
4.7 Statistical Modeling of Photographic Images

Eero P. Simoncelli
New York University

January 18, 2005

To appear in: Handbook of Video and Image Processing, 2nd edition
ed. Alan Bovik, c©Academic Press, 2005.

The set of all possible visual images is huge, but not all of
these are equally likely to be encountered by an imaging
device such as the eye. Knowledge of this nonuniform
probability on the image space is known to be exploited
by biological visual systems, and can be used to advan-
tage in the majority of applications in image processing
and machine vision. For example, loosely speaking, when
one observes a visual image that has been corrupted by
some sort of noise, the process of estimating the original
source image may be viewed as one of looking for the
highest-probability image that is “close to” the noisy ob-
servation. The problem of compression essentially boils
down to using a larger proportion of the available bits to
encode those regions of the image space that are more
likely. And problems such as resolution enhancement
or image synthesis involve selecting (sampling) a high-
probability image from the distribution, perhaps subject
to some set of constraints. Precise developments of such
applications can be found in many chapters throughout
this book.

In order to develop a probability model for visual images,
we first must decide which images to model. In a prac-
tical sense, this means we must (a) decide on imaging
conditions, such as the field of view, resolution, sensor or
postprocessing nonlinearities, etc, (b) decide what kind of
scenes, under what kind of lighting, are to be captured in
the images. It may seem odd, if one has not encountered
such models, to imagine that all images are drawn from
a single universal probability urn. In particular, the fea-
tures and properties in any given image are often special-
ized. For example, outdoor nature scenes contain struc-
tures that are quite different from city streets, which in
turn are nothing like human faces. There are two means
by which this dilemma is resolved. First, the statistical
properties that we will examine are basic enough that
they are relevant for essentially all visual scenes. Second,
we will use parametric models, in which a set of hyperpa-

rameters (possibly random variables themselves) govern
the detailed behavior of the model, and thus allow a cer-
tain degree of adaptability of the model to different types
of source material.

How does one build and test a probability model for im-
ages? Many approaches have been developed, but in this
chapter, we’ll describe an empirically-driven methodol-
ogy, based on the study of discretized (pixelated) im-
ages. Currently available digital cameras record such im-
ages, typically containing millions of pixels. Naively, one
could imagine examining a large set of such images to try
to determine how they are distributed. But a moment’s
thought leads one to realize the hopelessness of the en-
deavor. The amount of data needed to estimate a proba-
bility distribution from samples grows as KD, where D is
the dimensionality of the space (in this case, the number
of pixels). This is known as the “curse of dimensionality”.

Thus, in order to make progress on image modeling,
it is essential to reduce the dimensionality of the space.
Two types of simplifying assumption can help in this re-
gard. The first, known as a Markov assumption, is that
the probability density of a pixel, when conditioned on
a set of pixels in a small spatial neighborhood, is inde-
pendent of the pixels outside of the neighborhood. A
second type of simplification comes from imposing cer-
tain symmetries or invariances on the probability struc-
ture. The most common of these is that of translation-
invariance (i.e., sometimes called homogeneity, or strict-
sense stationarity): the distribution of pixels in a neigh-
borhood does not depend on the absolute location of that
neighborhood within the image. This seems intuitively
sensible, given that a lateral or vertical translation of the
camera leads approximately to a translation of the image
intensities across the pixel array. Note that translation-
invariance is not well defined at the boundaries, and as is
often the case in image processing, these locations must
usually be handled specially.



Another common assumption is scale-invariance: resiz-
ing the image does not alter the probability structure.
This may also be loosely justified by noting that adjust-
ing the focal length (zoom) of a camera lens approximates
(apart from perspective distortions) image resizing. As
with translation-invariance, scale-invariance will clearly
fail to hold at certain “boundaries”. Specifically, scale-
invariance must fail for discretized images at fine scales
approaching the size of the pixels. And similarly, it must
also fail for finite size images at coarse scales approaching
the size of the entire image.

With these sort of simplifying structural assumptions in
place, we can return to the problem of developing a prob-
ability model. In recent years, researchers from image
processing, computer vision, physics, applied math and
statistics have proposed a wide variety of different types
of model. In this chapter, I’ll review some basic statistical
properties of photographic images, as observed empiri-
cally, and describe several models that have been devel-
oped to incorporate these properties. I’ll give some indi-
cation of how these models have been validated by exam-
ining how well they fit the data, but the true test usually
comes when one uses the model to solve an image pro-
cessing problem (such as compression or denoising). Al-
though this is somewhat beyond the scope of this chapter,
I’ll show some simple denoising examples to give an in-
dication of how much performance gain one can obtain
by using a better statistical model. In order to keep the
discussion focused, I’ll limit the discussion to discretized
grayscale photographic images. Many of the principles are
easily extended to color photographs [8, 43], or temporal
image sequences (movies) [15], as well as more special-
ized image classes such as portraits, landscapes, or tex-
tures. In addition, the general approach may also be ap-
plied to non-visual imaging devices, such as medical im-
ages, infrared images, radar and other types of range im-
age, or astronomical images.

1 The Gaussian Model

The classical model of image statistics was developed by
television engineers in the 1950s (see [41] for a review),
who were interested in optimal signal representation and
transmission. The most basic motivation for these mod-
els comes from the observation that pixels at nearby loca-
tions tend to have similar intensity values. This is easily
confirmed by measurements like those shown in Fig. 1(a).
Each scatterplot shows values of a pair of pixels with a

given relative spatial displacement. Implicit in these mea-
surements is the assumption of homogeneity mentioned
in the introduction: the distributions are assumed to be
independent of the absolute location within the image.
And although the pixels were taken from a single photo-
graphic image (in this case, a New York City street scene),
they are nevertheless representative of what one sees in
most visual images.

The most striking behavior observed in the plots is that
the pixel values are highly correlated: when one is large,
the other tends to also be large. But this correlation falls
with the distance between pixels. This behavior is sum-
marized in Fig. 1(b), which shows the image autocorrela-
tion (pixel correlation as a function of separation).

The correlation statistics of Fig. 1 place a strong constraint
on the structure of images, but they do not provide a
full probability model. Specifically, there are many prob-
ability densities that would share the same correlation
(or equivalently, covariance) structure. How should we
choose a model from amongst this set? One natural crite-
rion is to select a density that has maximal entropy, sub-
ject to the covariance constraint [25]. Solving for this den-
sity turns out to be relatively straighforward, and the re-
sult is a multi-dimensional Gaussian:

P(~x) ∝ exp(−~xT
Cx

−1~x/2), (1)

where ~x is a vector containing all of the image pixels (as-
sumed, for notational simplicity, to be zero-mean) and
Cx ≡ IE~x~xT is the covariance matrix.

Gaussian densities are more succinctly described by
transforming to a coordinate system in which the covari-
ance matrix is diagonal. This is easily achieved using
standard linear algebra techniques:

~y = ET ~x,

where E is an orthogonal matrix containing the eigenvec-
tors of Cx, such that

Cx = EDET , =⇒ ET
CxE = D, (2)

with D a diagonal matrix containing the associated eigen-
values. When the probability distribution on ~x is station-
ary (assuming periodic handling of boundaries), the co-
variance matrix, Cx, will be circulant. In this special case,
the Fourier transform is known in advance to be a diag-
onalizing transformation matrix E, and is guaranteed to
satisfy the relationship of Eq. (2).

In order to complete the Gaussian image model, we need
only specify the entries of the diagonal matrix D, which
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Fig. 1. (a) Scatterplots of pairs of pixels at three different spatial displacements, averaged over five examples images.
(b) Autocorrelation function. Photographs are of New York City street scenes, taken with a Canon 10D digital camera,
and processed in RAW linear sensor mode (producing pixel intensities are in roughly proportional to light intensity).
Correlations were computed on the logs of these sensor intensity values [41].

correspond to the variances of frequency components in
the Fourier transform. There are two means of arriving
at an answer. First, setting aside the caveats mentioned
in the introduction, we can assume that image statistics
are scale-invariant. Specifically, suppose that the second-
order (covariance) statistical properties of the image are
invariant to resizing of the image. We can express scale-
invariance in the Fourier domain as:

IE
(

|F (sω)|2
)

= h(s)IE
(

|F (ω)|2
)

, ∀ω, s.

That is, rescaling the frequency axis does not change the
shape of the function; it merely multiplies the spectrum
by a constant. The only functions that satisfy this identity
are power laws:

IE
(

|F (ω)|2
)

=
A

ωγ

where the exponent γ controls the rate at which the spec-
trum falls. Thus, the dual assumptions of translation- and
scale-invariance constrains the covariance structure of im-
ages to a model with a single parameter!

Alternatively, the form of the power spectrum may be es-
timated empirically [e.g. 14, 18, 50, 42, 53]. For many “typ-
ical” images, it turns out to be quite well approximated
by a power law, thus providing confirmation of the scale-
invariance property for second-order statistics. In these
empirical measurements, the value of the exponent is typ-
ically near two. Examples of power spectral estimates for
several example images are shown in Fig. 2. It has also
been demonstrated that scale-invariance holds for statis-
tics other than the power spectrum [e.g., 42, 52].

The spectral model is the classic model of image process-
ing. In addition to accounting for spectra of typical image
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Fig. 2. Power spectral estimates for five example images
(see Fig. 1 for image description), as a function of spatial
frequency, averaged over orientation. These are well-
described by power law functions with an exponent, γ,
slightly larger than 2.0.
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data, the simplicity of the Gaussian form leads to direct
solutions for image compression and denoising that may
be found in essentially any textbook on image processing.
As an example, consider the problem of removing addi-
tive Gaussian white noise from an image, ~x. The degra-
dation process is described by the conditional density of
the observed (noisy) image, ~y, given the original (clean)
image ~x:

P(~y|~x) ∝ exp(−||~y − ~x||2/2σ2

n)

where σ2

n is the variance of the noise. Using Bayes’ Rule,
we can reverse the conditioning by multiplying by the
prior probability density on ~x:

P(~x|~y) ∝ exp(−||~y − ~x||2/2σ2

n) · P(~x).

An estimate for ~x may now be obtained from this poste-
rior density. One can, for example, choose the ~x that maxi-
mizes the probability (the maximum a posteriori or MAP es-
timate), or the mean of the density (the Bayes Least Squares
or BLS estimate). In the case of a Gaussian prior of Eq. 1,
these two solutions are identical.

x̂(~y) = Cx(Cx + σ2

n)−1~y.

The solution is linear in the observed (noisy) image ~y.
Finally, the solution may be rewritten in the Fourier do-
main, where the scale-invariance of the power spectrum
may be explicitly incorporated:

X̂(ω) =
A/ωγ

A/ωγ + σ2
n

· Y (ω),

where X̂(ω) and Y (ω) are the Fourier transforms of x̂(~y)
and ~y, respectively. Thus, the estimate may be computed
by linearly rescaling each Fourier coefficient. In order to
apply this denoising method, one must be given (or must
estimate) the parameters, A, γ and σn.

Despite the simplicity and tractability of the Gaussian
model, it is easy to see that the model provides a rather
weak description. In particular, while the model strongly
constrains the amplitudes of the Fourier coefficients, it
places no constraint on their phases. When one random-
izes the phases of an image, the appearance is completely
destroyed [37].

As a direct test, one can draw sample images from the dis-
tribution by simply generating white noise in the Fourier
domain, weighting each sample appropriately by 1/ωγ ,
and then inverting the transform to generate an image.
An example is shown in Fig. 3. The fact that such an ex-
periment invariably produces images of clouds implies
that a covariance constraint is insufficient to capture the
richer structure of features that are found in most real im-
ages.

Fig. 3. Example image randomly drawn from the Gaus-
sian spectral model, with γ = 2.0.

2 The Wavelet Marginal Model

For decades, the inadequacy of the Gaussian model was
apparent. But direct improvement, through introduction
of constraints on the Fourier phases, turned out to be
quite difficult. Relationships between phase components
are not easily measured, in part because of the difficulty
of working with joint statistics of circular variables, and
in part because the dependencies between phases of dif-
ferent frequencies do not seem to be well captured by a
model that is localized in frequency. A breakthrough oc-
curred in the 1980s, when a number of authors began to
describe more direct indications of non-Gaussian behav-
iors in images. Specifically, a multidimensional Gaussian
statistical model has the property that all conditional or
marginal densities must also be Gaussian. But these au-
thors noted that histograms of bandpass-filtered natural
images were highly non-Gaussian [9, 18, 13, 31, 58]. These
marginals tend to be much more sharply peaked at zero,
with more extensive tails, when compared with a Gaus-
sian of the same variance. As an example, Fig. 4 shows
histograms of three images, filtered with a Gabor function
(a Gaussian-windowed sinuosoidal grating). The intu-
itive reason for this behavior is that images typically con-
tain smooth regions, punctuated by localized “features”
such as lines, edges or corners. The smooth regions lead
to small filter responses that generate the sharp peak at
zero, and the localized features produce large-amplitude
responses that generate the extensive tails.

This basic behavior holds for essentially any bandpass fil-
ter, whether it is non-directional (center-surround), or ori-
ented, but some filters lead to responses that are more
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Fig. 4. Log histograms of a single wavelet subband of four example images (see Fig. 1 for image description). For each
histogram, tails are truncated so as to show 99.8% of the distribution. Also shown (dashed lines) are fitted model densities
corresponding to equation (3). Text indicates the maximum-likelihood value of p used for the fitted model density, and
the relative entropy (Kullback-Leibler divergence) of the model and histogram, as a fraction of the total entropy of the
histogram.

non-Gaussian than others. By the mid 1990s, a number
of authors had developed methods of optimizing a ba-
sis of filters in order to to maximize the non-Gaussianity
of the responses [e.g., 36, 4]. Often these methods oper-
ate by optimizing a higher-order statistic such as kurto-
sis (the fourth moment divided by the squared variance).
The resulting basis sets contain oriented filters of different
sizes with frequency bandwidths of roughly one octave.
Figure 5 shows an example basis set, obtained by opti-
mizing kurtosis of the marginal responses to an ensemble
of 12 × 12 pixel blocks drawn from a large ensemble of
natural images. In parallel with these statistical develop-
ments, authors from a variety of communities were devel-
oping multi-scale orthonormal bases for signal and image
analysis, now generically known as “wavelets” (see chap-
ter 4.2 in this volume). These provide a good approxima-
tion to optimized bases such as that shown in Fig. 5.

Once we’ve transformed the image to a multi-scale
wavelet representation, what statistical model can we use
to characterize the the coefficients? The statistical moti-
vation for the choice of basis came from the shape of the
marginals, and thus it would seem natural to assume that
the coefficients within a subband are independent and
identically distributed. With this assumption, the model
is completely determined by the marginal statistics of the
coefficients, which can be examined empirically as in the
examples of Fig. 4. For natural images, these histograms
are surprisingly well described by a two-parameter gen-
eralized Gaussian (also known as a stretched, or generalized
exponential) distribution [e.g., 31, 47, 34]:

Pc(c; s, p) =
exp(−|c/s|p)

Z(s, p)
, (3)

where the normalization constant is Z(s, p) = 2 s
pΓ( 1

p ).
An exponent of p = 2 corresponds to a Gaussian den-
sity, and p = 1 corresponds to the Laplacian density. In

Fig. 5. Example basis functions derived by optimizing a
marginal kurtosis criterion [see 35].
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general, smaller values of p lead to a density that is both
more concentrated at zero and has more expansive tails.
Each of the histograms in Fig. 4 is plotted with a dashed
curve corresponding to the best fitting instance of this
density function, with the parameters {s, p} estimated by
maximizing the likelihood of the data under the model.
The density model fits the histograms remarkably well,
as indicated numerically by the relative entropy measures
given below each plot. We have observed that values of
the exponent p typically lie in the range [0.4, 0.8]. The fac-
tor s varies monotonically with the scale of the basis func-
tions, with correspondingly higher variance for coarser-
scale components.

This wavelet marginal model is significantly more pow-
erful than the classical Gaussian (spectral) model. For
example, when applied to the problem of compression,
the entropy of the distributions described above is signif-
icantly less than that of a Gaussian with the same vari-
ance, and this leads directly to gains in coding efficiency.
In denoising, the use of this model as a prior density for
images yields to significant improvements over the Gaus-
sian model [e.g., 48, 11, 2, 34, 47]. Consider again the
problem of removing additive Gaussian white noise from
an image. If the wavelet transform is orthogonal, then the
noise remains white in the wavelet domain. The degra-
dation process may be described in the wavelet domain
as:

P(d|c) ∝ exp(−(d − c)2/2σ2

n)

where d is a wavelet coefficient of the observed (noisy)
image, c is the corresponding wavelet coefficient of the
original (clean) image, and σ2

n is the variance of the noise.
Again, using Bayes’ Rule, we can reverse the condition-
ing:

P(c|d) ∝ exp(−(d − c)2/2σ2

n) · P(c),

where the prior on c is given by Eq. (3). The MAP and BLS
solutions cannot, in general, be written in closed form, but
numerical solutions are fairly easy to compute [48, 47].
The resulting estimators are nonlinear “coring” functions,
in which small-amplitude coefficients are suppressed and
large-amplitude coefficients preserved. These estimates
show substantial improvement over the linear estimates
associated with the Gaussian model of the previous sec-
tion (see examples in Fig. 10).

Despite these successes, it is again easy to see that im-
portant attributes of images are not captured by wavelet
marginal models. When the wavelet transform is or-
thonormal, we can easily draw statistical samples from
the model. Figure 6 shows the result of drawing the co-
efficients of a wavelet representation independently from

Fig. 6. A sample image drawn from the wavelet
marginal model, with subband density parameters cho-
sen to fit the image of Fig. 7.

generalized Gaussian densities. The density parameters
for each subband were chosen as those that best fit the
“Einstein” image. Although it has more structure than
an image of white noise, and perhaps more than the im-
age drawn from the spectral model (Fig. 3), the result still
does not look very much like a photographic image!

The wavelet marginal model may be improved by ex-
tending it to an overcomplete wavelet basis. In partic-
ular, Zhu et al. have shown, using a variant of the
Fourier projection-slice theorem used for tomographic re-
construction, that large numbers of marginals are suffi-
cient to uniquely constrain a high-dimensional probabil-
ity density [62] (this is a variant of the Fourier projection-
slice theorem used for tomographic reconstruction). This
idea has been used to construct effective models of tex-
ture representation and synthesis [20, 61, 38]. The draw-
back of this approach is that the joint statistical properties
are defined implicitly through the imposition of marginal
statistics. They are thus difficult to study directly, or to
utilize in developing solutions for image processing ap-
plications. In the next section, we consider the more direct
development of joint statistical descriptions.

3 Wavelet Joint Models

The primary reason for the poor appearance of the im-
age in Fig. 6 is that the coefficients of the wavelet trans-
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Fig. 7. Amplitudes of multi-scale wavelet coefficients for
the “Einstein” image. Each subimage shows coefficient
amplitudes of a subband obtained by convolution with
a filter of a different scale and orientation, and subsam-
pled by an appropriate factor. Coefficients that are spa-
tially near each other within a band tend to have similar
amplitudes. In addition, coefficients at different orienta-
tions or scales but in nearby (relative) spatial positions
tend to have similar amplitudes.

form are not independent. Empirically, the coefficients
of orthonormal wavelet decompositions of visual images
are found to be moderately well decorrelated (i.e., their
covariance is zero). But this is only a statement about
their second-order dependence, and one can easily see that
there are important higher-order dependencies. Figure 7
shows the amplitudes (absolute values) of coefficients in a
four-level separable orthonormal wavelet decomposition.
Note that large-magnitude coefficients tend to occur near
each other within subbands, and also occur at the same
relative spatial locations in subbands at adjacent scales
and orientations [e.g., 46, 7].

The intuitive reason for the clustering of large-amplitude
coefficients is that typical localized and isolated image
features are represented in the wavelet domain via the
superposition of a group of basis functions at different
positions, orientations and scales. The signs and relative
magnitudes of the coefficients associated with these ba-
sis functions will depend on the precise location, orienta-
tion and scale of the underlying feature. The magnitudes
will also scale with the contrast of the structure. Thus,
measurement of a large coefficient at one scale means that
large coefficients at adjacent scales are more likely.

This clustering property was exploited in a heuristic
but highly effective manner in the Embedded Zerotree
Wavelet (EZW) image coder [44], and has been used in
some fashion in nearly all image compression systems
since. A more explicit description had been first devel-
oped in the context of denoising. More than 20 years
ago, Lee [28] suggested a two-step procedure for image
denoising, in which the local signal variance is first es-
timated from a neighborhood of observed pixels, after
which the pixels in the neighborhood are denoised us-
ing a standard linear least squares method. Although it
was done in the pixel domain, this paper introduced the
idea that variance is a local property that should be es-
timated adaptively, as compared with the classical Gaus-
sian model in which one assumes a fixed global vari-
ance. Ruderman [41] examined local variance proper-
ties of image derivatives, and noted that the derivative
field could be made more homogeneous by normalizing
by a local estimate of the standard deviation. It was not
until the 1990s that a number of authors began to ap-
ply this concept to denoising in the wavelet domain, es-
timating the variance of clusters of wavelet coefficients
at nearby positions, scales, and/or orientations, and then
using these estimated variances in order to denoise the
cluster [30, 46, 10, 47, 33, 55, 1].

The locally-adaptive variance principle is powerful, but
does not constitute a full probability model. As in the
previous sections, we can develop a more explicit model
by directly examining the statistics of the coefficients [46].
The top row of Fig. 8 shows joint histograms of sev-
eral different pairs of wavelet coefficients. As with the
marginals, we assume homogeneity in order to consider
the joint histogram of this pair of coefficients, gathered
over the spatial extent of the image, as representative of
the underlying density. Coefficients that come from adja-
cent basis functions are seen to produce contours that are
nearly circular, whereas the others are clearly extended
along the axes. Zetzsche [59] has examined the empiri-
cal joint densities of quadrature (Hilbert transform) pairs
of basis functions and found that the contours are roughly
circular. Several authors have also suggested circular gen-
eralized Gaussians as a model for joint statistics of nearby
wavelet coefficients [22, 49].

The joint histograms shown in the first row of Fig. 8 do
not make explicit the issue of whether the coefficients are
independent. In order to make this more explicit, the bot-
tom row shows conditional histograms of the same data.
Let x2 correspond to the density coefficient (vertical axis),
and x1 the conditioning coefficient (horizontal axis). The
histograms illustrate several important aspects of the rela-
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tionship between the two coefficients. First, the expected
value of x2 is approximately zero for all values of x1, indi-
cating that they are nearly decorrelated (to second order).
Second, the variance of the conditional histogram of x2

clearly depends on the value of x1, and the strength of
this dependency depends on the particular pair of coef-
ficients being considered. Thus, although x2 and x1 are
uncorrelated, they still exhibit statistical dependence!

The form of the histograms shown in Fig. 8 is surpris-
ingly robust across a wide range of images. Further-
more, the qualitative form of these statistical relationships
also holds for pairs of coefficients at adjacent spatial loca-
tions and adjacent orientations. As one considers coeffi-
cients that are more distant (either in spatial position or in
scale), the dependency becomes weaker, suggesting that
a Markov assumption might be appropriate.

The circular (or elliptical) contours, the dependency be-
tween local coefficient amplitudes, as well as the asso-
ciated marginal behaviors, can be modeled using a ran-
dom field with a spatially fluctuating variance. A partic-
ularly useful example arises from the product of a Gaus-
sian vector and a hidden scalar multiplier, known as a
Gaussian scale mixture [3] (GSM). These distributions rep-
resent an important subset of the elliptically symmetric dis-
tributions, which are those that can be defined as functions
of a quadratic norm of the random vector. Embedded in
a random field, these kinds of models have been found
useful in the speech-processing community [6]. A related
set of models, known as autoregressive conditional het-
eroskedastic (ARCH) models [e.g., 5], have proven useful
for many real signals that suffer from abrupt fluctuations,
followed by relative “calm” periods (stock market prices,
for example). Finally, physicists studying properties of
turbulence have noted similar behaviors [e.g., 51].

Formally, a random vector ~x is a Gaussian scale mix-
ture [3] if and only if it can be expressed as the product of
a zero-mean Gaussian vector ~u and an independent posi-
tive scalar random variable

√
z:

~x ∼
√

z~u, (4)

where ∼ indicates equality in distribution. The variable z
is known as the multiplier. The vector ~x is thus an infinite
mixture of Gaussian vectors, whose density is determined
by the covariance matrix Cu of vector ~u and the mixing
density, pz(z):

p~x(~x) =

∫

p(~x|z) pz(z)dz

=

∫

exp
(

−~xT (zCu)−1~x/2
)

(2π)N/2|zCu|1/2
pz(z)dz, (5)

where N is the dimensionality of ~x and ~u (in our case, the
size of the neighborhood).

The conditions under which a random vector may be rep-
resented using a GSM have been studied [3], and the GSM
family includes the α-stable family (including the Cauchy
distribution), the generalized Gaussian (or stretched ex-
ponential) family and the symmetrized Gamma fam-
ily [55]. GSM densities are symmetric and zero-mean, and
they have highly kurtotic marginal densities (i.e., heavier
tails than a Gaussian). A key property of the GSM model
is that the density of ~x is Gaussian when conditioned on
z. Also, the normalized vector ~x/

√
z is Gaussian.

A number of recent image models describe the wavelet
coefficients within each local neighborhood using a Gaus-
sian scale mixture (GSM) model, which can capture the
strongly leptokurtotic behavior of the marginal densities
of natural image wavelet coefficients, as well as the corre-
lation in their local amplitudes, as illustrated in Fig. 9. For
example, Baraniuk and colleagues used a 2-state hidden
multiplier variable to characterize the two modes of be-
havior corresponding to smooth or low-contrast textured
regions and features [12, 40]. Others assume that the lo-
cal variance is governed by a continuous multiplier vari-
able [29, 54, 33, 55, 39]. Some GSM models for images treat
the multiplier variables, z, as if they were independent,
even when they belong to overlapping coefficient neigh-
borhoods [29, 54, 39]. More sophisticated models describe
dependencies between these variables [12, 40, 55].

The underlying Gaussian structure of the GSM model al-
lows it to be adapted for problems such as denoising.
The estimator is more complex than that described for
the Gaussian or wavelet marginal models (see [39] for de-
tails), but the denoising performance shows a substantial
improvement across a wide variety of images and noise
levels. As a demonstration, Fig. 10 shows a performance
comparison of BLS estimators based on the GSM model, a
wavelet marginal model, and a wavelet Gaussian model.
The GSM estimator is significantly better, both visually
and in terms of mean squared error.

As with the models of the previous two sections, there
are indications that the GSM model is insufficient to fully
capture the structure of typical visual images. To demon-
strate this, we note that normalizing each coefficient by
(the square root of) its estimated variance should pro-
duce a field of Gaussian white noise [54]. Figure 11 illus-
trates this process, showing an example wavelet subband,
the estimated variance field, and the normalized coeffi-
cients. There are two important types of structure that
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Fig. 8. Empirical joint distributions of wavelet coefficients associated with different pairs of basis functions, for a single
image of a New York City street scene (see Fig. 1 for image description). The top row shows joint distributions as contour
plots, with lines drawn at equal intervals of log probability. The three leftmost examples correspond to pairs of basis func-
tions at the same scale and orientation, but separated by different spatial offsets. The next corresponds to a pair at adjacent
scales (but the same orientation, and nearly the same position), and the rightmost corresponds to a pair at orthogonal orien-
tations (but the same scale and nearly the same position). The bottom row shows corresponding conditional distributions:
brightness corresponds to frequency of occurance, except that each column has been independently rescaled to fill the full
range of intensities.

remain. First, although the normalized coefficients are
certainly closer to a homogeneous field, the signs of the
coefficients still exhibit important structure. Second, the
variance field itself is far from homogeneous, with most
of the significant values concentrated on one-dimensional
contours.

4 Discussion

After nearly 50 years of Fourier/Gaussian modeling, the
late 1980s and 1990s saw sudden and remarkable shift in
viewpoint, arising from the confluence of (a) multi-scale
image decompositions, (b) non-Gaussian statistical obser-
vations and descriptions, and (c) variance-adaptive sta-
tistical models based on hidden variables. The improve-
ments in image processing applications arising from these
ideas have been steady and substantial. But the complete
synthesis of these ideas, and development of further re-
finements are still underway.

Variants of the GSM model described in the previous sec-
tion seem to represent the current state-of-the-art, both in
terms of characterizing the density of coefficients, and in
terms of the quality of results in image processing appli-

cations. There are several issues that seem to be of pri-
mary importance in trying to extend such models. First,
a number of authors have examined different methods of
describing regularities in the local variance field. These
include spatial random fields [23, 26, 24], and multiscale
tree-structured models [40, 55]. Much of the structure in
the variance field may be attributed to discontinuous fea-
tures such as edges, lines, or corners. There is a substan-
tial literature in computer vision describing such struc-
tures [e.g., 57, 32, 17, 27, 56], but it has proven difficult
to establish models that are both explicit and flexible. Fi-
nally, there have been several recent studies investigat-
ing geometric regularities that arise from the continuity
of contours and boundaries [45, 16, 19, 21, 60]. These and
other image structures will undoubtedly be incorporated
into future statistical models, leading to further improve-
ments in image processing applications.
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[33] M. K. Mihçak, I. Kozintsev, K. Ramchandran, and
P. Moulin. Low-complexity image denoising based
on statistical modeling of wavelet coefficients. IEEE
Trans. Sig. Proc., 6(12):300–303, December 1999.

[34] P. Moulin and J. Liu. Analysis of multiresolution
image denoising schemes using a generalized Gaus-
sian and complexity priors. IEEE Trans. Info. Theory,
45:909–919, 1999.

[35] B. A. Olshausen and D. J. Field. Emergence of
simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381:607–609,
1996.

[36] B. A. Olshausen and D. J. Field. Sparse coding with
an overcomplete basis set: A strategy employed by
V1? Vision Research, 37:3311–3325, 1997.

[37] A. V. Oppenheim and J. S. Lim. The importance of
phase in signals. Proc. of the IEEE, 69:529–541, 1981.

[38] J. Portilla and E. P. Simoncelli. A parametric texture
model based on joint statistics of complex wavelet
coefficients. Int’l Journal of Computer Vision, 40(1):49–
71, December 2000.

[39] J. Portilla, V. Strela, M. Wainwright, and E. P. Simon-
celli. Image denoising using a scale mixture of Gaus-
sians in the wavelet domain. IEEE Trans Image Pro-
cessing, 12(11):1338–1351, November 2003.

[40] J. Romberg, H. Choi, and R. Baraniuk. Bayesian
wavelet domain image modeling using hidden
Markov trees. In Proc. IEEE Int’l Conf on Image Proc,
Kobe, Japan, October 1999.

12



[41] D. L. Ruderman. The statistics of natural images.
Network: Computation in Neural Systems, 5:517–548,
1996.

[42] D. L. Ruderman and W. Bialek. Statistics of natu-
ral images: Scaling in the woods. Phys. Rev. Letters,
73(6):814–817, 1994.

[43] D. L. Ruderman, T. W. Cronin, and C.-C. Chiao.
Statistics of cone responses to natural images: Im-
plications for visual coding. J. Opt. Soc. Am. A,
15(8):2036–2045, 1998.

[44] J. Shapiro. Embedded image coding using ze-
rotrees of wavelet coefficients. IEEE Trans Sig Proc,
41(12):3445–3462, December 1993.

[45] M. Sigman, G. A. Cecchi, C. D. Gilbert, and M. O.
Magnasco. On a common circle: Natural scenes
and Gestalt rules. Proc. National Academy of Sciences,
98(4):1935–1940, 2001.

[46] E. P. Simoncelli. Statistical models for images:
Compression, restoration and synthesis. In Proc
31st Asilomar Conf on Signals, Systems and Com-
puters, pages 673–678, Pacific Grove, CA, Novem-
ber 1997. IEEE Computer Society. Available from
http://www.cns.nyu.edu/∼eero/publications.html.

[47] E. P. Simoncelli. Bayesian denoising of visual im-
ages in the wavelet domain. In P. Müller and B. Vi-
dakovic, editors, Bayesian Inference in Wavelet Based
Models, chapter 18, pages 291–308. Springer-Verlag,
New York, 1999. Lecture Notes in Statistics, vol. 141.

[48] E. P. Simoncelli and E. H. Adelson. Noise removal
via Bayesian wavelet coring. In Third Int’l Conf
on Image Proc, volume I, pages 379–382, Lausanne,
September 1996. IEEE Sig Proc Society.

[49] A. Srivastava, X. Liu, and U. Grenander. Univer-
sal analytical forms for modeling image probability.
IEEE Pat. Anal. Mach. Intell., 28(9), 2002.

[50] D. J. Tolhurst, Y. Tadmor, and T. Chao. Amplitude
spectra of natural images. Opth. and Physiol. Optics,
12:229–232, 1992.

[51] A. Turiel, G. Mato, N. Parga, and J. P. Nadal. The
self-similarity properties of natural images resemble
those of turbulent flows. Phys. Rev. Lett., 80:1098–
1101, 1998.

[52] A. Turiel and N. Parga. The multi-fractal structure
of contrast changes in natural images: From sharp
edges to textures. Neural Computation, 12:763–793,
2000.

[53] A. van der Schaaf and J. H. van Hateren. Modelling
the power spectra of natural images: Statistics and
information. Vision Research, 28(17):2759–2770, 1996.

[54] M. J. Wainwright and E. P. Simoncelli. Scale mixtures
of Gaussians and the statistics of natural images. In
S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Adv.
Neural Information Processing Systems (NIPS*99), vol-
ume 12, pages 855–861, Cambridge, MA, May 2000.
MIT Press.

[55] M. J. Wainwright, E. P. Simoncelli, and A. S. Will-
sky. Random cascades on wavelet trees and their
use in modeling and analyzing natural imagery. Ap-
plied and Computational Harmonic Analysis, 11(1):89–
123, July 2001.

[56] Z. Wang and E. P. Simoncelli. Local phase coherence
and the perception of blur. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Adv. Neural Information Process-
ing Systems (NIPS*03), volume 16, Cambridge, MA,
2004. MIT Press.

[57] A. P. Witkin. Scale-space filtering. In Proc. Intl. Joint
Conf. Artificial Intelligence, pages 1019–1021, 1985.

[58] C. Zetzsche and E. Barth. Fundamental limits
of linear filters in the visual processing of two-
dimensional signals. Vision Research, 30:1111–1117,
1990.

[59] C. Zetzsche, B. Wegmann, and E. Barth. Nonlinear
aspects of primary vision: Entropy reduction beyond
decorrelation. In Int’l Symposium, Society for Informa-
tion Display, volume XXIV, pages 933–936, 1993.

[60] S.-C. Zhu. Statistical modeling and conceptualiza-
tion of visual patterns. IEEE Trans PAMI, 25(6), June
2003.

[61] S. C. Zhu, Y. N. Wu, and D. Mumford. Minimax en-
tropy principle and its application to texture model-
ing. In Neural Computation, volume 9, pages 1627–
1660, 1997.

[62] S. C. Zhu, Y. N. Wu, and D. Mumford. FRAME: Fil-
ters, random fields and maximum entropy – towards
a unified theory for texture modeling. Intl. J. Comp.
Vis., 27(2):1–20, 1998.

13


