f(9), (6)
where f2(¢) contains the angular components of the steerable filter set:
h(¢ — a1)
h _
fo=| T
h(¢ — azn)
and K isafixed 2N x 2N matrix:
COS(al) Sil’l(al) COS(Zal) sin(Zal) ce COS(Nal) sin(Nal)
% COS(az) Sil’l(az) COS(Zaz) sin(2a2) COS(Naz) SiI’I(NOéz)
x/ = . .
COS(QZN) sin(aZN) COS(ZQZN) Sin(2a2N) Ce COS(N&ZN) sin(NaZN)

Equation (6) givesalinear relationship between the steerable basisset {2 (¢ — a,,); 1 < n < 2N } and

aweighted subset of the Fourier basis {w,, cos(n¢), w, sin(n¢); 1 < n < N}. Thematrix K isinvertible
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(sinceit correspondsto a Discrete Fourier Transform), and thus we can solve for the weighted Fourier basis

as afunction of the steerable basis:
f(6) = K h(9). (7)

Finally, combining Equation (7) with Equation (5) gives:
M — a) = k(a)K ().

This equation describes the construction of i(¢), rotated to arbitrary angle «, as a linear combination of
the basis set {h(¢ — a,,);1 < n < 2N }. Theinterpolation functions are the components of the vector
F(a)K—1,

We have derived interpolation functions for the even-symmetric filters, a similar derivation would
produce interpolation functions for the odd-symmetric functions. Computing oriented energy would then
require 4N filters (2V even and 2N odd). But thisfull basisis redundant: the entire set of 4N functions
gpans only a 2V -dimensional functional subspace. As such, we can derive interpolation functions using a
combination of N even- and N odd-symmetricfilters.

We denote the angular functionsfor the even- and odd- symmetricfiltersas i.(¢) and h,(¢), respec-

tively, and then write an equation anal ogous to Equation (5) for each of the two filters:

he(d—a) = k(o) f(o) 8
ho(dp—a) = ko(a)- f(), 9

where f{ (¢) isthe same weighted Fourier basis as above, and the interpolation vectors E{w} are now given

(viabasic trigonometric identities) by:

cos(a) \' —sin(a) \*
sin(a) cos( )
cos(2av) —sin(2a)
k(a)=| sin2a) |,  k(a)=] cos(2a)
cos(Na) —sin(Na)
sin(Na) cos(Na)

A collection of such equationsfor the reduced set of angles, {a,, = 2rn/N;1 < n < N}, may becombined

in matrix form:

— —

W(¢) = K'f(4),



where i/ (¢) containsthe angular components of the steerable filter set:

he(¢ — 1)
ho(¢ — 1)
i) = : :
he(¢ — an)
ho(¢ — an)
and K’ isafixed 2N x 2N matrix:
cos(a1)  Sin(ag) ... cos(Naj) sin(Naj)
—sin(a1) cos(ai) —sin(Na1)  cos(Naj)
cos(ay) sSin(an) cos Nay) —sin(Nay)
—sin(ay) cosay) ... —sin(Nayn) cos(Nay)

Combining the inverse of this equation with equations (8) and (9) givesthe desired linear expressions

for h. and h,, rotated to an arbitrary orientation «:

he(¢ = a) Fe(a)(K') M (9) (10)
ho(é = a) = Ko(a)(K')THR(9). (11)

where the basis set of both even and odd steerabl e filters, rotated to each of the NV angles «,, is contained

in the vector 77( ).

3.3 Radial Function

Thusfar, only the angular components of the steerable wedge filters have been specified. An arbitrary radia
function may be chosen without affecting the steerability of the resulting filters. We choose aradial function

that falls smoothly to zero in the center and at the outer edges of the filter:

0, r< Rq
11— cos(z(r — R1)/61)], Ri<r<Ri+é
g(r)=19 1, Ri+6<r<Ry—0d2 (12)
L [1+ cos(n(r + 6, — R2)/62)], Ry— 0 <r <R
0, Ry < r.

To create filters of reasonable size, the polar-separable functions, f{(jﬁ(r, ?) = g(r)hico(@ — an),
must be coarsely sampled. Samplingisalinear process, and thus does not affect the steerability of the filter
set. It may, however, produce spatia aliasing artifacts that destroy the desired orientation tuning properties.

8
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Figure 3: Example set of 10 steerable wedge functions for N = 5. From this basis set, a filter of either
symmetry (even or odd) may be synthesized at any orientation.

In order to avoid this, we densely sampled the functions on alattice of 63 x 63 points. For theradial portion
of thefilters, we used parameter valuesof R; = 2, §; = 3, Ry = 30, and é, = 3. These sampled functions
are shown (as grayscale images) in Figure 3. These arrays of samples were then repeatedly blurred and
subsampled by a factor of two to produce a set of 7 x 7 filters.

4 Orientation Analysis Examples

The oriented energy, F(¢), is defined as the sum of squared outputs of a pair of even- and odd-symmetric
filters“steered” totheangle ¢. Examplesof thisfunction, computed for severa syntheticimages, are shown
in Figure 4. These results should be compared to those of the G4/ H 4 steerable filter set, shown in Figure 1.
The response to the verticd line in the two figures is similar, but the response to the half-line differs: the
G4/ H 4 filters respond bimodally, while the wedge filters respond unimodally, as desired.

Theresponse of the wedge filtersto the cross and corner are “incorrect” due to the rather broad tuning
of the filters. Narrower tuning can be achieved by increasing the number of harmonics, V. Resultsfor the
same set of images with a basis set of 18 filters (V. = 9) are shown in Figure 5. With thislarger and more
narrowly tuned basisset, the oversmoothed responsesto the crossand the corner are eliminated. Also shown
in Figure 5 areresponsesto a“ Y-junction” and a“ T-junction”. The wedge filters givetrimodal responsesto
both, whilethe G4/ H 4 responses depicted in Figure 1 show bimodal and quadramodal responses. For tasks
such as junction analysis, detection, or classification, the response of the wedgefiltersis clearly favorable.

Figure 6 shows orientation responses for junctions containing step edges (as opposed to lines). These
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Figure 4: Orientation maps computed using a set of ten steerable wedge filters (i.e., N = 5) as shown in
Figure 3. Left column: synthetic lineimages. Middle column: oriented energy as a function of angle (plotted
from 0 to 2x), computed using filters centered on the corresponding image. Right column: polar plots of the
same oriented energy functions. The responses match the underlyingimages, except that the broad orientation
tuning of the filters leads to an oversmoothed response to the cross and the corner.

10
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Figure 5: Orientation maps computed using a set of 18 steerable wedge filters (i.e, N = 9). Left column:
syntheticlineimages. Middlecolumn: oriented energy as afunction of angle (plotted from 0 to 27), computed
using filters centered on the corresponding image. Right column: polar plots of the same oriented energy
functions. Note that the narrower tuning (relativeto the filters of Figure 4) produces a better representation of
the image structure.
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Figure 6: Orientation maps computed using a set of 18 steerable wedge filters (i.e, N = 9). Left column:
synthetic images containing step edges. Middle column: oriented energy as afunction of angle (plotted from
0 to 27), computed using filters centered on the corresponding image. Right column: polar plotsof the same

oriented energy functions. Note that the step edges are not pixel-centered, and thus the responses do not lie
along the expected axes.

edges are not pixel-centered, and thus the maximal responses do not occur at the orientations of the edges
(see the next section for more examples of this situation). Nevertheless, the figure demonstrates that the
filters respond to both edges and lines, as desired.

Results of applying 7-tap wedge filters (V = 9) to severa junction regionsin area image are shown

in Figure 7. Responses match the corresponding junctionsin each case.

5 Discussion

Symmetric or anti-symmetric oriented filters produce a symmetric orientation response (with period =)
even when the underlying image structure does not have such symmetry. This type of responseis clearly
not desirable for such tasks as junction analysis, detection or classification. The steerable wedge filters
presented in thisarticle are localized in their oriented energy response and therefore respond “ correctly” to
asymmetric regions in theimage (e.g. line endings, corners, “T-", “Y-junctions”).

One drawback of the wedge filters (relative to the derivative filters) is that they do not have a simple
X-y separable implementation. However, we found that 7-tap filters are sufficient to achieve satisfactory
results, and thus the computations may be performed with reasonabl e efficiency.

There are several issues we have left unaddressed in this article. First, we have not discussed the
processing that would be necessary to characterize junctions based on the outputs of a set of steerable

wedge filters. The examples we have shown indicate that the information necessary for characterizing

12
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Figure 7: Parkbench image, and orientation maps computed at selected locations using the set of 7-tap
steerable wedge filters with N = 9 (i.e., 18 basis filters). Polar plots of oriented energy maps are given for:
(a) ahorizonta edge; (b) avertica edge; (¢) acorner; and (d) a“T-junction”.
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Figure8: Left: syntheticimage. Right: responses at each of nine positions. Off-center orientation maps were
computed with a set of 18 steerable wedgefilters (i.e., N = 9). Maps were computed with filters centered at
each of 9 locations, separated by intervals of 2 pixels.

such junctions is contained in the filter responses. See [11] for an example of a rotation-invariant pattern
signature based on these responses.

Second, we have avoided the question of spatia location. In each of the examples, the filters are
centered over the junction. Examplefilter responsesfor an off-center junction are shownin Figure 8. These
results demonstrate that the orientation response degrades gracefully with spatial displacement. They also
suggest that junction detection or classification may require the anaysis of orientation maps in a loca
neighborhood.

We believe that the filters presented here will prove to be useful in analyzing the local orientation
structure of images. The results are also readily extended to three dimensions, where the resulting filters
may be used to anayze volumetric data or motion sequences. In particular, athree-dimensional set of such

filters may prove useful for identifying motion occlusion boundaries.
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