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The set of all possible visual images is enormous, but
not all of these are equally likely to be encountered by
your eye or a camera. This nonuniform distribution
over the image space is believed to be exploited by bio-
logical visual systems, and can be used to advantage in
most applications in image processing and machine vi-
sion. For example, loosely speaking, when one observes
a visual image that has been corrupted by some sort of
noise, the process of estimating the original source im-
age may be viewed as one of looking for the highest-
probability image that is “close to” the noisy observation.
Image compression amounts to using a larger proportion
of the available bits to encode those regions of the image
space that are more likely. And problems such as reso-
lution enhancement or image synthesis involve selecting
(sampling) a high-probability image, subject to some set
of constraints. Specific examples of these applications can
be found in many chapters throughout this book.

In order to develop a probability model for visual images,
we first must decide which images to model. In a prac-
tical sense, this means we must (a) decide on imaging
conditions, such as the field of view, resolution, sensor or
postprocessing nonlinearities, etc, (b) decide what kind of
scenes, under what kind of lighting, are to be captured in
the images. It may seem odd, if one has not encountered
such models, to imagine that all images are drawn from
a single universal probability urn. In particular, the fea-
tures and properties in any given image are often special-
ized. For example, outdoor nature scenes contain struc-
tures that are quite different from city streets, which in
turn are nothing like human faces. There are two means
by which this dilemma is resolved. First, the statistical
properties that we will examine are basic enough that
they are relevant for essentially all visual scenes. Second,
we will use parametric models, in which a set of hyperpa-
rameters (possibly random variables themselves) govern
the detailed behavior of the model, and thus allow a cer-

tain degree of adaptability of the model to different types
of source material.

In this chapter, we’ll describe an empirical methodol-
ogy for building and testing probability models for dis-
cretized (pixelated) images. Currently available digital
cameras record such images, typically containing millions
of pixels. Naively, one could imagine examining a large
set of such images to try to determine how they are dis-
tributed. But a moment’s thought leads one to realize
the hopelessness of the endeavor. The amount of data
needed to estimate a probability distribution from sam-
ples grows exponentially in D, the dimensionality of the
space (in this case, the number of pixels). This is known as
the “curse of dimensionality”. For example, if we wanted
to build a nhistogram for images with one million pixels,
and each pixel value was partitioned into just two pos-
sibilites (low or high), we’d need 21,000,000 bins, which
greatly exceeds estimates of the number of atoms in the
universe!

Thus, in order to make progress on image modeling, it is
essential that we reduce the dimensionality of the space.
Two types of simplifying assumption can help in this re-
gard. The first, known as a Markov assumption, is that
the probability density of a pixel, when conditioned on
a set of pixels in a small spatial neighborhood, is inde-
pendent of the pixels outside of the neighborhood. A
second type of simplification comes from imposing sym-
metries or invariances on the probability structure. The
most common of these is that of translation-invariance
(i.e., sometimes called homogeneity, or strict-sense sta-
tionarity): the probability density of pixels in a neigh-
borhood does not depend on the absolute location of that
neighborhood within the image. This seems intuitively
sensible, given that a lateral or vertical translation of the
camera leads (approximately) to translation of the image
intensities across the pixel array. Note that translation-



invariance is not well defined at the boundaries, and as is
often the case in image processing, these locations must
be handled specially.

Another common assumption is scale-invariance: resiz-
ing the image does not alter the probability structure.
This may also be loosely justified by noting that adjust-
ing the focal length (zoom) of a camera lens approximates
(apart from perspective distortions) image resizing. As
with translation-invariance, scale-invariance will clearly
fail to hold at certain “boundaries”. Specifically, scale-
invariance must fail for discretized images at fine scales
approaching the size of the pixels. And similarly, it will
also fail for finite size images at coarse scales approaching
the size of the entire image.

With these sort of simplifying structural assumptions in
place, we can return to the problem of developing a prob-
ability model. In recent years, researchers from image
processing, computer vision, physics, psychology,applied
math and statistics have proposed a wide variety of dif-
ferent types of model. In this chapter, I’ll review the
most basic statistical properties of photographic images,
and describe several models that have been developed
to incorporate these properties. I’ll give some indication
of how these models have been validated by examining
how well they fit the data. In order to keep the discussion
focused, I’ll limit the discussion to discretized grayscale
photographic images. Many of the principles are easily
extended to color photographs [8, 43], or temporal image
sequences (movies) [16], as well as more specialized im-
age classes such as portraits, landscapes, or textures. In
addition, the general concepts are often applicable to non-
visual imaging devices, such as medical images, infrared
images, radar and other types of range image, or astro-
nomical images.

1 The Gaussian Model

The classical model of image statistics was developed by
television engineers in the 1950s (see [41] for a review),
who were interested in optimal signal representation and
transmission. The most basic motivation for these mod-
els comes from the observation that pixels at nearby loca-
tions tend to have similar intensity values. This is easily
confirmed by measurements like those shown in Fig. 1(a).
Each scatterplot shows values of a pair of pixels1 with

1Pixel values recorded by digital cameras are generally nonlinearly
related to the light intensity that fell on the sensor. Here, we used linear

a different relative horizontal displacement. Implicit in
these measurements is the assumption of homogeneity
mentioned in the introduction: the distributions are as-
sumed to be independent of the absolute location within
the image.

The most striking behavior observed in the plots is that
the pixel values are highly correlated: when one is large,
the other tends to also be large. This correlation weakens
with the distance between pixels. This behavior is sum-
marized in Fig. 1(b), which shows the image autocorrela-
tion (pixel correlation as a function of separation).

The correlation statistics of Fig. 1 place a strong constraint
on the structure of images, but they do not provide a
full probability model. Specifically, there are many prob-
ability densities that would share the same correlation
(or equivalently, covariance) structure. How should we
choose a model from amongst this set? One natural crite-
rion is to select a density that has maximal entropy, sub-
ject to the covariance constraint [24]. Solving for this den-
sity turns out to be relatively straighforward, and the re-
sult is a multi-dimensional Gaussian:

P(�x) ∝ exp(−�xT Cx
−1�x/2), (1)

where �x is a vector containing all of the image pixels (as-
sumed, for notational simplicity, to be zero-mean) and
Cx ≡ IE(�x�xT ) is the covariance matrix (IE(·) indicates ex-
pected value).

Gaussian densities are more succinctly described by
transforming to a coordinate system in which the covari-
ance matrix is diagonal. This is easily achieved using
standard linear algebra techniques [49]:

�y = ET �x,

where E is an orthogonal matrix containing the eigenvec-
tors of Cx, such that

Cx = EDET , =⇒ ET CxE = D. (2)

D is a diagonal matrix containing the associated eigenval-
ues. When the probability distribution on �x is stationary
(assuming periodic handling of boundaries), the covari-
ance matrix, Cx, will be circulant. In this special case, the
Fourier transform is known in advance to be a diagonal-
izing transformation2, and is guaranteed to satisfy the re-
lationship of Eq. (2).

measurements in a single images of a New York City street scene, as
recorded by the CMOS sensor, and took the log of these.

2More generally, the Fourier transform diagonalizes any matrix that
represents a translation-invariant (i.e., convolution) operation.
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Fig. 1. (a) Scatterplots comparing values of pairs of pixels at three different spatial displacements, averaged over five
examples images. (b) Autocorrelation function. Photographs are of New York City street scenes, taken with a Canon 10D
digital camera in RAW mode (these are the sensor measurements which are approximately proportional to light intensity).
The scatterplots and correlations were computed on the logs of these sensor intensity values [41].

In order to complete the Gaussian image model, we need
only specify the entries of the diagonal matrix D, which
correspond to the variances of frequency components in
the Fourier transform. There are two means of arriving
at an answer. First, setting aside the caveats mentioned
in the introduction, we can assume that image statistics
are scale-invariant. Specifically, suppose that the second-
order (covariance) statistical properties of the image are
invariant to resizing of the image. We can express scale-
invariance in the frequency domain as:

IE
(|F (s�ω)|2) = h(s)IE

(|F (�ω)|2), ∀�ω, s.

where F (�ω) indicates the (two-dimensional) Fourier
transform of the image. That is, rescaling the frequency
axis does not change the shape of the function; it merely
multiplies the spectrum by a constant. The only functions
that satisfy this identity are power laws:

IE
(|F (�ω)|2) =

A

|�ω|γ

where the exponent γ controls the rate at which the spec-
trum falls. Thus, the dual assumptions of translation- and
scale-invariance constrains the covariance structure of im-
ages to a model with two parameters!

Alternatively, the form of the power spectrum may be es-
timated empirically [e.g. 15, 18, 50, 42, 53]. For many “typ-
ical” images, it turns out to be quite well approximated
by a power law, consistent with the scale-invariance as-
sumption. In these empirical measurements, the value of
the exponent is typically near two. Examples of power
spectral estimates for several example images are shown
in Fig. 2. It has also been demonstrated that scale-
invariance holds for statistics other than the power spec-
trum [e.g., 42, 52].
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Fig. 2. Power spectral estimates for five example images
(see Fig. 1 for image description), as a function of spatial
frequency, averaged over orientation. These are well-
described by power law functions with an exponent, γ,
slightly larger than 2.0.

The spectral model is the classic model of image process-
ing. In addition to accounting for spectra of typical image
data, the simplicity of the Gaussian form leads to direct
solutions for image compression and denoising that may
be found in essentially any textbook on signal or image
processing. As an example, consider the problem of re-
moving additive Gaussian white noise from an image, �x.
The degradation process is described by the conditional
density of the observed (noisy) image, �y, given the origi-
nal (clean) image �x:

P(�y|�x) ∝ exp(−||�y − �x||2/2σ2
n)

where σ2
n is the variance of the noise. Using Bayes’ Rule,

we can reverse the conditioning by multiplying by the
prior probability density on �x:

P(�x|�y) ∝ exp(−||�y − �x||2/2σ2
n) · P(�x).
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An estimate, x̂ for �x may now be obtained from this poste-
rior density. One can, for example, choose the �x that max-
imizes the probability (the maximum a posteriori or MAP
estimate), or the mean of the density (the minimum mean
squared error (MMSE) or Bayes Least Squares or BLS esti-
mate). If we assume that the prior density is Gaussian,
then the posterior density will also be Gaussian, the max-
imum and the mean will then be identical:

x̂(�y) = Cx(Cx + Iσ2
n)−1�y,

where I is an identity matrix. Note that this solution is
linear in the observed (noisy) image �y.

This linear estimator is particularly simple when both the
noise and signal covariance matrices are diagonalized. As
mentioned previously, under the spectral model , the sig-
nal covariance matrix may be diagonlized by transform-
ing to the Fourier domain, where the estimator may be
written as:

F̂ (�ω) =
A/|�ω|γ

A|�ω|γ + σ2
n

· G(�ω),

where F̂ (�ω) and G(�ω) are the Fourier transforms of x̂(�y)
and �y, respectively. Thus, the estimate may be computed
by linearly rescaling each Fourier coefficient individually.
In order to apply this denoising method, one must be
given (or must estimate) the parameters, A, γ and σn (see
Chapter 11 for further examples and development of the
denoising problem).

Despite the simplicity and tractability of the Gaussian
model, it is easy to see that the model provides a rather
weak description of images. In particular, while the
model strongly constrains the amplitudes of the Fourier
coefficients, it places no constraint on their phases. When
one randomizes the phases of an image, the appearance
is completely destroyed [36].

As a direct test, one can draw sample images from the dis-
tribution by simply generating white noise in the Fourier
domain, weighting each sample appropriately by 1/|�ω|γ ,
and then inverting the transform to generate an image.
The fact that this experiment invariably produces images
of clouds (an example is shown in Fig. 3) implies that a
Gaussian model is insufficient to capture the structure of
features that are found in photographic images.

Fig. 3. Example image randomly drawn from the Gaus-
sian spectral model, with γ = 2.0.

2 The Wavelet Marginal Model

For decades, the inadequacy of the Gaussian model was
apparent. But direct improvement, through introduction
of constraints on the Fourier phases, turned out to be
quite difficult. Relationships between phase components
are not easily measured, in part because of the difficulty
of working with joint statistics of circular variables, and
in part because the dependencies between phases of dif-
ferent frequencies do not seem to be well captured by a
model that is localized in frequency. A breakthrough
occurred in the 1980s, when a number of authors began
to describe more direct indications of non-Gaussian be-
haviors in images. Specifically, a multidimensional Gaus-
sian statistical model has the property that all conditional
or marginal densities must also be Gaussian. But these
authors noted that histograms of bandpass-filtered nat-
ural images were highly non-Gaussian [9, 18, 14, 31, 56].
Specifically, their marginals tend to be much more sharply
peaked at zero, with more extensive tails, when compared
with a Gaussian of the same variance. As an example,
Fig. 4 shows histograms of three images, filtered with a
Gabor function (a Gaussian-windowed sinuosoidal grat-
ing). The intuitive reason for this behavior is that images
typically contain smooth regions, punctuated by localized
“features” such as lines, edges or corners. The smooth re-
gions lead to small filter responses that generate the sharp
peak at zero, and the localized features produce large-
amplitude responses that generate the extensive tails.

This basic behavior holds for essentially any zero-
mean local filter, whether it is non-directional (center-
surround), or oriented, but some filters lead to responses
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Fig. 4. Log histograms of bandpass (Gabor) filter responses of four example images (see Fig. 1 for image description).
For each histogram, tails are truncated so as to show 99.8% of the distribution. Also shown (dashed lines) are fitted
generalized Gaussian densities, as specified by equation (3). Text indicates the maximum-likelihood value of p of the fitted
model density, and the relative entropy (Kullback-Leibler divergence) of the model and histogram, as a fraction of the total
entropy of the histogram.

that are more non-Gaussian than others. By the mid
1990s, a number of authors had developed methods of
optimizing a basis of filters in order to to maximize
the non-Gaussianity of the responses [e.g., 35, 5]. Of-
ten these methods operate by optimizing a higher-order
statistic such as kurtosis (the fourth moment divided by
the squared variance). The resulting basis sets contain ori-
ented filters of different sizes with frequency bandwidths
of roughly one octave. Figure 5 shows an example basis
set, obtained by optimizing kurtosis of the marginal re-
sponses to an ensemble of 12×12 pixel blocks drawn from
a large ensemble of natural images. In parallel with these
statistical developments, authors from a variety of com-
munities were developing multi-scale orthonormal bases
for signal and image analysis, now generically known as
“wavelets” (see chapter *** in this book). These provide
a good approximation to optimized bases such as that
shown in Fig. 5.

Once we’ve transformed the image to a multi-scale rep-
resentation, what statistical model can we use to charac-
terize the coefficients? The statistical motivation for the
choice of basis came from the shape of the marginals, and
thus it would seem natural to assume that the coefficients
within a subband are independent and identically dis-
tributed. With this assumption, the model is completely
determined by the marginal statistics of the coefficients,
which can be examined empirically as in the examples
of Fig. 4. For natural images, these histograms are sur-
prisingly well described by a two-parameter generalized
Gaussian (also known as a stretched, or generalized expo-
nential) distribution [e.g., 31, 47, 33]:

Pc(c; s, p) =
exp(−|c/s|p)

Z(s, p)
, (3)

where the normalization constant is Z(s, p) = 2 s
pΓ( 1

p ).
An exponent of p = 2 corresponds to a Gaussian den-

Fig. 5. Example basis functions derived by optimizing a
marginal kurtosis criterion [see 34].

5



sity, and p = 1 corresponds to the Laplacian density. In
general, smaller values of p lead to a density that is both
more concentrated at zero and has more expansive tails.
Each of the histograms in Fig. 4 is plotted with a dashed
curve corresponding to the best fitting instance of this
density function, with the parameters {s, p} estimated by
maximizing the probability of the data under the model.
The density model fits the histograms remarkably well,
as indicated numerically by the relative entropy measures
given below each plot. We have observed that values of
the exponent p typically lie in the range [0.4, 0.8]. The fac-
tor s varies monotonically with the scale of the basis func-
tions, with correspondingly higher variance for coarser-
scale components.

This wavelet marginal model is significantly more pow-
erful than the classical Gaussian (spectral) model. For
example, when applied to the problem of compression,
the entropy of the distributions described above is signif-
icantly less than that of a Gaussian with the same vari-
ance, and this leads directly to gains in coding efficiency.
In denoising, the use of this model as a prior density for
images yields to significant improvements over the Gaus-
sian model [e.g., 48, 11, 2, 33, 47]. Consider again the
problem of removing additive Gaussian white noise from
an image. If the wavelet transform is orthogonal, then the
noise remains white in the wavelet domain. The degra-
dation process may be described in the wavelet domain
as:

P(d|c) ∝ exp(−(d − c)2/2σ2
n)

where d is a wavelet coefficient of the observed (noisy)
image, c is the corresponding wavelet coefficient of the
original (clean) image, and σ2

n is the variance of the noise.
Again, using Bayes’ Rule, we can reverse the condition-
ing:

P(c|d) ∝ exp(−(d − c)2/2σ2
n) · P(c),

where the prior on c is given by Eq. (3). Here, the MAP
and BLS solutions cannot, in general, be written in closed
form, and they are unlikely to be the same. But numerical
solutions are fairly easy to compute, resulting in nonlin-
ear estimators, in which small-amplitude coefficients are
suppressed and large-amplitude coefficients preserved.
These estimates show substantial improvement over the
linear estimates associated with the Gaussian model of
the previous section.

Despite these successes, it is again easy to see that im-
portant attributes of images are not captured by wavelet
marginal models. When the wavelet transform is or-
thonormal, we can easily draw statistical samples from

Fig. 6. A sample image drawn from the wavelet
marginal model, with subband density parameters cho-
sen to fit the image of Fig. 7.

the model. Figure 6 shows the result of drawing the co-
efficients of a wavelet representation independently from
generalized Gaussian densities. The density parameters
for each subband were chosen as those that best fit an ex-
ample photographic image. Although it has more struc-
ture than an image of white noise, and perhaps more than
the image drawn from the spectral model (Fig. 3), the re-
sult still does not look very much like a photographic im-
age!

The wavelet marginal model may be improved by ex-
tending it to an overcomplete wavelet basis. In particular,
Zhu et al. have shown that large numbers of marginals
are sufficient to uniquely constrain a high-dimensional
probability density [58] (this is a variant of the Fourier
projection-slice theorem used for tomographic recon-
struction). Marginal models have been shown to produce
better denoising results when the multi-scale representa-
tion is overcomplete [12, 47, 3, 27, 39]. Similar benefits
have been obtained for texture representation and syn-
thesis [20, 58]. The drawback of these models is that the
joint statistical properties are defined implicitly through
the marginal statistics. They are thus difficult to study di-
rectly, or to utilize in deriving optimal solutions for image
processing applications. In the next section, we consider
the more direct development of joint statistical descrip-
tions.
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Fig. 7. Amplitudes of multi-scale wavelet coefficients for
an image of Albert Einstein. Each subimage shows co-
efficient amplitudes of a subband obtained by convolu-
tion with a filter of a different scale and orientation, and
subsampled by an appropriate factor. Coefficients that
are spatially near each other within a band tend to have
similar amplitudes. In addition, coefficients at different
orientations or scales but in nearby (relative) spatial po-
sitions tend to have similar amplitudes.

3 Wavelet Local Contextual Models

The primary reason for the poor appearance of the image
in Fig. 6 is that the coefficients of the wavelet transform
are not independent. Empirically, the coefficients of or-
thonormal wavelet decompositions of visual images are
found to be moderately well decorrelated (i.e., their co-
variance is near zero). But this is only a statement about
their second-order dependence, and one can easily see that
there are important higher-order dependencies. Figure 7
shows the amplitudes (absolute values) of coefficients in a
four-level separable orthonormal wavelet decomposition.
First, we can see that individual subbands are not homo-
geneous: Some regions have large-amplitude coefficients,
while other regions are relatively low in amplitude. The
variability of the local amplitude is characteristic of most
photographic images: The large-magnitude coefficients
tend to occur near each other within subbands, and also
occur at the same relative spatial locations in subbands at
adjacent scales and orientations.

The intuitive reason for the clustering of large-amplitude
coefficients is that typical localized and isolated image

features are represented in the wavelet domain via the
superposition of a group of basis functions at different
positions, orientations and scales. The signs and relative
magnitudes of the coefficients associated with these ba-
sis functions will depend on the precise location, orienta-
tion and scale of the underlying feature. The magnitudes
will also scale with the contrast of the structure. Thus,
measurement of a large coefficient at one scale means that
large coefficients at adjacent scales are more likely.

This clustering property was exploited in a heuristic
but highly effective manner in the Embedded Zerotree
Wavelet (EZW) image coder [44], and has been used in
some fashion in nearly all image compression systems
since. A more explicit description had been first devel-
oped for denoising, when Lee [26] suggested a two-step
procedure, in which the local signal variance is first es-
timated from a neighborhood of observed pixels, after
which the pixels in the neighborhood are denoised us-
ing a standard linear least squares method. Although it
was done in the pixel domain, this paper introduced the
idea that variance is a local property that should be esti-
mated adaptively, as compared with the classical Gaussian
model in which one assumes a fixed global variance. It
was not until the 1990s that a number of authors began
to apply this concept to denoising in the wavelet domain,
estimating the variance of clusters of wavelet coefficients
at nearby positions, scales, and/or orientations, and then
using these estimated variances in order to denoise the
cluster [30, 46, 10, 47, 32, 55, 1].

The locally-adaptive variance principle is powerful, but
does not constitute a full probability model. As in the pre-
vious sections, we can develop a more explicit model by
directly examining the statistics of the coefficients. The
top row of Fig. 8 shows joint histograms of several differ-
ent pairs of wavelet coefficients. As with the marginals,
we assume homogeneity in order to consider the joint his-
togram of this pair of coefficients, gathered over the spa-
tial extent of the image, as representative of the under-
lying density. Coefficients that come from adjacent basis
functions are seen to produce contours that are nearly cir-
cular, whereas the others are clearly extended along the
axes.

The joint histograms shown in the first row of Fig. 8 do
not make explicit the issue of whether the coefficients are
independent. In order to make this more explicit, the bot-
tom row shows conditional histograms of the same data.
Let x2 correspond to the density coefficient (vertical axis),
and x1 the conditioning coefficient (horizontal axis). The
histograms illustrate several important aspects of the rela-
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tionship between the two coefficients. First, the expected
value of x2 is approximately zero for all values of x1, indi-
cating that they are nearly decorrelated (to second order).
Second, the variance of the conditional histogram of x2

clearly depends on the value of x1, and the strength of
this dependency depends on the particular pair of coef-
ficients being considered. Thus, although x2 and x1 are
uncorrelated, they still exhibit statistical dependence!

The form of the histograms shown in Fig. 8 is surpris-
ingly robust across a wide range of images. Further-
more, the qualitative form of these statistical relationships
also holds for pairs of coefficients at adjacent spatial loca-
tions and adjacent orientations. As one considers coeffi-
cients that are more distant (either in spatial position or in
scale), the dependency becomes weaker, suggesting that
a Markov assumption might be appropriate.

Essentially all of the statistical properties we’ve described
thus far – the circular (or elliptical) contours, the depen-
dency between local coefficient amplitudes, as well as the
heavy-tailed marginals – can be modeled using a random
field with a spatially fluctuating variance. These kinds of
models have been found useful in the speech-processing
community [7]. A related set of models, known as au-
toregressive conditional heteroskedastic (ARCH) mod-
els [e.g., 6], have proven useful for many real signals
that suffer from abrupt fluctuations, followed by relative
“calm” periods (stock market prices, for example). Fi-
nally, physicists studying properties of turbulence have
noted similar behaviors [e.g., 51].

An example of a local density with fluctuating variance,
one that has found particular use in modeling local clus-
ters (neighborhoods) of multi-scale image coefficients, is
the product of a Gaussian vector and a hidden scalar mul-
tiplier. More formally, this model, known as a Gaussian
scale mixture [4] (GSM), expresses a random vector �x as
the product of a zero-mean Gaussian vector �u and an in-
dependent positive scalar random variable

√
z:

�x ∼ √
z�u, (4)

where ∼ indicates equality in distribution. The variable z
is known as the multiplier. The vector �x is thus an infinite
mixture of Gaussian vectors, whose density is determined
by the covariance matrix Cu of vector �u and the mixing
density, pz(z):

p�x(�x) =
∫

p(�x|z) pz(z)dz

=
∫

exp
(−�xT (zCu)−1�x/2

)
(2π)N/2|zCu|1/2

pz(z)dz, (5)

where N is the dimensionality of �x and �u (in our case,
the size of the neighborhood). Notice that since the level
surfaces (contours of constant probability) for P�u(�u) are
ellipses determined by the covariance matrix Cu, and the
density of �x is constructed as a mixture of scaled versions
of the density of �u, then P�x(�x) will also exhibit the same el-
liptical level surfaces. In particular, if �u is spherically sym-
metric (Cu is a multiple of the identity), then �x will also
be spherically symmetric. Figure 9 demonstrates that this
model can capture the strongly kurtotic behavior of the
marginal densities of natural image wavelet coefficients,
as well as the correlation in their local amplitudes.

A number of recent image models describe the wavelet
coefficients within each local neighborhood using a Gaus-
sian mixture model [e.g., 13, 40, 28, 32, 55, 38, 29]. Sam-
pling from these models is difficult, since the local de-
scription is typically used for overlapping neighborhoods,
and thus one cannot simply draw independent samples
from the model (see [29] for an example). The underlying
Gaussian structure of the model allows it to be adapted
for problems such as denoising. The resulting estima-
tor is more complex than that described for the Gaussian
or wavelet marginal models, but performance is signifi-
cantly better.

As with the models of the previous two sections, there
are indications that the GSM model is insufficient to fully
capture the structure of typical visual images. To demon-
strate this, we note that normalizing each coefficient by
(the square root of) its estimated variance should pro-
duce a field of Gaussian white noise [41, 54]. Figure 10
illustrates this process, showing an example wavelet sub-
band, the estimated variance field, and the normalized co-
efficients. But note that there are two important types of
structure that remain. First, although the normalized co-
efficients are certainly closer to a homogeneous field, the
signs of the coefficients still exhibit important structure.
Second, the variance field itself is far from homogeneous,
with most of the significant values concentrated on one-
dimensional contours. Some of these attributes can be
captured by measuring joint statistics of phase and ampli-
tude, as has been demonstrated in texture modeling [37].

4 Discussion

After nearly 50 years of Fourier/Gaussian modeling, the
late 1980s and 1990s saw sudden and remarkable shift in
viewpoint, arising from the confluence of (a) multi-scale
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Fig. 8. Empirical joint distributions of wavelet coefficients associated with different pairs of basis functions, for a single
image of a New York City street scene (see Fig. 1 for image description). The top row shows joint distributions as contour
plots, with lines drawn at equal intervals of log probability. The three leftmost examples correspond to pairs of basis func-
tions at the same scale and orientation, but separated by different spatial offsets. The next corresponds to a pair at adjacent
scales (but the same orientation, and nearly the same position), and the rightmost corresponds to a pair at orthogonal orien-
tations (but the same scale and nearly the same position). The bottom row shows corresponding conditional distributions:
brightness corresponds to frequency of occurance, except that each column has been independently rescaled to fill the full
range of intensities.

Original coefficients Estimated
√

z field Normalized coefficients

Fig. 10. Example wavelet subband, square root of the variance field, and normalized subband.
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Fig. 9. Comparison of statistics of coefficients from an
example image subband (left panels) with those gener-
ated by simulation of a local GSM model (right panels).
Model parameters (covariance matrix and the multiplier
prior density) are estimated by maximizing the likeli-
hood of the subband coefficients (see [38]). (a,b) Log
of marginal histograms. (c,d) Conditional histograms of
two spatially adjacent coefficients. Pixel intensity cor-
responds to frequency of occurance, except that each
column has been independently rescaled to fill the full
range of intensities.

image decompositions, (b) non-Gaussian statistical obser-
vations and descriptions, and (c) locally-adaptive statisti-
cal models based on fluctuating variance. The improve-
ments in image processing applications arising from these
ideas have been steady and substantial. But the complete
synthesis of these ideas, and development of further re-
finements are still underway.

Variants of the contextual models described in the previ-
ous section seem to represent the current state-of-the-art,
both in terms of characterizing the density of coefficients,
and in terms of the quality of results in image process-
ing applications. There are several issues that seem to
be of primary importance in trying to extend such mod-
els. First, a number of authors are developing models that
can capture the regularities in the local variance, such as
spatial random fields [22, 25, 23, 29], and multiscale tree-
structured models [40, 55]. Much of the structure in the
variance field may be attributed to discontinuous features
such as edges, lines, or corners. There is a substantial lit-
erature in computer vision describing such structures, but
it has proven difficult to establish models that are both ex-
plicit about these features and yet flexible. Finally, there
have been several recent studies investigating geometric
regularities that arise from the continuity of contours and
boundaries [45, 17, 19, 21, 57]. These and other image reg-
ularities will surely be incorporated into future statistical
models, leading to further improvements in image pro-
cessing applications.
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