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Abstract

We describe the relationship between gradient methods for computing optical ow and

�lter-based spatio-temporal energy models of biological motion processing, revealing that

these techniques are equivalent under certain conditions. We discuss extensions of these

techniques which compute probability distributions of optical ow. The use of distributions

allows proper handling of the uncertainties inherent in the optical ow computation, facil-

itating the combination with information from other sources. The probabilistic framework

also leads to several useful extensions of the standard quadratic gradient solution. We use

these extensions to compute optical ow for both a synthetic and a real image sequence.

This research was partially supported while the �rst author was a visiting scientist at the NASA-Ames

Research Center.



1 Introduction

The recovery of motion information from visual input is an important task for both natural

and arti�cial vision systems. Most models for the analysis of visual motion begin by extract-

ing two-dimensional motion information. In particular, computer vision techniques typically

compute two-dimensional optical ow vectors which describe the motion of each portion of the

image in the image plane. Methods for the recovery of optical ow are often classi�ed into two

groups: those that match features between successive temporally discretized frames, and those

that perform computations on the spatio-temporal gradient of image intensity.

In addition, several authors have proposed the use of spatio-temporal �lters for analyzing

motion [1, 2, 3]. Of interest in the present paper are some recent physiological models of motion

processing based on quadratic combinations of the outputs of spatio-temporal �lters [4, 5]. We

refer to these as Spatio-Temporal Energy Models (STEM).

In this paper, we formalize the relationship between several of the standard least-squares

gradient-based techniques and the spatio-temporal energy models. We describe the uncertainty

inherent in the computation of optical ow through use of a simple Gaussian noise model, and

we compute a maximum likelihood estimate solution. The resulting solution is an extension

of the standard gradient solution. More generally, we suggest the usefulness of probability

theory in the context of the problem of estimating optical ow. We test this model on both a

synthetic and real image sequence, analyzing the errors for the synthetic sequence.

2 Gradient Methods

We write the image intensity signal as a function of position and time: f(x; y; t). Then

the standard gradient formulation of the optical ow problem is based on the assumption that

the total derivative of the image intensity function must be zero at each position in the image

and at every time:

~fs � ~v + ft = 0; (1)

where

~fs =

 
fx

fy

!
;
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and fx, fy , and ft are the spatial and temporal derivatives of the image f , and ~v is the

optical ow (at the position and time that the derivatives have been computed). We have

left out the the spatial and temporal location parameters in order to simplify notation. This

formulation assumes that changes in the image intensity are due only to translation of the local

image intensity and not to changes in lighting, reectance, etc. Furthermore, by formulating

the constraint only in terms of �rst derivatives, we are implicitly approximating the image

intensity as a planar function.

Typically, one would write a squared error function based on this total derivative constraint

as follows:

E(~v) =
h
~fs � ~v + ft

i
2

: (2)

To compute a Linear Least-Squares Estimate (LLSE) of ~v as a function of ~fs and ft, we set

the gradient (with respect to ~v) of this quadratic expression equal to the zero vector:

rE(~v) =M � ~v +~b = ~0; (3)

where

M = ~fs ~f
T
s =

 
f2x fxfy

fxfy f2y

!
; ~b =

 
fxft

fyft

!
: (4)

One immediate observation is that the matrix M is always singular (i.e., its determinant

is always zero). Intuitively, this is to be expected since the solution is based on a planar

approximation to the image surface at a point, and therefore su�ers from the aperture problem.

Equation (1) only places a constraint on the velocity vector in the direction of ~fs; that is on

the component of ow normal to the spatial image orientation.

In addition to the planarity singularity, another possible source of singularity is due to

phase-dependence. Consider an element of the matrixM evaluated at a point (without loss of

generality we take x = 0). We can write this in terms of the Fourier transform of f as follows:

f2x(0) =

����
Z

F (~!)!xd~!

����2

It should be clear if the image consists of a drifting sine wave grating, the integration will

evaluate to zero for certain phases of the sine wave. At these phases, we will not be able to

compute a ow vector. This situation can be improved through use of quadrature pairs of

�lters for computing derivatives, but we will not discuss this issue here.
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In order to eliminate the singularity problem, researchers have typically incorporated

additional constraints in the error function. Horn and Schunk [6] applied a global smoothness

constraint to the ow �eld in order to regularize the problem. One can also combine information

locally using an \intersection of constraints" rule: Since we have a constraint on the normal

component of velocity at each point, we can choose the velocity which is most consistent with

all of the normal constraints in some small region. Implicitly, this is also a type of smoothness

constraint, since we are assuming that the velocity vector is constant in the region. We do this

by writing an error function based on the normal constraints from each point within a patch,

indexed by a subscript i 2 f1; 2; : : :ng:

E(~v) =
X
i

h
~fs(xi; yi; t) � ~v + ft(xi; yi; t)

i
2

: (5)

Computing the gradient of this expression with respect to ~v gives:

rvE(~v) =
X
i

�
Mi � ~v +~bi

�
;

with solution

~v = �

 X
i

Mi

!
�1
 X

i

~bi

!
; (6)

where we de�ne Mi =M(xi; yi; t) and ~bi = ~b(xi; yi; t) as in equation (4). In practice, we can

also include a weighting function, wi, in the summation in order to emphasize the information

closer to the center of the averaging region. Thus, the velocity is computed from blurred

quadratic functions of the spatial and temporal derivatives. We should note here that the

matrix in the above equation may still be singular (despite the blurring). We will address this

problem in section 4.

Two other observations should be made concerning the solution given above. The �rst is

that it may be derived as a Taylor series approximation to the solution of a matching problem.

We de�ne an error function which is the mean squared error of the di�erence between two

image patches at di�erent times and positions:

E =
X
i

[f(xi + vx; yi + vy ; t+ 1)� f(xi; yi; t)]
2

�
X
i

[vxfx(xi; yi; t) + vyfy(xi; yi; t) + ft(xi; yi; t)]
2

=
X
i

h
~fs(xi; yi; t) � ~v + ft(xi; yi; t)

i
2

;
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where we have expanded f(xi + vx; yi + vy ; t + 1) as a �rst order Taylor series. This is the

approach taken by Lucas and Kanade [7] in the context of stereo vision. The resulting error

function is identical to that of equation (2).

It is also useful to write the solution in the frequency domain. Watson and Ahumada [8]

and others have noted that the Fourier transform spectrum of an image undergoing rigid

translation lies in a plane in the spatio-temporal frequency domain. Consider the energy

function given in equation (2) with the summation occurring over the entire image:

E =
X

jvxfx + vyfy + ftj
2

=
X

jvxF (~!)!x + vyF (~!)!y + F (~!)!tj
2

=
X

[(vx; vy; 1) � ~!]2 � jF (~!)j2

where the sum on the �rst line is over all image pixels and the sums on the latter two lines are

over all frequencies, ~!. The solution of this equation is a planar regression solution, weighted

by the image spectrum, jF (~!)j2. Thus, if one performs the blurring in the Lucas and Kanade

solution over the entire image, this is equivalent to performing a planar regression weighted by

the Fourier spectrum.

3 Spatio-Temporal Energy Models (STEM)

Several authors have developed physiologically-based models for the extraction and anal-

ysis of image motion. One popular set of models is based on spatio-temporal energy mecha-

nisms [4, 5, 9]. In these models, oriented spatio-temporal subband �lters are applied to the

image and their squared outputs are combined to produce local measures of motion energy.

Outputs of such mechanisms have been used by Heeger [5] and by Grzywacz and Yuille [9] to

compute optical ow.

We show here that the basic gradient solution discussed in the previous section may be

computed from the outputs of a particular STEM. The �rst observation is that the derivative

operation on a sampled image may be written as a convolution. Since derivatives are only

de�ned on continuous functions, the computation on a discrete function requires an interme-

diate interpolation step with a continuous function C(~r). The derivative of the interpolated
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function must then be re-sampled at the points of the original sampling lattice. The sequence

of operations may be written for a one-dimensional signal as follows:

d

dx
f(n) �

"
d

dx

 X
m

f(m)C(x�m)

!#
n

=

"X
m

f(m)
dC

dx
(n�m)

#
;

where we assume unit sample spacing in the discrete variables n and m for simplicity.

Thus, the derivative operation is de�ned as convolution with a �lter which is the sampled

derivative of some continuous interpolation function C(~r). One could use an \ideal" lowpass

(sinc) function, or a gentler function such as a gaussian. Furthermore, one could imagine

pre�ltering the image to extract some spatio-temporal subband and performing the derivatives

on this subband. The pre�ltering operation can be combined associatively with the derivative

operation in a way which is equivalent to convolving with the derivative of the pre�ltering

function. The pre�lter should be symmetric or anti-symmetric so as to avoid altering the

optical ow of the sequence.

Given the three directional derivatives along the x-, y-, and t- axes (as computed above),

we can also compute derivatives in other orientations by taking linear combinations of the axis-

oriented derivatives. For example, the spatial derivative of f at an angle of �=4 is computed

as

f~p =
df

d~p
=

1
p
2
(fx + fy);

where

~p =

 
1p
2

1p
2

!
:

Using this relationship, we can write the entries ofM and ~b as de�ned in equation (4) in

terms of squared directional derivatives:

M =

 
f2x

1

2
(f2~p � f2~q )

1

2
(f2~p � f2~q ) f2y

!
; ~b =

 
1

2
(f2~l

� f2~r )

1

2
(f2~d

� f2~u)

!
:

where we de�ne

f~q = 1p
2
(fx � fy); f~l =

1p
2
(fx + ft);

f~r = 1p
2
(fx � ft); f~d =

1p
2
(fy + ft);

f~u = 1p
2
(fy � ft):
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Figure 1: Illustration of the locations of the eight derivative �lters in the spatio-temporal

frequency domain. Each pair of dots on opposite sides of the sphere correspond to the central

tuning frequency of one of the �lters.

Thus, if the �lters used to compute spatio-temporal energies are related as speci�ed in

the equation above, (i.e. they are derivatives of some common function C), then they can be

combined in \opponent" fashion to compute optical ow using the standard gradient algorithms

described in the previous section. The concept of motion opponency has been used by several

authors to explain biological processing of motion information [10, 11, 4]. The computation

described above requires eight di�erent �lters: four static (purely spatial) �lters, and four

motion (spatio-temporal) �lters. These are illustrated in a diagram in �gure 1.

4 Distributed Representations of Optical Flow

In this section, we discuss optical ow extraction as an estimation problem. In particular,

we will work through ow computations resulting from several di�erent simple noise models.

There are many advantages to viewing the problem probabilistically. Optical ow �elds are in-

herently uncertain: Errors occur because of image noise, lighting changes, low contrast regions,

the aperture problem, and multiple motions in a single localized region. A probabilistic frame-

work allows these uncertainties to be represented in the computations, and passed along to

the next stage of computation. We should emphasize here that we do not just wish to provide

a scalar \con�dence" measure, but a two-dimensional probability distribution, capable of rep-
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resenting inhomogeneous directional uncertainties. Anandan [12] computed two-dimensional

con�dences based on a block-matching histogram, and Heeger [5] estimated two-dimensional

covariances. Szeliski [13] has discussed the use of Bayesian techniques for a variety of problems

in low-level vision.

Representing optical ow in terms of probability distributions also allows information from

other sources, such as inertial sensors, to be combined properly with visual motion information,

with the most certain information being weighted more heavily. Probability theory provides a

tool for formalizing the problem of optical ow computation and characterizing various solu-

tions according to their error distributions. Finally, models in terms of probability distributions

may often serve as physiological motion-processing models, with distributions being described

by the response of populations of cells [14].

Single Noise Source Model

The goal, then, is to compute an expression for the probability of the image velocity conditional

on the image sequence. For the purposes of this paper, we will more speci�cally be concerned

with a conditional probability based on the image gradient, rf :

P(~v j rf):

Consider the total derivative constraint in equation (1). In practice, there will be errors in

the derivative computations due to camera and quantization noise, aliasing, imprecision in the

derivative �lters, etc. As mentioned earlier, even if the derivative measurements are error-

free, the constraint in equation (1) may fail to be satis�ed because of changes in lighting

or reectance, or the presence of multiple motions. We would like to account for both of

these types of error. As is common in estimation theory, we decribe each of these types of

uncertainty using additive gaussian noise. We begin by lumping together all of the uncertainty

and describing it with a single additive gaussian noise variable n:

~fs � ~v + ft = n; n � N(0; �n):

This allows us to write an expression for the conditional probability:

P(ft j ~v; ~fs) = exp
h
�(~fTs � ~v + ft)

T��1n (~fTs � ~v + ft)
i
:

7



In order to write down the desired conditional probability, we can use Bayes' rule to switch

the order of the arguments:

P(~v j ~fs; ft) =
P(ft j ~v; ~fs) �P(~v)

P(ft)
:

For the prior distribution P(~v), we can choose a zero-mean gaussian with variance �p. Ignoring

for the moment the normalization constant in the denominator, we can write the desired

distribution:

P(~v j ~fs; ft) / exp
h
�(~fTs � ~v + ft)

T��1n (~fTs � ~v + ft)� ~vT��1p ~v
i
:

The resulting distribution contains two parameters (�n and �p) which describe the variance

of expected error in the constraint equation, and of the prior distribution on the optical ow

vector ~v, respectively. The distribution is gaussian, and the variance and mean may be derived

using standard techniques:

�~v =
h
~fs�

�1

n
~fTs +��1p

i
�1

=

�
1

�n
M+ ��1p

�
�1

(7)

�~v = ��~v
~fs�

�1

n ft

= �
1

�n
�~v

~b (8)

whereM and ~b are de�ned in equation (4).

If we wish to extract a ow vector from this probability distribution, the simplest choice

is the Maximum Likelyhood Estimate (MLE). Since the distribution is gaussian, this will just

be the mean. Notice that if �n is the identity, this is similar to the gradient solution mentioned

in a previous section, but with the addition of the ��1p term which ensures the invertibility of

the variance matrix. This is not really surprising, since the MLE of a gaussian distribution is

equivalent to computing the LLSE.

If the solution is computed independently at each point (as written above), the mean will

be (approximately) the normal ow vector, and the width (variance) of these distributions in

the direction perpendicular to the normal direction will be determined by �p. The variance in

the normal direction will be determined by both �p and the trace of M (i.e. the sum of the

squared magnitudes of the spatial derivatives).
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If the next stage of processing cannot make use of normal ow (along with variance

information) as input, then we can combine information in small neighborhoods to compute

actual ow. As shown in the previous section, this is done by combining constraints in the

manner described by equation (5). If this is done in equation (8), and if we assume that the

noise at each point in the neighborhood is independent, then the resulting mean and variance

are:

�~v =

"X
i

wi

�n
Mi + ��1p

#
�1

�~v = ��~v

"X
i

wi

�n
~bi

#
(9)

We have included in the expression a blur function wi which weights the information in the

center of the neighborhood more heavily.

Again, the MLE solution is similar to the Lucas and Kanade solution from the �rst section,

except for the prior variance term which ensures matrix invertibility. Note that the inverse

variance (certainty) increases roughly quadratically with the magnitude of the derivative mea-

surements. To illustrate the behavior of the system, we consider the response to a drifting

sinusoidal grating. One frame of the input image is shown in �gure 2(a). The response of the

system, at a pixel near the center of the image is shown in �gure 2(b). Note that the ambiguity

of the motion, which arises because the signal is really a one-dimensional signal, is captured

by the elongated shape of the distribution.

An adaptive version of this algorithm could proceed by blurring over larger and larger

regions until the magnitude of the variance (determinant of the variance matrix) was below

some threshold. Since the variance matrix �~v describes a two-dimensional shape, this could

even be done directionally, averaging pixels which lie in the direction of maximal variance until

the variance in this direction was below a threshold.

Two Noise Source Model

A slightly more complicated noise model yields a potentially more useful solution. As men-

tioned earlier, even if the derivative measurements are error-free, the constraint in equation (1)

may fail to be satis�ed because of changes in lighting or reectance, or the presence of multiple
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(a) (b)

Figure 2: (a) One frame of a drifting sin grating sequence. The normal direction of the motion

was down and to the left. The drift speed (in the normal direction) was 0.83 pixel/frame. (b)

The response of the system computed over a patch near the center of the image. The peak of

the response coincides with the actual normal velocity.

motions. To try account for these errors, we can include another, independent, gaussian noise

variable which is subtracted directly from the ow vector:

~fs � (~v � ~n1) + ft = n2; ni � N(0;�i):

or

~fs � ~v + ft = ~fs � ~n1 + n2: (10)

The noise term n2 is the same as the noise in the previous case and describes the errors in

the derivative measurements. These could be due to noise or aliasing in the original image

sequence, imprecision in the �lters, etc. The new noise term (~n1), describes errors resulting

from a failure of the planarity assumptions.

With both noise terms included, the resulting mean and variance of the optical ow

distribution are

�~v =
h
~fs(~f

T
s �1

~fs + �2)
�1 ~fT

s + ��1p

i
�1

�~v = ��~v
~fs(~f

T
s �1

~fs +�2)
�1ft

If we choose �1 to be a diagonal matrix, with diagonal entry �1, and write the scalar variance
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of n2 as �2 � �2, then we can write this as:

�~v =

�
~fs

�
�1k~fsk

2 + �2

�
�1

~fT
s +��1p

�
�1

=

2
4 M�

�1k~fsk2 + �2

� +��1p

3
5
�1

(11)

�~v = ��~v
~fs

�
�1k~fsk

2 + �2

�
�1

ft

= ��~v �

~b�
�1k~fsk2 + �2

�

These results are similar to those in equation (8), except that the quadratic derivative terms

in M and ~b are modi�ed by a compressive nonlinearity. That is, for regions with low contrast

(i.e. small k~fsk
2), the �2 term dominates the divisor of M. For large contrast regions, the �1

term tends to normalize the magnitude of the quadratic terms in M. This seems intuitively

reasonable: When the contrast (SNR) of the signal is low, an increase in contrast should

increase one's certainty of the velocity estimate. But as the contrast increases above the noise

level of the signal, the certainty should asymptotically reach some maximum value rather than

continuing to rise quadratically. This matches the description of the noise terms given earlier:

n2 accounts for errors in the derivative measurements, and ~n1 accounts for failures of the

constraint equation. The nonlinearity is illustrated in �gure 3, where we have plotted the trace

of the inverse covariance ��1
~v

as a function of k~fsk
2.

When we combine information over a small neighborhood using a weighting function wi,

the solution becomes:

�~v =

2
4X

i

wiMi�
�1k~fs(xi; yi; t)k2 + �2

� +��1p

3
5
�1

�~v = ��~v �

X
i

wi
~bi�

�1k~fs(xi; yi; t)k2 + �2

� (12)

Here, the e�ect of the nonlinearity on the combination of information over the patch is to

provide a sort of gain control mechanism. The previous solution in equation (9) weighted the
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Figure 3: Plot of the nonlinearity which operates on the quadratic energy measurements in

the solution given in equation (11).

information in a patch according to the derivative energies. If we ignore �2, the solution above

normalizes the information, equalizing the contribution from each point in the neighborhood

by the magnitude of the spatial gradient. Heeger [15] has found that the use of gain control

on the energy images often improves the performance of the ow computation.

The solutions outlined above make use of the simple relationship between LLSE solutions

and MLE solutions for gaussian random variables, and therefore are limited to being unimodal.

In order to analyze multiple motions or transparency properly, one needs to incorporate more

complicated distributions. Alternatively, one could combine ow information derived from

di�erent scales (spatial subbands) in a way that resulted in multi-modal distributions.

5 Examples

We computed optical ow on both synthetic and real image sequences using the technique

de�ned by equation (12) combined with a multi-scale pyramid decomposition. The multi-scale

approach is necessary since the gradient technique will fail if there is too much spatio-temporal

aliasing (i.e., if the displacements being measured are greater than one half of a cycle of the
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highest spatial frequencies present in the pre-�ltered image sequence). Similar multi-scale

\warping" approaches have been used by Quam [16] and Anandan [12].

We �rst built a (spatial) \gaussian pyramid" [17] on each frame of the image sequence:

Each frame was recursively blurred using a simple gaussian �lter and subsampled by a factor

of two in each spatial direction. This resulted in a set of images (a \pyramid") of di�erent

spatial resolution. We then computed the optical ow on the sequence of top level (lowest

frequency) images using the computation speci�ed by equation (12).

An upsampled and interpolated version of this coarse, low-resolution ow �eld was used

to warp the sequence of images in the next pyramid level. The warping operation is de�ned as

fwarped(x; y) = foriginal (x� vx(x; y); y� vy(x; y)) ;

where we used bi-cubic spline interpolation to evaluate foriginal at fractional-pixel locations.

Equation (12) was used to estimate the optical ow of the warped sequence, and this \optical

ow correction" was composed with the previously computed optical ow to give a new optical

ow estimate. This correction process was repeated for each level of the pyramid until the ow

�elds were at the resolution of the original image sequence.

In implementing equation (12), we used a set of sampled analytic derivatives of gaus-

sians as derivative �lters. The kernels had spatio-temporal dimensions 7x7x6. The noise

parameters used were chosen empirically as follows: �1 = 0:08; �2 = 1:0; �p = 2:0. The so-

lution seemed relatively insensitive to variations in these parameters. The averaging step

was performed by separably applying a one-dimensional (spatial) weighting kernel: wi =

(0:0625; 0:25; 0:375; 0:25; 0:0625).

We computed ow on a synthetic (texture-mapped) y-through sequence of the Yosemite

valley. Figure 4 shows a frame of the original image sequence. Figure 5 shows the corresponding

frame of the actual ow �eld (computed using the three-dimensional motion parameters and

the depth map). Figure 6 shows the recovered ow �eld.

To analyze the appropriateness of the noise model, we need to check that the covariance

information adequately describes the errors in the ow estimates. Since the covariance infor-

mation is di�cult to display or analyze, we computed a \deviation" value D(x; y; t) at each

13



Figure 4: A frame from the original \Yosemite" y-through sequence. The sequence was

synthetically generated by Lyn Quam at SRI.

point:

D = �

q
(~vactual � ~vest)

T ��1

~v (~vactual � ~vest);

where for simplicity we have omitted the positional arguments, (x; y; t), which parameterize

each of the quantities in the equation. The normalized histogram of the values of D, is shown

in �gure 7. If the ow �eld errors were exactly modeled by the simple additive gaussian noise

terms of equation (10), then this histogram would be in the shape of the function obtained by

integrating a two-dimensional univariate gaussian over its angular coordinate:

h(r) / jrj � e�r
2=2:

For comparison, this function is plotted in �gure 8. The error histogram is seen to qualitatively

match, suggesting that the noise model is not unreasonable.

We also computed optical ow for a real sequence which was �lmed from a helicopter

ying above a valley. One frame from the original is shown in �gure 9 and the corresponding

frame of the recovered ow �eld is shown in �gure 10.
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Figure 5: The actual optical ow �eld corresponding to the frame from the \Yosemite" sequence

shown in the previous �gure.

 

Figure 6: The recovered optical ow corresponding to the frame from the \Yosemite" sequence

shown in the previous �gure.
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Figure 7: Histogram of the deviations D of the optical ow vectors (see text).
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Figure 8: Ideal distribution of deviations D for the gaussian noise model (see text).

16



 

Figure 9: A frame from the original \Nap-of-the-earth" (NOE) y-through sequence. The

sequence was was proveded by the NASA Ames Research Center.

 

Figure 10: A frame of the recovered optical ow for the NOE sequence.
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6 Conclusions

We have discussed the relationship between gradient and spatio-temporal energy methods

for recovering optical ow and demonstrated the equivalence of these approaches under certain

simple conditions. We have introduced probabilistic extensions of these techniques which

compute two-dimensional ow distributions. Viewing the problem probabilistically has three

advantages: (1) It produces useful extensions of the standard quadratic gradient techniques for

computing optical ow, including an automatic gain control mechanism, and the incorporation

of a prior bias on the ow, (2) It provides (two-dimensional) ow vector con�dence information,

allowing later stages of processing to weight their use of the vectors accordingly, and (3) It

provides a framework for properly combining ow information with probabilistic information

from other sources. Future work will include quantitative analysis of the errors in the recovered

ow, and extensions of the distributed approach to handle the multi-modal ow distributions

that arise near motion boundaries and in situations of motion transparency.
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