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Linear transforms are the basis for many techniques used in image pro�
cessing� image analysis� and image coding� Subband transforms are a subclass
of linear transforms which o	er useful properties for these applications� In
this chapter� we discuss a variety of subband decompositions and illustrate
their use in image coding� Traditionally� coders based on linear transforms
are divided into two categories
 transform coders and subband coders� This
distinction is due in part to the nature of the computational methods used for
the two types of representation�

Transform coding techniques are usually based on orthogonal linear trans�
forms� The classic example of such a transform is the discrete Fourier trans�
form �DFT�� which decomposes a signal into sinusoidal frequency compo�
nents� Two other examples are the discrete cosine transform �DCT� and the
Karhunen�Loeve transform �KLT�� Conceptually� these transforms are com�
puted by taking the inner product of the nite�length signal with a set of basis
functions� This produces a set of coe�cients� which are then passed on to the
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quantization stage of the coder� In practice� many of these transforms have
e�cient implementations as cascades of �butter�y� computations� Further�
more� these transforms are usually applied independently to non�overlapping
sub�blocks of the signal�

Subband transforms are generally computed by convolving the input sig�
nal with a set of bandpass lters and decimating the results� Each decimated
subband signal encodes a particular portion of the frequency spectrum� corre�
sponding to information occurring at a particular spatial scale� To reconstruct
the signal� the subband signals are upsampled� ltered� and then combined ad�
ditively� For purposes of coding� subband transforms can be used to control the
relative amounts of error in di	erent parts of the frequency spectrum� Most
lter designs for subband coders attempt to minimize the �aliasing� resulting
from the subsampling process� In the spatial domain� this aliasing appears
as evidence of the sampling structure in the output image� An ideal sub�
band system incorporates �brick�wall� bandpass lters which avoid aliasing
altogether� Such lters� however� produce ringing �Gibbs phenomenon� in the
spatial domain which is perceptually undesirable�

Although coders are usually classied in one of these two categories� there
is a signicant amount of overlap between the two� In fact� the latter part of
this chapter will focus on transforms which may be classied under either cat�
egory� As an example� consider the block discrete cosine transform �DCT�� in
which the signal �image� is divided into non�overlapping blocks� and each block
is decomposed into sinusoidal functions� Several of these sinusoidal functions
are depicted in gure ���� The basis functions are orthogonal� since the DCT
is orthogonal and the blocks are chosen so that they do not overlap� Coders
employing the block DCT are typically classied as transform coders�

We may also view the block DCT as a subband transform� Computing a
DCT on non�overlapping blocks is equivalent to convolving the image with each
of the block DCT basis functions and then subsampling by a factor equal to
the block spacing� The Fourier transform of the basis functions �also shown in
gure ���� indicates that each of the DCT functions is selective for a particular
frequency subband� although it is clear that the subband localization is rather
poor� Thus� the DCT also qualies as a subband transform�

��� Subband Transform Properties

Given the overlap between the categories of transform and subband coders�
what criteria should be used in choosing a linear transformation for coding pur�
poses� We will consider a set of properties which are relevant to the problem
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Figure ���� Several of the ���point DCT basis functions �left� with their
corresponding Fourier transforms �right�� The Fourier transforms are plot�
ted on a linear scale over the range from � to ��
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of image coding�

Scale and Orientation

An explicit representation of scale is widely accepted as being important for
e	ective image representation ��� �� �� �� �� ��� Images contain objects and
features of many di	erent sizes which may be viewed over a large range of
distances� and therefore� a transformation should analyze the image simulta�
neously �and independently� at di	erent scales� Several authors have argued
that the correct partition in terms of scale is one in which the scales are re�
lated by a xed constant of proportionality� In the frequency domain� this
corresponds to a decomposition into localized subbands with equal widths on
a logarithmic scale�

For two�dimensional signals� a localized region in the frequency plane cor�
responds spatially to a particular scale and orientation� Orientation specicity
allows the transform to extract higher order oriented structures typically found
in images� such as edges and lines� Thus� it is useful to construct transforma�
tions which partition the input signal into localized patches in the frequency
domain�

Spatial localization

In addition to localization in frequency� it is advantageous for the basis func�
tions to be spatially localized� that is� the transform should encode positional
information� The necessity of spatial localization is particularly apparent in
machine vision systems� where information about the location of features in
the image is critical� This localization should not� however� occur abruptly
as in the block DCT example given earlier � abrupt transitions lead to poor
localization in the frequency domain�

The concept of joint localization in the spatial and spatial�frequency do�
mains may be contrasted with the two most common representations used for
the analysis of linear systems
 the sampled or discrete signal� and its Fourier
transform� The rst of these utilizes the standard basis set for discrete signals
consisting of impulses located at each sample location� These basis functions
are maximally localized in space� but convey no information about scale� On
the other hand� the Fourier basis set is composed of even and odd phase sinu�
soidal sequences� whose usefulness is primarily due to the fact that they are
the eigenfunctions of the class of linear shift�invariant systems� Although they
are maximally localized in the frequency domain� each one covers the entire
spatial extent of the signal�
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It is clear that representation in the space or frequency domains is ex�
tremely useful for purposes of system analysis� but this does not imply that
impulses or sinusoids are the best way to encode signal information� In a
number of recent papers ��� �� ��� the importance of this issue is addressed and
related to a ���� paper by Dennis Gabor ����� who showed that the class of
linear transformations may be considered to span a range of joint localization
with the impulse basis set and the Fourier basis set at the two extremes� He
demonstrated that one�dimensional signals can be represented in terms of ba�
sis functions which are localized both in space and frequency� We will return
to Gabor�s basis set in section ����

Orthogonality

A nal property to be considered is orthogonality� The justication usually
given for the orthogonality constraint is in terms of decorrelation� Given a
signal with prescribed second order statistics �i�e� a covariance matrix�� there
is an orthogonal transform �the Karhunen�Loeve transform� which will decor�
relate the signal �i�e� diagonalize the covariance matrix�� In other words� the
second order correlations of the transform coe�cients will be zero� Orthogo�
nality is usually not discussed in the context of subband transforms� although
many such transformas are orthogonal� The examples in the next section will
demonstrate that although orthogonality is not strictly necessary� a transform
that is strongly non�orthogonal may be undesirable for coding�

��� Linear Transformations on Finite Images

The results presented in this chapter are based on analysis in both the spatial
and the frequency domains� and thus rely on two separate notational frame�
works
 the standard matrix notation used in linear algebra� and the Fourier
domain representations commonly used in digital signal processing� In this
section� we describe the two types of notation and make explicit the connec�
tion between them� For simplicity� we will restrict the discussion to analysis
of one dimensional systems� although the notation may be easily extended to
multiple dimensions�

����� Analysis�Synthesis Filter Bank Formulation

We will be interested in linear transformations on images of a �nite size which
may be expressed in terms of convolutions with nite impulse response �FIR�
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lters� The schematic diagram in gure ��� depicts a convolution�based sys�
tem known as an analysis�synthesis �A�S� lter bank ����� The notation in the
diagram is standard for digital signal processing ����� except that for the pur�

poses of this paper� the boxes Hi��� indicate circular convolution of a nite

input image of size N with a lter with impulse response hi�n� and Fourier
transform

Hi��� �
X
n

hi�n�e
�j�n

We do not place a causality constraint on the lter impulse responses� since
they are meant for application to images� We do� however� assume that the
region of support of the lter is smaller than the image size� The boxes ki �
indicate that the sequence is subsampled by a factor of ki where ki is an integer
for all i� The boxes ki � indicate that the sequence should be upsampled by
inserting ki � � zeros between each sample� We will assume that the integers
ki are divisors of N �

The analysis section of the A�S system takes an input sequence x�n�
of length N and performs a linear transformation to decompose it into M
sequences yi�n� of length N�ki� The synthesis section performs the inverse
operation of the analysis transformation� Here the M sequences yi�n� are
upsampled and� after ltering with lters gi�n�� are combined additively to give
an approximation �x�n� to the original sequence� x�n�� Note that although one�
dimensional signals are indicated in the diagram� the system is equally valid
for multi�dimensional signals if we replace occurences of the scalars n� �� ki
with vectors n� �� and a matrix Ki� respectively�

The use of the A�S formulation emphasizes the computation of the trans�
form coe�cients through convolution� This is intuitively desirable since di	er�
ent regions of the image should be processed in the samemanner� Furthermore�
the expression of the problem in the frequency domain allows us to easily sep�
arate the error e�n� � �x�n� � x�n� into two parts
 an aliasing component
and a shift�invariant component� To see this� we write the contents of the
intermediate signals yi�n� in the frequency domain as

Yi��� �
�

k

k��X
j��

Hi

�
�
k
 ��j

k

�
X
�
�
k
 ��j

k

�
�����

and the A�S system output as

�X��� �
M��X
i��

Yi�k��Gi���

where we have used well�known facts about the e	ects of upsampling and
downsampling in the frequency domain ����� Combining the two gives



Chapter �� Subband Transforms ���

x(n) y (n)
0

G (∑)
0

H (∑)
0

k1

y (n)
1

G (∑)
1

k
1

H (∑)
1

k
0

k
M

y (n)
M

G (∑)
M

k
M

H (∑)
M

Analysis  section Synthesis section

x(n)^

£ k
0
‹

‹£

£ ‹

Figure ���� An analysis�synthesis 	lter bank�
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The rst sum corresponds to a linear shift�invariant system response� and the
second contains the system aliasing�

����� Cascaded Systems

A further advantage of the A�S system is that it allows explicit depiction and
analysis of hierarchically constructed transformations� If we assume that we
are dealing with A�S systems with perfect response �that is� �x�n� � x�n��� then
any intermediate signal yi�n� of an A�S system may be further decomposed
by application of any other A�S system� To make this notion more precise�
an example is given in the diagram of gure ��� in which an A�S system
has been re�applied to its own intermediate signal y��n�� If the original A�S
system �as shown in gure ���� had a perfect response then it is clear that the
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two�stage system shown in gure ��� will also have a perfect response� If the
cascading is applied to each of theM intermediate signals yi�n�� we will call the
system a uniform cascade system� Otherwise� it will be termed a non�uniform
or pyramid cascade� A system which we will discuss in section ��� is based
on pyramid cascades of two�band A�S systems� Such a cascade produces an
octave�width subband decomposition� as illustrated in the idealized frequency
diagram in gure ����

����� Matrix Formulation

An alternative to the frequency domain notation associated with the A�S lter
bank is the matrix notation of linear algebra� An image of nite extent which
has been sampled on a discrete lattice may be written as a nite length column
vector x which corresponds to a point in RN � the set of all real N �tuples� The
value of each component of x is simply the corresponding sample value in
the image� Multi�dimensional images are converted to this vector format by
imposing an arbitrary but xed order on the lattice positions� If we let N be
the length of the vector x� a linear transformation on the image corresponds
to multiplication of x by some matrixM with N columns�

Since the analysis and synthesis stages of the system in gure ��� each cor�
respond to linear transformations� we may represent the same transformations
using matrix notation� Using the denition of convolution� and assuming �for
simplicity� a one�dimensional system� we may write

yi�m� �
N��X
l��

x�l�hi�kim� l�

and

�x�n� �
M��X
i��

N
ki

��X
m��

yi�m�gi�n� kim�

where the lter and image sample locations �kim� l� and �n� kim� are com�
puted modulo N � These expressions may be formulated as matrix�vector prod�
ucts

y � Htx

and
�x � Gy

or combining these two equations
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Figure ���� A non�uniformly cascaded analysis�synthesis 	lter bank�
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Figure ���� Octave band splitting produced by a four�level pyramid cas�
cade of a two�band A�S system� The top picture represents the splitting
of the two�band A�S system� Each successive picture shows the e
ect of
re�applying the system to the lowpass subband �indicated in grey� of the
previous picture� The bottom picture gives the 	nal four�level partition of
the frequency domain� All frequency axes cover the range from � to ��

�x � GHtx �����

where y and �x are N �vectors� the superscript t indicates matrix transposition�
and

H �

�
�������������

h���� h��k�� h���� h��k��
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The columns ofG� composed of copies of the lter kernels shifted by increments
of ki and imbedded in vectors of length N � are known as the basis functions
of the transformation� and the columns of H� composed of copies of the time�

inverted lters hi��n� shifted by increments of ki� are the sampling functions
of the transformation�

From the discussion above� it is clear that we can express any linear A�S
system in matrix form� The converse of this result is also true
 there is an A�S
system corresponding to the linear transformation and inverse transformation
dened by any invertible matrix M� Given a transformation matrix M with
l rows� we trivially create an analysis lter bank with ki � N for each i�
containing l di	erent lters� each dened by a row of the matrixM�

����� Inverse Transforms

A primary advantage of the matrix notation is the ease with which it can
express the conditions for transform invertibility� From equation ������ we see
that in order for the A�S system to perfectly reconstruct the original signal
x�n�� the corresponding matrices must obey

GHt � I �����

where I is the identity matrix� If H has rank N and is square� we may choose
a synthesis matrix

G � �H���t �����

which will also be square with rank N � Thus� transform inversion in the
spatial domain is a conceptually simple procedure and we will nd it useful
in the analysis of A�S systems� Furthermore� it should be clear that H and
G may be interchanged� thus using the basis functions as sampling functions
and vice versa�

If the matrix H is of rank N but is not square �that is� the representa�
tion is overcomplete�� we may always build a perfect reconstruction system by
choosing G to be the generalized inverse or pseudo�inverse ���� of H


G � �HHt���H �����

If H is square� equation ����� reduces to the solution given in equation ������
Similarly� if we start with a �possibly non�square� matrix G of rank N � we
may choose H � �GGt���G�
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����� Orthogonal Transforms

As mentioned in the introduction� the issue of orthogonality is usually not
considered when discussing subband lters� It is� however� a property which
is relevant to image coding� as we will discuss in the next section� A matrix
M corresponding to an orthogonal transformation is a square matrix with the
property that

MMt �MtM � I �����

In terms of the columns or basis functions of M � this means that the inner
product of any two distinct columns must be zero� and the inner product of a
column with itself must be unity�

The orthogonality condition places a number of restrictions on the corre�
sponding A�S system� Since the transformation matrix must be square� the
number of samples in the transformed signal must be equal to N � the number
of samples in the original image� For the A�S system� this means that

M��X
i��

�

ki
� �

where we have assumed that N is divisible by all of the ki� Such a system has
been termed a maximally decimated or critically sampled lter bank �����

A second� more important constraint is placed on the A�S system by
orthogonality� Combining the perfect reconstruction requirement in ����� with
the orthogonality constraint in ����� gives

G �H

If we consider the relationships between the A�S lters h and g and the ma�
trices H and G described by equations ����� and ������ this means that the
lters must obey

gi�n� � hi��n�� for all i ������

In other words� the synthesis lters of an orthogonal transform are time�

inverted versions of the analysis lters�

��� Some Example Transforms

In this section� we will brie�y discuss three one�dimensional transforms to
illustrate some of the points made in the previous sections� Each transform will
demonstrate both advantageous and disadvantageous properties for coding�
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The Gabor Transform

In the introduction to this chapter� we argued that the basis functions of a
useful decomposition should be localized in both the spatial and the spatial�
frequency domains� One solution to the problem of spatially localized subband
decomposition is that proposed by Dennis Gabor ����� Gabor introduced a
one�dimensional transform in which the basis functions are sinusoids weighted
by Gaussian windows� The Gabor transform can be considered to perform
a localized frequency decomposition in a set of overlapping windows� The
resulting basis functions are localized in both space and spatial frequency�
in fact� Gabor showed that this joint localization was optimal with respect
to a measure that he chose �although Lerner ���� later noted that altering
the measure of joint localization produces di	erent optimal functions�� The
rst ve basis functions of a Gabor transform are shown in gure ���� along
with their frequency spectra� Both the basis functions and their transforms
are smooth and compact� In two dimensions� the Gabor basis functions are
directional sinusoids weighted by gaussian windows� Daugman ���� ��� has
used two�dimensional Gabor transforms for image compression�

The primary di�culty with the Gabor transform is that it is strongly non�
orthogonal �i�e� the sampling functions are drastically di	erent from the basis
functions�� The sampling functions corresponding to the Gabor transform
�computed by inverting the transformation matrix� are depicted in gure ����
These functions are extremely poorly behaved� both in the spatial and spatial�
frequency domains� In a coding application� errors introduced by quantization
of the coe�cients will be distributed throughout the spatial and frequency
domains� even though the coe�cient values are computed based on information
in localized spatial and frequency regions�

It is interesting to note that the localization of the inverse Gabor functions
can be substantially improved if one uses an overcomplete Gabor basis set�
This can be accomplished by spacing the Gaussian windows more closely than
is required� or by dividing each window into more frequency bands� This
results in an increase in the number of coe�cients� however� which may be
disadvantageous for coding systems� The use of overcomplete Gabor sets for
coding remains a topic for further research�

Several authors have discussed related overcomplete oriented transforms
for use in image coding� Kunt ���� advocated the use of directional �i�e� ori�
entation� subdivision for image coding� and used an oriented decomposition
for this purpose� Watson ���� developed the Cortex transform� an overcom�
plete transform which decomposes the image into oriented octave�bandwidth
subbands� and used it to compress image data�
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Figure ���� Five of the sixteen basis functions of a Gabor 	lter set� with
their corresponding Fourier transforms� The transforms are plotted on a
linear scale over the range from � to ��
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Figure ���� The inverse �sampling� functions of the Gabor 	lter set given
in 	gure ��
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The DCT and LOT Transforms

The use of the discrete cosine transform �DCT� in image coding systems is
often justied with the statement that it approximates the optimal transform
for a signal with rst�order Gauss�Markov statistics ����� In practice� the
transform is usually not computed globally� but is applied independently to
non�overlapping sub�blocks of the image� As illustrated in gure ���� the
resulting block DCT basis functions constitute a subband transform� but the
subbands are not very well localized� Considered in the framework of the
A�S system� the subsampled subband images will contain severe amounts of
aliasing� Since the transform is invertible �in fact� orthogonal�� it should be
clear that this subband aliasing is cancelled in the synthesis stage� However� if
the transform coe�cients are quantized or discarded �e�g� in a coding system��
the aliasing no longer cancels� and the errors appear as block edge artifacts in
the reconstructed image�

Recent work by Cassereau et� al� ���� describes an elegant technique for
reducing the aliasing of the block DCT� They perform an orthogonal transfor�
mation on the block DCT coe�cients which combines coe�cients computed
from adjacent blocks� In the resulting transform� which they have called a
Lapped Orthogonal Transform �LOT�� the basis functions from adjacent blocks
overlap each other� and their impulse responses are tapered at the edges� Mal�
var ���� has implemented an e�cient version of this transform� known as the
fast LOT� in which the additional orthogonal transformation is computed us�
ing a butter�y network of simple rotation transformations� Several of the
even�symmetric basis functions of the fast LOT are shown in gure ���� One
limitation which applies to both the DCT and the LOT is that the trans�
forms are limited to equal�sized subbands� As discussed previously� it may be
advantageous to subdivide the spectrum into equal log�width subbands�

The Laplacian Pyramid

One of the rst techniques for octave subband decomposition was developed by
Burt ���� and applied to image coding by Burt and Adelson ����� They used a
pyramid cascade of small Gaussian�like lters to create an overcomplete sub�
band representation which they called a Laplacian pyramid� A system for
constructing one level of this pyramid �in one dimension� is illustrated in g�
ure ���� The signal is blurred with a lowpass lter� B���� and then subsampled
to produce a lowpass subband W����� A highpass subband� W����� is formed
by upsampling W����� convolving with an interpolation lter A���� and sub�
tracting from the original signal� The signal is reconstructed by upsampling
and ltering W���� with A��� and adding it to W����� This reconstruction is
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Figure ��	� Five of the eight even�symmetric basis functions of a LOT�
The basis functions are illustrated on the left� and their Fourier transforms
on the right� The transforms are plotted on linear axes and cover the range
from � to ��
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Figure ��
� Signal processing diagram depicting the standard construction
technique for one level of the Laplacian pyramid� A full pyramid is built
by non�uniformly cascading this system� This transformation may also be
described as an A�S 	lter bank �see text��

exact� regardless of the choice of the lters B��� and A���� The full pyramid
is constructed recursively� by re�applying the system to the lowpass subband�
Typically� the lters A��� and B��� are set to some common� compact lowpass
lter� although better coding results are obtained by choosing the two lters in�
dependently� Some example basis and sampling functions �with A��� � B����
are plotted in gures ��� and ����� respectively�

In addition to its suitability for data compression� the multi�scale nature
of the pyramidmakes it particularly useful for the task of progressive transmis�
sion� Progressive transmission is a process by which an image is sent through
a low�capacity channel so that a low resolution or blurred version of the im�
age becomes available quickly� and higher resolution information is added in
a gradual manner� In the case of a pyramid� this is easily accomplished by
sending the transform coe�cients in order from lowest to highest resolution�

For comparison to other subband transforms� we have re�formulated the
Laplacian pyramid scheme as a three�band A�S system �see diagram in g�
ure ���� by separating W���� into two subsignals
 Y���� contains the even�
numbered samples� and Y���� contains the odd�numbered samples� The sub�
sampling factors are k � � for all three A�S branches� thus producing a repre�
sentation that is overcomplete by a factor of ���� The appropriate lters for
the A�S system are dened in terms of the original lters A��� and B��� as
follows


H���� � B���� G���� � A���

H���� � �
�

h
��B���A����B���A��  ��

i
� G���� � �

H���� � ej�

�

h
� �B���A���  B���A��  ��

i
� G���� � e�j�
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Figure ���� Five example basis functions of a four level Laplacian pyramid�
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Figure ����� Five example inverse �sampling� functions of the Laplacian
pyramid�



Chapter �� Subband Transforms ���

Notice that when A��� and B��� are lowpass lters� the sampling functions
are bandpass and the basis functions are broadband� Since the resulting A�S
system violates the constraint in equation ����� the transform is clearly not
orthogonal� In two dimensions� Burt and Adelson constructed Laplacian pyra�
mids using the same algorithm� but with a separable two�dimensional blurring
lter� The two dimensional Laplacian pyramid may be re�formulated as a
��band A�S system with each band subsampled by a factor of two both hori�
zontally and vertically�

The Laplacian pyramid has certain disadvantages for image coding� The
most serious of these is the fact that quantization errors from highpass sub�
bands do not remain in these subbands� Instead� they appear in the recon�
structed image as broadband noise� As with the Gabor transform� the non�
orthogonality of the transform is the source of the di�culty� Furthermore�
the basis set is overcomplete� requiring an increase �in two dimensions� by a
factor of �

�
in the number of sample points over the original image� Finally�

the two�dimensional basis functions are not oriented� and thus will not ex�
tract the oriented structural redundancy typically found in natural images�
Despite these disadvantages for still�image coding� the Laplacian pyramid has
been e	ectively used for motion�compensated video coding� where its overcom�
pleteness makes it robust in to motion�compensation errors �����

��� Quadrature Mirror Filters

In the previous section� we described three example transforms� each demon�
strating useful properties for coding� Now we consider a transform which
captures the advantages of the previous examples� while avoiding the disad�
vantages�

As was illustrated with the Laplacian pyramid� an octave subband trans�
form may be constructed by cascading a two�band A�S system in a non�
uniform manner� A useful two�band subband transform which was developed
for speech coding is based on banks of quadrature mirror lters �QMF�� de�
veloped by Croiser et� al� ���� ���� They discovered a class of non�ideal FIR
bandpass lters that could be used in an A�S system while still avoid aliasing
in the overall system output� Although they did not describe them as such�
these lters form an orthogonal subband transform� as was discussed by Adel�
son et al� ���� and Mallat ��� ���� Mallat related QMFs to the mathematical
theory of wavelets� Vetterli ���� was the rst to suggest the the application of
QMFs to two�dimensional images� In this section� we give a brief review of
QMFs in one dimension� A more thorough review may be found in ���� or �����
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The original QMF problem was formulated as a two�band critically sam�
pled analysis�synthesis lter bank problem� The overall system response of
the lter bank is given by equation ������ with subsampling factor on each
branch set to k � �


�X��� �
�

�

h
H����G����  H����G����

i
X���

 
�

�

h
H���  ��G����  H���  ��G����

i
X��  ��� ������

The rst term is a linear shift�invariant �LSI� system response� and the second
is the system aliasing�

The term QMF refers to a particular choice of lters that are related by
spatial shifting and frequency modulation� We dene

H���� � G����� � F ���

H���� � G����� � ej�F ���  �� ������

for F ��� an arbitrary function of �� This is a more general denition than that
originally provided by Croisier et� al�� and makes explicit the orthogonality
of the transform �see section ������� In particular� the analysis and synthesis
lters satisfy the relationship in equation ������� and the relationship between
the lters in the two branches �i�e� H� and H�� ensures that the corresponding
basis functions are orthogonal�

With the choice of lters given in ������� equation ������ becomes

�X��� �
�

�

h
H���H����  H���  ��H��  ��

i
X���

 
�

�

h
H��  ��H����  ej�H����H��  ��

i
X��  ���

The second �aliasing� term cancels� and the remaining LSI system response is

�X��� �
�

�

h
H���H����  H���  ��H��  ��

i
X���� ������

Note that the aliasing cancellation is exact� independent of the choice of the
function F ���� We should emphasize� however� that it is the overall system
aliasing that cancels ! the individual subbands do contain aliasing�

����� QMF Design

The design problem is now reduced to nding a lowpass lter with Fourier
transform H��� that satises the constraint

�

�

h
H���H����  H���  ��H��  ��

i
� �
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or 			H���			�  			H��  ��
			� � �� ������

Several authors have studied the design and implementation of these lters ����
��� ��� ��� ���� Johnston ���� designed a set of widely used even�length lters
by minimizing an error function containing a shift�invariant error term and
a weighted stopband ripple term for a xed number of lter taps� Jain and
Crochiere ���� ��� used a similar error criterion in the time domain� and for�
mulated an iterative design scheme which in which each iteration required the
constrained minimization of a quadratic function�

A technique for design of perfect reconstruction lter sets is given by Smith
and Barnwell in ����� They rst design a lowpass product �lter F ��� which is
factorable as

F ��� �
			H���			�

and which satises

f�n� �
�
�  ����n

�
�

� ��n�

The resulting F ��� is factored to get h�n�� the lowpass lter� Wackersreuther ����
independently arrived at a similar design method in the time domain� The
problem with these design methods is the somewhat arbitrary choice of the
product lter�

Simoncelli ���� proposed an exploratory design method utilizing an itera�
tive matrix averaging technique� and designed a set of odd�length lters using a
frequency�sampling method with error criteria similar to Johnston� The design
constraints for QMFs do not necessitate sharp transitions and thus frequency�
sampling designs perform quite well� Furthermore� it was found that odd�
length lters could be made smaller for a given transition band width� The
basis functions for a four�level QMF pyramid based on a ��tap kernel are shown
in gure ����� A set of example QMF kernels and a more detailed description
of this design technique are given in the appendix to this chapter�

QMFs are typically applied to images in a separable manner� In order
to compute a multi�scale pyramid� the transform is applied recursively to the
lowpass subimage� Such a cascaded transformation partitions the frequency
domain into octave�spaced oriented subbands� as illustrated in the idealized
frequency diagram of gure ����� Thus� the QMF pyramid satises the prop�
erties described in the introduction to this chapter
 it is multi�scale and ori�
ented� it is spatially localized� and it is an orthogonal transformation� and so
constrains quantization errors to remain within subbands� One unfortunate
aspect of the transform is that the orientation decomposition is incomplete�
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Figure ����� Five of basis functions of a ��tap QMF pyramid transform�
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The two diagonal orientations are lumped together in a single subband� We
will address this problem in section ����

����� An Asymmetrical System

Thus far� we have ignored the issue of computational e�ciency� For many
applications� this is relatively unimportant due to the steady increase in the
speed of signal processing hardware� There are� however� situations where
it is desirable to quickly decode or encode a coded image using conventional
or general�purpose hardware� For example� an image data base that will be
accessed by millions of users with personal computers should be quickly decod�
able on standard hardware� the cost of encoding these images is of relatively
minor importance as long as the decoding is simple� At the other extreme� a
remotely piloted vehicle demands a very simple encoding scheme in order to
minimize weight and power requirements�

For these situations� it is advantageous to develop asymmetric coding tech�
niques in which simplicity is emphasized at one end at the expense of com�
plexity at the other end� For a QMF transform� the computational complexity
is directly proportional to the size of the lters employed� Thus� we wish
to relax the orthogonality constraint which forces the synthesis lters to be
time�reversed copies of the analysis lters� Consider the situation in which we
require e�cient decoding� The increase in e�ciency can be accomplished by
using a very compact lter pair in the synthesis stage of an A�S system ���� ����
In particular� one can choose the ��tap lowpass lter g��n� � ��� �� ��� with a
highpass counterpart g��n� � ���� ������ Convolutions with these lters may
be performed using only arithmetic shifting and addition operations�

The relationship G���� � ej�G����  ��� as in equation ������ ensures
that the linear subspaces spanned by the basis functions corresponding to each
lter will be orthogonal� Conceptually� a set of inverse lters hi�n� is found
by forming a square matrix of the gi�n� as in equation ����� and inverting it�
The size of the matrix determines the size of the resulting inverse lters� In
practice� a better design technique is to minimize an error function for a given
kernel size� We have designed a set of inverse lters �given in the appendex�
by minimizing the maximal reconstruction error for a step edge input signal�
These kernels are given in the appendix�

Another highly e�cient A�S system was proposed by LeGall� He derived
the following set of simple lters for use in an A�S lter bank


H���� � A���� G���� � B���

H���� � ej�B��  ��� G���� � e�j�A��  ��
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Figure ����� Idealized diagram of the partition of the frequency plane
resulting from a ��level pyramid cascade of separable ��band 	lters� The
top plot represents the frequency spectrum of the original image� with axes
ranging from �� to �� This is divided into four subbands at the next
level� On each subsequent level� the lowpass subband �outlined in bold� is
subdivided further�
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where the lter kernels �impulse responses� corresponding to A��� and B���
are

a�n� � ��� �� ��

b�n� � ���� �� �� �����

Note that the denitions of a�n� and b�n� may be interchanged� These lters
allow e�cient encoding and decoding� and provide exact reconstruction �with
perfect aliasing cancellation��

��� Non�separable QMF Transforms

In the previous section� we described the separable QMF pyramid transform�
Most two�dimensional work with QMFs has employed separable lters or non�
oriented non�separable lters ����� As discussed in the previous section� sepa�
rable application of one�dimensional QMFs produces a representation in which
one of the subbands contains a mixture of two orientations� This problem is
inherent in the rectangular sampling scheme� Rectangular sampling of a sig�
nal in the spatial domain corresponds to summing aliased or modulated copies
of the spectrum in the frequency domain� Thus� the frequency response of
any rectangularly sampled function has the same value at the points ��� ���
���� ��� ������� and ������� �i�e� this point corresponds to two opposing
orientations�� Splitting the frequencies in the neighborhood of this point into
di	erent orientation bands requires the use of very large lters� In general� the
high�frequency diagonal regions of the spectra of natural images are relatively
insignicant� But if the lter bank is cascaded to form a pyramid� then the
lower frequency diagonals �where there is signicant power� will also be mixed�

����� Hexagonal Systems

In this section� we will discuss the use of hexagonal sampling systems and l�
ters� We will show that the mixed orientation problem discussed above can be
avoided by using hexagonally symmetric lters� This non�separable extension
of the QMF concept was rst described by Adelson et al� ���� and improved
and generalized in later work ���� ���� Other authors have also explored the
use of hexagonal sampling systems for image representation� Crettez and Si�
mon ���� and Watson ���� describe decompositions on hexagonal lattices using
non�overlapping basis functions� The blocked nature of these functions sug�
gests that they are unlikely to o	er e�cient image compression�
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Figure ���� shows a hexagonal sampling lattice and its Fourier transform�
The sampling lattice is dened by a pair of sampling vectors in the plane


v� �


 p
���
���

�
� v� �



�
�

�
�

The locations of the lattice points consist of all linear combinations of these
vectors with integer coe�cients� In the frequency domain� the e	ect of this
sampling is to convolve the original frequency spectrum of the image with a
modulation or reciprocal lattice which is the Fourier transform of the sampling
lattice� The modulation lattice is dened by a pair of modulation vectors in
the frequency plane


"v� �



���

p
�

�

�
� "v� �



����p�
��

�
�

Thus if F ��� is the Fourier transform of a hexagonally sampled signal �image�
then it is invariant to translations by multiples of the vectors "vi


F ��� � F ��  n� "v�  n� "v�� ������

for n� and n� any two integers�

In general� the relationship between the sampling vectors and modulation
vectors is easily described in terms of matrices ���� ���� If we consider the
sampling matrix V with columns containing the vectors vi and the modulation

matrix "V with columns containing the vectors "vi� then the two matrices are
related by the equation

"V � ���V���t� ������

Note that we know V is invertible since we assume that the sampling vectors
span the space �i�e� they are linearly independent��

As stated in section ������ the A�S system depicted in gure ��� is valid
for two�dimensional signals� but the ltering and subsampling is done in two
dimensions
 � is now a two�dimensional vector� and the subsampling is pa�
rameterized by a non�singular two�by�two subsampling matrix�K� with integer
entries� Figure ���� illustrates two�dimensional subsampling in both the spa�
tial and frequency domains�

In order to write a general expression for the output of a multi�dimensional
analysis�synthesis system� we need a frequency�domain equation analogous to
that given in ����� relating the subsampled signal to the sampled signal� We
also need an equation relating an upsampled signal to the original sampled
signal� For rectangular sampling lattices in d dimensions� the relationship is
simple� The sampling matrix K generates a sublattice dened by

fn 
 n � Km�m � Zdg�
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Figure ����� Relationship between hex sampling lattices in the spatial and
spatial�frequency domains� On the left is the lattice de	ned by the sampling
vectors� On the right is the Fourier transform of this lattice� de	ned by the
modulation vectors�

Figure ����� Illustration of subsampling on a hexagonal lattice� The
points in the diagram on the left represent the original sampling lattice
and the circles represent the subsampled lattice points� The picture on the
right shows the Fourier transform of the lattice �points� and the Fourier
transform of the subsampled lattice �circles��
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where Zd is the set of all d�dimensional vectors with integer components� The
sublattice has jKj distinct cosets� each coset being a copy of the sublattice
translated by an integer vector� and the union of the cosets is the original
sampling lattice ����� Consider two signals related by subsampling
 s�n� �
r�Kn�� Then their Fourier transforms are related by the expression

S��� �
�

jKj
jKj��X
i��

R
�
�K���t�� � ��ki�

�

where S��� and R��� are the Fourier transforms of s�n� and r�n� respectively�
and the ki are a set of polyphase shift vectors corresponding to each of the
jKj sublattice cosets ����� A simple example of a set of shift vectors is the
following
 n

k 
 �K���tk � ��� ��d�k � Zd
o
�

where ��� ��d is the half�open unit interval in d dimensions�

The corresponding expression for non�rectangular sampling lattices is ob�
tained by mapping from the rectangular case� The result of subsampling in
the analysis�synthesis system may then be written as a convolution of the
sampled spectrum with a set of subsampling modulation vectors "�j
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�
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jKj��X
j��
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�
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�
X
�
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�
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where the "�j are dened as

n
"�j 
 j � �� �� � � � � jKj � �

o
�

n
"V�K���tn 
 �K���tn � ��� ��d�n � Zd

o
� ������

The e	ect of upsampling in the frequency domain is the same as for the rect�
angular case ����� Combining equation ������ with the frequency domain up�
sampling relationship gives an expression for the overall lter bank response
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Figure ����� Illustration of the modulating e
ect of subsampling in the
frequency domain� Assume that the sampled image has a spectrum ban�
dlimited to the gray region in the upper left frequency diagram� Subsam�
pling will modulate the spectrum to the gray regions in the other three
diagrams� The resulting spectrum will be the sum of the four spectra�

As in equation ������� the rst term of the sum �j � �� corresponds to the LSI
system response� and the remaining terms are the system aliasing�

Returning now to the specic case of the hexagonal sampling lattice� we
describe a system obtained by using a specic sampling matrix K� Since we
want to be able to apply the transform recursively� we choose a subsampling
scheme which preserves the geometry of the original sampling lattice


K �

�
� �
� �


�

On the hexagonal sampling lattice with this subsampling scheme� the denition
given in ������ produces the following modulation vectors
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Figure ���� o	ers an idealized picture of this modulation�

Analogous to the one�dimensional case� we can choose the lters to elim�
inate the aliasing terms in equation ������


H���� � G����� � F ��� � F ����
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H���� � G����� � ej��s�F ��  "���

H���� � G����� � ej��s�F ��  "���

H���� � G����� � ej��s�F ��  "��� ������

where H is a function that is invariant under negation of its argument� the
si are a set of spatial shift vectors �dened in the next paragraph�� and the
expressions � � si indicates an inner product of the two vectors� As in equa�
tion ������� the lters are related by spatial shifting and frequency modulation�
For the subsampling matrix we are using here� there are four sublattice cosets
and therefore four distinct shifting vectors �including the zero vector�� Two
assignments of the si lead to system aliasing cancellation� and these two as�
signments are related by re�ection through the origin� So without loss of
generality� we choose the shifting vectors to be
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 p
���
���

�
� s� �



�
�

�
� s� �



�p���
���

�
�

After cancellation of the aliasing terms in equation ������� the remaining
LSI system response is

�X��� �
�

�
X���

�X
i��

Gi���Hi���
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X���

�X
i��

F ��� "�i�F ��  "�i�

�
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�
X���

�X
i��

jF ��  "�i�j� � ������

As in one dimension� the aliasing cancellation is exact� independent of the
choice of F ���� and the design problem is reduced to nding a lter with
Fourier transform F ��� satisfying the constraint

�X
i��

jF ��  "�i�j� � �� ������

This is analogous to the one�dimensional equation ������� Again� a lowpass
solution will produce a band�splitting system which may be cascaded hier�
archically to produce an octave�bandwidth decomposition in two dimensions�
An idealized illustration of this is given in gure ����� Finer frequency and ori�
entation subdivisions may be achieved by recursively applying the lter bank
to some of the high frequency subbands� as illustrated in gure �����

Filters may be designed using the methods described in section ����� �����
Several example lter sets are given in the appendix to this chapter� The
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Figure ����� Idealized diagram of the partition of the frequency plane
resulting from a four�level pyramid cascade of hexagonal 	lters� The top
plot represents the frequency spectrum of the original image� This is divided
into four subbands at the next level� On each subsequent level� the lowpass
subband �outlined in bold� is sub�divided further�
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Figure ���	� An example of a frequency�domain partition which could
be computed using a non�pyramid cascade of the hexagonal 	lter bank
transform described in the text� The shaded region indicates the frequency
region associated with one of the transform subbands�

power spectra of an example set of lters �the ���ring� lters� are plotted in
gure ����� These lters are extremely compact� requiring only nine multipli�
cations per convolution point �assuming one takes advantage of the twelve�fold
hexagonal symmetry�� Figure ���� shows the results of applying this bank of
lters recursively to an image of a disk� Examples of images coded using these
lters will be given in section ����

����� Rhombic Dodecahedral Systems

The extension of the concepts developed in the previous section to three�
dimensional signal processing is fairly straightforward� Such systems are use�
ful for applications such as compression of medical images or video motion
sequences� Analogous to the two�dimensional hexagonal case� one can choose
a periodic sampling lattice which corresponds to the densest packing of spheres
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Figure ���
� The power spectra for the ���ring� set of hexagonal QMF
	lters� The 	lter kernels are given in the appendix�
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�a� �b� �c�

Figure ����� Results of applying a hexagonal QMF bank to an image of
a disk� �a� The original image� �b� The result after one application of the
analysis section of the 	lter bank� The image has been decomposed into a
lowpass and three oriented high�pass images at ��� density� �c� The result
of applying the 	lter bank recursively to the lowpass image to produce a
two�level pyramid decomposition�

in three dimensions� This packing corresponds to the crystal structure of gar�
net� We choose as a band limiting region the Voronoi region of this lattice
�a rhombic dodecahedron� which is illustrated in gure ����� The sampling
matrix for the lattice is

V �

�
��
� � �
� � �

� � ��
p
�

�
�� �

Using equation ������� the modulation matrix is then
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p
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To preserve the geometry of the original sampling lattice� we choose an
eight�band A�S system with subsampling matrix
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This produces the following subsampling modulation points� as determined by
equation ������
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Figure ����� A rhombic dodecahedron� This is the shape of the bandlim�
iting frequency region for the �garnet� 	lter�
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When applied to video motion sequences� these modulation vectors correspond
to a decomposition into the following subbands
 lowpass� stationary vertical�
stationary horizontal� motion up�right� motion up�left� motion down�right�
motion down�left� and combined stationary diagonals and full�eld �icker�
Unfortunately� there seems to be no way to avoid the last lter which contains
mixed orientations� The overall system response of the lter bank is
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where the rst term is the LSI system response� and the remaining terms are
aliasing terms�

Once again� we can choose lters related by shifts and modulations that
will cancel the system aliasing terms


H���� � G����� � F ��� � F ����
Hi��� � Gi���� � ej��siF ��  "�i�� i � f�� �� ����g

where the shift vectors si are dened as
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Note that as in the hexagonal case� the choice of shift vectors is not unique�

With the choice of lters given above� the aliasing terms in equation ������
cancel and the remaining LSI system response is

�X��� �
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�
X���

	X
i��

jF ��  "�i�j� �

independent of the choice of the function F ���� The design constraint equation
is now

	X
i��

jF ��  "�i�j� � ��

To illustrate the use of the garnet lter� we apply it to an image sequence
of a sinusoidal pinwheel rotating in a counterclockwise direction� One frame
of the sequence is shown in gure �����a�� The squared responses of the four
di	erent motion�selective lters �lters H���� through H����� are shown in
gure �����b�e��

��� Image Coding Examples

Several authors have used QMFs for purposes of image coding� Woods and
O�Neill ���� were the rst to implement an image coding system using QMFs�
They constructed a separable sixteen�band decomposition using a uniform
cascade of ��� and ���tap lters designed by Johnston ����� and then coded
the bands using adaptive DPCM� Gharavi and Tabatabai ���� used a pyramid
of separable lters and in ����� applied it to color images� Tran et� al� ���� used
an extension of Chen and Pratt�s ���� combinedHu	man and run�length coding
scheme to code QMF pyramids� Adelson et al� have used both separable and
hexagonal QMF pyramids for image coding ���� ��� ���� Mallat ��� used lters
derived from wavelet theory to code images� Westerink et� al� ���� have used
vector quantization for subband coding of images�

In gures ���� and ����� we give examples of data compression of the
������� �Lena� image using a separable ��tap QMF bank� a ��tap asymmetric
lter bank �described in section ������� and a hexagonal ���ring� QMF bank� In
all cases� a four�level pyramid transform was computed by recursive application
of the analysis portion of the A�S system to the lowpass image� The total bit
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Figure ����� At the top is one image from a rotating pinwheel image
sequence� The four lower images are the squared result of convolving the
sequence with four of the �garnet� 	lters described in the text� Each 	lter
responds preferentially to one direction of motion�
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rate R was xed and the bit rates assigned to the coe�cients of the transform
were determined using the standard optimal allocation formula ����


Rk � R  
�

�
log�

��k�
�N��Y
j��

��j

�
�
��N

������

where� as before� ��k is the variance of the kth coe�cient in the transform�
Negative values of Rk were set to zero and the other bit rates raised to maintain
the correct overall bit rate R�

Note that if we assume stationary image statistics� the ��k are the same for
all coe�cients belonging to the same sub�image of the transform� It has been
shown ���� that the optimal quantizer for entropy coding is nearly uniform
for bit rates which are high enough that the image probability distribution is
approximately constant over each bin� Even though the examples shown were
compressed to relatively low bit rates� uniform quantization was used due to
its simplicity� Each sub�image was quantized with the bin size chosen to give
a rst order entropy equal to the optimal bit rate Rk for that subimage�

For the hexagonal pyramid� additional pre� and post�processing was neces�
sary to resample the image on a hexagonal grid� Before building the pyramid�
we resampled the original image vertically by a factor of ��� using sinc inter�
polation� We then multiplied by the function f�n� � �  ����
nx�ny�� This
method� which is similar to one suggested in ����� gives a reasonable geomet�
ric approximation to a hexagonal sampling lattice� After re�synthesizing the
image� we interpolated the zero�valued pixels and vertically resampled by a
factor of ����

The hexagonal QMF system generally o	ers coding performance percep�
tually superior to that of the separable system� perhaps because the aliasing
errors are not as visually disturbing as those of separable QMFs� Of course�
the hexagonal system has the disadvantage of being more inconvenient to use
in conjunction with standard hardware�

��	 Conclusion

We have discussed the properties of linear transforms that are relevant to the
task of image compression� In particular� we have suggested that the basis and
sampling functions of the transform should be localized in both the spatial and
the spatial�frequency domains� We have also suggested that it is desirable for
the transform to be orthogonal�
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�a� �b�

�c� �d�

Figure ����� Data compression example using four�level pyramids� The
pyramid data was compressed to a total of ��� bits �i�e� total 	rst�order
entropy was ��� bit�pixel�� �a� Original �Lena� image at ��� �� pixels�
�b� Compressed using ��tap separable QMF bank� �c� Compressed using
��tap asymmetrical 	lter bank� �d� Compressed using ���ring� hexagonal
QMF bank�
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�a� �b�

�c� �d�

Figure ����� Data compression example using four�level pyramids� The
pyramid data was compressed to a total of ����� bits �i�e� total 	rst�order
entropy was ��� bit�pixel�� �a� Original �Lena� image at ��� �� pixels�
�b� Compressed using ��tap separable QMF bank� �c� Compressed using
��tap asymmetrical 	lter bank� �d� Compressed using ���ring� hexagonal
QMF bank�
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Several examples serve to illustrate these properties� The Gabor basis
functions are well�localized� but the severe non�orthogonality of the transform
leads to sampling functions which are very poorly localized� The block DCT
is an equal�width subband transform with poor frequency localization� The
LOT enhancement provides improved frequency localization� The Laplacian
pyramid is an example of an octave�width subband transform that is non�
orthogonal� non�oriented and overcomplete� its properties are non�optimal for
coding still images� but may be advantageous for coding moving images�

Subband transforms based on banks of QMFs are well�localized� orthogo�
nal� and can be applied recursively to form octave�width subbands� Separable
application of these transforms o	ers orientation specicity in some but not
all of the subbands� Non�separable orthogonal subband transforms based on
hexagonal sampling o	er orientation specicity in all of the subbands� although
they are more di�cult to implement� These orthogonal subband transforms
are highly e	ective in image coding applications� and may also be appropriate
for applications in image enhancement and machine vision tasks�

Appendix
 Filters

In this appendix� we discuss the design of QMFs� present a set of example
lter kernels� and compare their theoretical energy compaction properties to
those of the DCT and LOT transforms�

Filter Design

A �good� QMF is one that satises the constraint given in equation �������
In addition� one would like the sub�band images to have a minimal amount of
aliasing� The objective then is to design lters with small regions of support
that satisfy both of these constraints� Assuming symmetric �linear phase� lter
designs� a lter of size N is determined by a set of dN��e free parameters�
where d�e indicates the ceiling function� Therefore� lters may be designed by
minimizing an error function dened on the space of these free parameters�

For a xed lter size� we dene a frequency�domain lter bank error func�
tion as the maximal deviation of the overall lter bank response given in
equation ������ from its ideal value


E� � max
�

n
f����

			jF ���j�  jF ��  ��j� � �
			o

where � ranges over the samples in the frequency spectrum� The function
f���� is a frequency weighting function roughly matched to the sensitivity of
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n QMF�� QMF�� QMF���
� ��������� ��������� ���������
� ��������� ���������� ����������
� ���������� ������������ ������������
� ������������ �����������
� ���������� �����������
� �����������
� ������������

Table ���� Odd�length QMF kernels� Half of the impulse response sample
values are shown for each of the normalized lowpass QMF 	lters �All 	lters
are symmetric about n � ��� The appropriate highpass 	lters are obtained
by delaying by one sample and multiplying with the sequence ����n�

the human visual system and the statistics of images


f���� � ��j�j�

We also dene an intra�band aliasing error function


E� � max
��

ff����� jF �����F ���  ��jg

where the function f����� is dened as

f���
�� � ��j��j��

The frequency vector �� ranges over all of the samples in the frequency spec�
trum� except for the point at ���� Aliasing within subbands cannot be elimi�
nated at this point because the overall lter bank response at this point would
then be forced to zero� violating the constraint in equation �������

Finally� we combine the two error functions as a weighted sum


E � �E�  �� � ��E�� � � ��� ���
Given a set of values for the free parameters� we can construct a kernel and
compute the value of the error function E� To design lters� we used a downhill
simplex method to search the space of free parameters for minima in E� The
weighting factor � was adjusted to give a lter bank response error E� less
than a xed threshold� A set of example odd�length lter kernels are given in
table ����

The same design technique was used for multi�dimensional non�separable
lters� For the hexagonally symmetric lters� the free parameters comprise a
wedge�shaped region covering approximately one twelfth of the kernel� The
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two error functions are dened in the same manner as for the one�dimensional
lters� The frequency vector �� now ranges over all of the samples in the two�
dimensional frequency spectrum� except for those in a hexagonal boundary
containing the point ��� �

�
�� A set of kernel values is given in table ���

In table ��� we give several inverse lters for the ��tap asymmetrical system
described in section ������ These kernels were designed by minimizing the
maximal absolute�value reconstruction error for a step edge input signal�

Filter Compaction Properties

An optimal transform for data compression should minimize the bit rate for a
given allowable error in the reconstructed image� If the basis functions of the
transform are orthonormal� and if expected mean square di	erence is used as
an error measure� this is equivalent to maximizing the following expression for
the gain in coding over PCM ���� ���


G �

�

N

N��X
j��

��j

�
�N��Y
j��

��j

�
�
��N

where ��j is the variance of the jth transform coe�cient�

This measure was computed for some of the one�dimensional QMF lters
given in this Appendix� as displayed in table ���� Values were computed as�
suming Markov second order signal statistics� where the autocorrelation matrix
Rxx is a symmetric Toeplitz matrix of the form

Rxx �

�
��������

� 	 	� � � � 	N

	 � 	 	
N���

	� 	 � 	
N���

���
� � �

	N 	
N��� 	
N��� �

�
��������

and where 	 is the inter�sample correlation coe�cient� A value of 	 � ����
was used to compute the numbers given in table ���� The compaction values
are given for a one�dimensional image of size N � ��� with the QMF lter
kernels re�ected at the edges in a manner that preserves the orthogonality of
the basis set ����� Comparable values for the ���point LOT �with kernel sizes
L���� and a ���point block DCT and a ���point block DCT are also given�
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j k l l k j
k g h i h g k

l h e f f e h l
l i f c d c f i l

k h f d b b d f h k
j g e c b a b c e g j
k h f d b b d f h k

l i f c d c f i l
l h e f f e h l
k g h i h g k

j k l l k j

Table ���� A hexagonal 	lter� The letters refer to the free parameters
�see text�� Only the low�pass 	lter is shown� The three highpass 	lters are
formed by modulating and shifting the low�pass�

Parameter ��ring ��ring ��ring
a ���������� ��������� ����������
b ���������� ��������� ����������
c ������������ ������������ ������������
d ������������ ������������� ������������
e ������������� ����������� �����������
f ������������� ������������ �����������
g ������������ ������������
h ����������� �����������
i ����������� ������������
j �������������
k ������������
l �������������

Table ���� Some example hexagonal 	lter coe�cient values� The parame�
ter letters correspond to the diagram shown in table ���
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n �� �� ��
� ������������ ������������ ������������
� ������������ ������������ ������������
� ������������� ������������� �������������
� ������������� ������������� �������������
� ������������ ������������ ������������
� ������������ ������������ ������������
� ������������� ������������� �������������
� ������������� ������������� �������������
� ������������ ������������
� ������������
�� �������������

Table ���� Filter impulse response values for �� ��� and ���tap inverses
for the ��tap system described in section ������ Half of the impulse response
sample values are shown for each of the normalized lowpass 	lters �All 	lters
are symmetric about n � ��� The appropriate highpass 	lters are obtained
by multiplying with the sequence ����n and shifting by one pixel�

The ��tap subband lter gives slightly better value than the ���point DCT�
and the ���tap subband lter is substantially better� These comparisons do not
necessarily correspond to measurements of subjective quality� however� since
they are based on a crude Markov statistical model of images� and since they
assume an MSE error measure� We have found that images compressed with
a ��tap subband transform are perceptually superior to the ���point DCT�
primarily because of the absence of the block artifacts� We also nd that the
��tap QMF is preferable to the ���tap QMF
 the ��tap lter produces more
aliasing� but the Gibbs ringing is more noticeable with the ���tap lter� We
have not performed any coding experiments using the LOT� and so cannot
comment on its performance�

lter GPCM

QMF�� ����
QMF�� ����
QMF��� ����

fast�LOT��� ����
DCT��� ����
DCT��� ����

Table ���� Theoretical coding gains over PCM for four�level QMF pyra�
mids� the fast LOT �with N � �� and L � ���� and the block DCT� Values
were computed assuming 	rst�order Gauss�Markov signal statistics with
� � ���� on a a one�dimensional image of size ���
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