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ABSTRACT

Many multi-dimensional signal processing problems
require the computation of signal gradients or direc-
tional derivatives. Traditional derivative estimates
based on adjacent or central differences are often inap-
propriate for multi-dimensional problems. As replace-
ments for these traditional operators, we design a set
of matched pairs of derivative filters and lowpass pre-
filters. We demonstrate the superiority of these filters
over simple difference operators.

1. INTRODUCTION

A wide variety of problems in multi-dimensional
signal processing require the computation of gradients
or directional derivatives. Typically, this requirement
arises from a need to compute local Taylor series ex-
pansions to characterize signals. For example, in image
processing, gradient measurements are used as a first
stage of many edge detection, depth-from-stereo, and
optical flow algorithms.

Multi-dimensional derivatives are usually computed
as in one-dimensional signal processing, via differences
between neighboring sample values (typically “back-
ward” or “central” differences). These derivative esti-
mates are often highly inaccurate [5]. This is especially
true in applications that require computation of di-
rectional derivatives via linear combination of the axis
derivatives (i.e., the components of the gradient).

As a replacement for traditional sample differences,
we propose the use of matched pairs of derivative fil-
ters and lowpass prefilters. We formulate this as a filter
design problem, and derive a set of small-kernel linear-
phase filters. We demonstrate that derivatives com-
puted via these filters are substantially more accurate
than those computed via standard approaches.

2. COMPUTING DERIVATIVES OF

SAMPLED SIGNALS

Assume we wish to compute the derivative of a
sampled signal at the location of each sample. The
derivative operator is a linear shift-invariant operator,
and we may therefore view its application to a signal

as a convolution operation. Since derivatives are de-
fined on continuous functions, the computation on a
discrete function requires (at least implicitly) an inter-
mediate interpolation step with a continuous function
C(x). The derivative of this interpolated function must
then be re-sampled at the points of the original sam-
pling lattice.

The sequence of operations may be written for a
one-dimensional signal as follows:

d

dx
f(n) ≡

[

d

dx

(

∑

m

f(m)C(x − m)

)]

x=n

=

[

∑

m

f(m)
dC

dx
(n − m)

]

,

where we assume unit sample spacing in the discrete
variables n and m for simplicity. Thus, the deriva-
tive operation is equivalent to convolution with a fil-
ter which is the sampled derivative of some continuous
interpolation function C(~r). One could use an ideal
lowpass (sinc) function, or a gentler function such as a
Gaussian. An optimal choice would depend on a model
for the original continuous signal (e.g., bandlimited at
the Nyquist limit, with 1/ω power spectrum) and a
model of the noise in the sampled signal. We will refer
to this interpolation filter as the prefilter.

For many practical applications, we would like a rel-
atively small linear-phase derivative kernel. We there-
fore cannot use an ideal lowpass prefilter (which would
lead to an infinite size kernel). But a non-ideal in-
terpolator will introduce distortions in the original sig-
nal. More specifically, we will be computing the deriva-
tives of an improperly interpolated signal. In situations
where we need to make comparisons between or take
combinations of a signal and its derivative1, this sug-
gests that we should also compute the convolution of
the signal with the prefilter. We will then have com-
puted two convolution results: the prefiltered original,
and the derivative of the prefiltered original. Thus, it

1For example, when computing the directional derivative as

a linear combination of axis derivatives.
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makes sense that we should simultaneously design the
derivative kernel and the prefilter kernel such that the
convolution results will have the proper relationship.

3. DESIGN OF DERIVATIVE FILTERS

We will describe the filter design problem in the
frequency domain. Let P (~ω) be the Discrete Time
Fourier transform (DTFT) of the prefilter, and D(~ω)
the DTFT of the derivative filter. Then our design
method must attempt to meet the following require-
ments:

1. The derivative filters must be very good approx-
imations to the derivative of the prefilter. That
is, for a derivative along the x-axis, we would like
jωxP (~ω) ≈ D(~ω), where ωx is the component of
the frequency coordinate in the x direction.

2. The lowpass prefilter should have linear phase,
preferably zero phase.2

3. For computational efficiency and ease of design,
it is preferable that the prefilter be separable. In
this case, the derivatives will also be separable,
and the design problem will be reduced to one
dimension.

4. The design algorithm should include a model for
signal and noise statistics, as in [2].

5. The prefilter should be rotationally symmetric.

We will not attempt to achieve rotational symmetry,
since this constraint coupled with separability would
force the prefilter to be Gaussian.

We can write a weighted least-squares error function
in the frequency domain as follows:

E(P,D) =

∫

dωW (ω) [−jωP (ω) − D(ω)]
2
.

W (ω) is a frequency weighting function. For the de-
signs in this paper, we have chosen this function to
roughly mimic the expected spectral content of natural
images: W (ω) = 1/|ω|0.5. With this simple error mea-
sure, we can compute solutions analytically and avoid
complex optimization procedures that may get stuck in
local minima.

In particular, the minimizing kernels may easily be
found using eigenvector techniques. Let ~p be an N-
vector containing the prefilter kernel, and let ~d be an N-
vector3 containing the derivative filter kernel. We may

2A phase of e
−j~ω/2 is also acceptable, producing estimates of

the signal derivative between the samples.
3Note that the two kernels need not be the same size. For

simplicity, we choose them to be so in this paper.

write a discrete approximation to the error function as:

E(~p, ~d) =
∣

∣

∣W
(

F ′~p − F ~d
)∣

∣

∣

2

,

where F is a matrix whose columns are the first N
Fourier basis functions, and F ′ is a similar matrix con-
taining the first N Fourier basis functions multiplied
by ω. W is a diagonal matrix containing the frequency
weighting function.

We now consolidate the terms of the equation as
follows:

E(~u) = |M~u|
2
,

where

M = ( WF ′ | WF ) , and ~u =





~p

~d



 .

The minimizing vector ~u is simply the minimal-eigen-
value eigenvector of the matrix M tM . The actual fil-
ters are found by renormalizing this ~u so that ~p has unit
D.C. response (i.e., the samples sum to 1.0). This de-
sign technique may be readily extended to higher-order
derivatives.

4. EXAMPLE FILTER DESIGNS

We have designed a set of filter kernel pairs of dif-
ferent sizes, using the method described above. In
all cases, we computed the solution using 1024-point
FFTs. All prefilters were forced to be symmetric about
their midpoints. The corresponding derivative filters
are therefore anti-symmetric. The resulting filter taps
are given in the table in figure 1.

For each kernel pair, figure 2 shows both the Fourier
magnitude of the one-dimensional derivative kernel,
and |~ω| times the Fourier magnitude of the prefilter.
Consider, for example, the upper-left plot in figure 2.
This shows a dashed graph of the Fourier magnitude
of the two-point (sample difference) derivative operator
d2(n) = [−0.686, 0.686]. On the same plot, we show the
Fourier magnitude of the derivative of the two-point av-
eraging operator p2(n) = [0.5, 0.5], which is computed
by multiplying its Fourier magnitude by the function
|ω|. Note that the derivative will be underestimated for
low frequencies and overestimated for high frequencies.

Thus, unless the original continuous imagery is ban-
dlimited to a region around a crossing point of the two
curves, these filters are not very good derivative ap-
proximations. Of course, the derivative filter may be
rescaled to improve the estimates at a particular fre-
quency (the standard choice is d2(n) = [−1, 1]), but
unless this is done adaptively (i.e., matched to the sig-
nal spectrum), this will not improve the situation.
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filter \ n 0 1 2

p2 0.5
d2 0.6860408186912537

p3 0.5515803694725037 0.22420981526374817
d3 0.0 0.45527133345603943

p4 0.40843233466148377 0.09156766533851624
d4 0.27143725752830506 0.2362217754125595

p5 0.4308556616306305 0.24887460470199585 0.035697564482688904
d5 0.0 0.2826710343360901 0.1076628714799881

Figure 1. Matched pairs of prefilter (pi) and derivative (di) kernels. Shown are half of the taps for each filter:
the others are determined by symmetry. All prefilters are symmetric and all derivative filters are anti-symmetric.
Even-length kernels are (anti-)symmetric about n = −0.5, odd-length filters are (anti-)symmetric about n = 0.
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Figure 2. Illustration of 2-tap (upper left), 3-tap (upper right), 4-tap (lower left), and 5-tap (lower right) deriva-
tive/prefilter pairs. Shown are the magnitude of the Fourier transforms over the range −π < ω < π of: a) the
derivative kernel (dashed line), and b) the frequency-domain derivative of the prefilter (that is, its Fourier magnitude
multiplied by |ω|). If these were perfect derivative/prefilter pairs, the curves would coincide. Note that the matches
would be substantially worsened if we do not perform prefiltering (i.e., if we use an impulse as a prefilter kernel).
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Many authors have pointed out that derivative tech-
niques are often inaccurate and are not robust to noise.
For example, Kearney et. al. [4] noted that gradient-
based optical flow algorithms often perform poorly in
highly “textured” regions of an image. We believe that
this is primarily due to the choice of a standard “dif-
ferencing” prefilter/derivative pair. Gradient-based ap-
proaches have been shown to surpass most other optical
flow techniques in accuracy [1, 5].

In considering figure 2, notice that the three-tap
filter is substantially more accurate than the two-tap
filter. Accuracy improves further with the four- and
five-tap filters.

5. EXPERIMENTAL RESULTS

We have tested the filters designed above in a simple
orientation-estimation task. We generated images con-
taining sinusoidal grating patterns of varying spatial
frequency and orientation. For each pattern, we com-
puted the gradient via separable convolution with the
derivative/prefilter pair. For example, the x-derivative
is computed by convolving in the vertical direction with
the prefilter and in the horizontal direction with the
derivative filter.

We then use these derivative measurements to com-
pute a least-squares estimate of the orientation θ of the
pattern. An error function is written as:

E(θ) =
∑

[cos(θ)Ix + sin(θ)Iy]
2

where Ix is the x-derivative image, Iy is the y-derivative
image, and the summation is over all image pixels. We
solve for the maximizing unit vector û(θ) = [cos(θ), sin(θ)]
using standard eigenvector techniques and then solve
for the orientation, θ. Errors in orientation estimation
as a function of pattern orientation are shown in fig-
ure 3. Errors as a function of pattern spatial frequency
are shown in figure 4. Note that the errors are unac-
ceptable for the 2-tap filter pair, but rapidly improve
as we increase the size of the kernels.

We have also tested the filters described above in
applications of estimating local orientation in still im-
ages (cf Freeman & Adelson [3]), and for optical flow
estimation [5]. Due to space constraints, these results
cannot be elaborated here. They indicate substan-
tial improvements over conventional derivative mea-
surements, as would be predicted from the plots of fig-
ure 2.
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Figure 3. Test of rotation-invariance for the filter pairs shown in 2. We plot the orientation estimation error (in
radians) as a function of pattern orientation, for a set of pattern orientations ranging from −π/2 to π/2 (axis labels
are arbitrary). Spatial frequency was held constant at ω = π/2.
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Figure 4. Test of scale-invariance for the filter pairs shown in 2. We plot the orientation estimation error (in
radians) as a function of pattern spatial frequency, for a set of pattern frequencies ranging from π/32 to 31π/32 (axis
labels are arbitrary). Orientation was held constant at θ = π/6. Horizontal lines provide a zero-error reference.
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Errata: the frequency-weighting function in the
equation giving the least-squares error should be squared,
and the minus sign on jω is incorrect (relative to the
convention of the rest of the paper):

E(P,D) =

∫

dωW 2(ω) [jωP (ω) − D(ω)]
2
.
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