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It is widely believed that visual systems are optimized for the

visual properties of the environment inhabited by the organism. A

specific instance of this principle is known as the Efficient Coding

Hypothesis, which holds that the purpose of early visual

processing is to produce an efficient representation of the

incoming visual signal. The theory provides a quantitative link

between the statistical properties of the world and the structure

of the visual system. As such, specific instances of this theory

have been tested experimentally, and have been used to

motivate and constrain models for early visual processing.
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Introduction
One of the primary roles of theory in the sciences is to

provide fundamental principles that explain why the

natural world is constructed as it is. In biology, the main

example of such a principle is the theory of evolution by

natural selection. In the context of vision, this sort of

philosophy was championed by Marr [1], who argued that

it is essential to consider the visual system at an abstract

computational level in order to understand its design.

Two specific instances of this philosophy provide a

quantitative link between the statistical properties of

the visual environment and the structure of biological

visual systems: the so-called Efficient Coding Hypoth-

esis, and the formulation of early vision problems in terms

of Bayesian estimation or decision theory. Specific

instances of both theories can be tested experimentally,

and can be used to motivate and constrain models for

vision. The Efficient Coding Hypothesis has been a

central topic in a variety of recent workshops and meet-

ings (see box 1), as well as of several review articles [2,3��]
and a special journal issue [4]. Recent results related to

this hypothesis are interesting although controversial.

Owing to this flurry of recent interest, and because

Bayesian theories of vision have been reviewed in several

other places (e.g. [5–10]), I focus almost entirely on

efficient coding in this review, with the emphasis on

studies published over the past two years.

Efficient coding
The theory of information plays a natural role in models of

neural systems by providing abstract but unique quanti-

tative definitions for information [11]. Barlow [12] recog-

nized the importance of information theory in this context

and hypothesized that the efficient coding of visual

information could serve as a fundamental constraint on

neural processing. This hypothesis holds that a group of

neurons should encode information as compactly as pos-

sible, so as to utilize the available computing resources

most effectively. Mathematically, this is expressed as a

desire to maximize the information that neural responses

provide about the visual environment.

The simplest form of this hypothesis (in particular, ignor-

ing the noise in neural responses) decouples naturally into

two separate statements: one regarding the statistics of

individual neural responses and a second regarding the

joint statistics of the responses of a population of neurons

[2,13,14]. The responses of an individual neuron to the

natural environment should fully utilize its output capa-

city, within the limits of any constraints on the response

(e.g., maximum firing rate). In other words, each neuron

should utilize its full output capacity in encoding infor-

mation. The responses of different neurons to the natural

environment should be statistically independent from

each other. In other words, the information carried by

each neuron should not be redundant with that carried by

the others. This is also consistent with a notion that the

visual system strives to decompose a scene into statisti-

cally independent constituents (e.g. individual objects).

More detailed discussions of these ideas, as well as the

role of noise, may be found in other articles [2,12,14–21].

Criticisms
A variety of criticisms have been voiced regarding the

Efficient Coding Hypothesis. Several of these represent

misconceptions about the theory, some are aimed at

particular variants of the theory, some are about practical

experimental issues, whereas others are more fundamen-

tal. Below is brief discussion of some of these criticisms

(see the recent review article by Barlow [3��] for addi-

tional discussion).

The purpose of vision

It has often been argued that efficient coding of visual

information is irrelevant because the purpose of vision is

144

Current Opinion in Neurobiology 2003, 13:144–149 www.current-opinion.com



not to encode or reconstruct the visual world. There is some

truth to this criticism, in that the hypothesis does not take

into account how the information that has been extracted is

to be used. This may be viewed as either an advantage

(because one does not need to assume any specific visual

task or goal, and does not even need to specify what is being

represented) or a limitation (because tasks and goals are

clearly relevant for visual processing). More complete

theories, such as that given by Bayesian estimation and

decision, can take into account both the statistical structure

of the environment and the visual task or goal.

Relevance of information theory

A second criticism of the Efficient Coding Hypothesis is

that ‘information theory is irrelevant because the brain is

not concerned with bits’. Bits are simply a standard choice

of unit for information, but the abstract definition of

information is well motivated, unique, and most certainly

relevant to the brain.

Experimentally observed dependency

One criticism of the Efficient Coding Hypothesis is that

‘some experimental data from multi-neuron recordings

show correlation, synchronization, or other forms of sta-

tistical dependency between neurons’. Most of these data

came from experiments that did not use naturalistic

stimuli, however, and thus dependencies in the neural

responses are not directly relevant to the hypothesis. In

addition, recent studies suggest that responses to natural

stimuli in the primary visual cortex (V1) are relatively

independent [22,23�,24�]. Even if one were to observe

dependencies in neural responses under natural stimulus

conditions, the hypothesis states only that the system

strives for independence; the constraints of neural pro-

cessing may prevent this being achieved. Taking this

into account, a more realistic expectation might be that

successive stages of processing (e.g. steps along an

ascending sensory pathway) should reduce statistical

dependence [25��].

Over-representation in cortex

A further criticism of the Efficient Coding Hypothesis is

based on a comparison of the number of retinal ganglion

cells to the number of neurons in the primary visual

cortex. Critics argue that ‘the number of neurons devoted

to processing sensory information seems to expand as one

goes deeper into the system, suggesting that the brain

increases redundancy’. This argument usually assumes,

however, that the coding capacity of all neurons (and in

particular those in retina and cortex) is the same. The

distribution of information amongst more neurons does

not necessitate more redundancy if the form of neural

coding employed by those neurons differs. For example

(as Barlow points out [3��]), cortical neurons tend to have

lower firing rates than retinal neurons, and may well use a

different form of code. In addition, cortical neurons have

more complex temporal dynamic properties (e.g. adapta-

tion) that may serve to encode information over longer

timescales. Although the redundancy of retinal and V1

neurons has not been experimentally compared, a related

comparison in the auditory system was able to demon-

strate a reduction of redundancy [25��].

Experimental impracticality

Estimation of information-theoretic quantities requires

enormous amounts of data, and is thus impractical for

experimental verification. This is a significant problem for

the Efficient Coding Hypothesis, especially as commonly

used estimators of information are known to be heavily

biased. Nevertheless, cases of successful experimental

measurement give reason for optimism on this point

(see below).

Definition of input and output

The Efficient Coding Hypothesis crucially depends on

the probability distribution of natural images and the

definition of the neural response, both of which are

unconstrained. Thus, the theory is not as assumption free

as one is led to believe. In my opinion, this is the most

fundamental problem with the hypothesis. Typically, the

input distribution is not defined explicitly, but is assumed

to be well represented by a collection of calibrated

‘naturalistic’ images. When applying the hypothesis,

one must specify which neurons are meant to satisfy

the hypothesis (e.g., neurons within a particular cell class,

or within a specific visual area, or across multiple visual

areas), and how their responses are to be measured (e.g.

mean firing rates versus individual spike times). Again,

examples of successful experimental measurement give

us reason for optimism.

Importance of noise

The final criticism of the Efficient Coding Hypothesis

discussed here is that ‘commonly used versions of the

theory that ignore noise and other physical constraints are

too simplistic’. This is a valid argument, but in many

cases may not constitute a fatal flaw. Even simplistic

forms of the theory seem to make interesting predictions,

and many authors have developed more sophisticated

versions that include physical constraints such as noise

(see below).

Box 1 Recent workshops on natural scene statistics and
their relevance to biology.

http://redwood.ucdavis.edu/bruno/NIPS96/abstracts.html

http://www.klab.caltech.edu/�pam/cns96/summaries/

natscenes96.html
http://goethe.klab.caltech.edu/�pam/nssmeeting/

http://www.cnl.salk.edu/�rao/workshop.html

http://www.klab.caltech.edu/�pam/nss2000.html

http://gandalf.psych.umn.edu/�kersten/kersten-lab/

CompNeuro2002/index.htm

http://www.klab.caltech.edu/�pam/NSS2002.htm

http://www.ski.org/Carandini/symposium.
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Testing the hypothesis
Although the Efficient Coding Hypothesis is roughly

fifty years old, it has only recently been explored

quantitatively. This recent progress is due to three

fundamental improvements in the field. First, we have

a much better understanding of early sensory proces-

sing. Second, mathematical and engineering tools have

been developed for the description and manipulation of

more complex statistical models. And third, advances in

computing and imaging technologies allow us to gather

and manipulate vast quantities of image data, both for

use as experimental stimuli and for statistical modeling

purposes.

There are two basic methodologies for testing and refin-

ing the Efficient Coding Hypothesis. The direct approach

is to examine the statistical properties of neural responses

under natural stimulation conditions (e.g. [20,22,26–28]).

An alternative approach is to use the statistical properties

of natural images to constrain or derive a model for early

sensory processing (e.g. [18,29–37]). Below, I review some

recent examples of each of these methods.

Experimental tests
In recent years, there have been several interesting

experimental studies that take the direct approach and

examine neural responses to naturalistic images or image

sequences (see [38��] for a review). Researchers have

measured efficiency in a variety of different ways, and

although the results of some studies seem to confirm the

hypothesis of efficient coding, others seem inconsistent

with it. On the whole, however, recent results have

helped to advance our understanding of the issues under

investigation.

For example, Baddeley et al. [28] had shown that firing-

rate distributions of cat visual area V1 neurons and mon-

key inferotemporal (IT) neurons were exponential under

naturalistic conditions, which implies optimal informa-

tion transmission for a fixed average rate of firing. A

subsequent study of monkey IT neurons found that only

a minority were well described by an exponential firing

distribution [39]. De Polavieja [40] later argued that this

discrepancy was due to the fact that the exponential

solution is correct only for the noise-free case, and showed

that by taking noise into consideration, one could account

for the observed results.

Similarly, previous results from Meister et al. [41] sug-

gested that retinal ganglion cells exhibit strong firing

correlations, and that these patterns could provide useful

information (although these experiments did not directly

address efficient coding as they were not based on natural

image stimuli). A recent article by Nirenberg et al. [23�]
argues that retinal ganglion cells act as independent

encoders, on the basis of multi-cell recordings with nat-

ural stimuli and a novel (but controversial) choice of

redundancy measure. Reich et al. [42�] found that

responses of V1 neurons are nearly independent under

non-natural (approximately white noise) stimulation.

This seems inconsistent with the Efficient Coding

Hypothesis, as one typically expects efficiency to degrade

for non-natural stimuli (e.g. [20]). Wiener et al. find that

the information encoded by the spike counts of V1

neurons over moderate length intervals is nearly the same

for various artificial stimuli as it is for naturalistic stimuli

[43]. Vinje and Gallant [24�] recently reported that the

presence of natural stimuli in the non-classical receptive

field increases several measures of informational effi-

ciency. Finally, it is worth mentioning an interesting

article by Chechik et al. [25��], even though the study

concerns the auditory system. Their work provides one of

the first direct tests of the reduction of redundancy as one

ascends a sensory pathway.

Several studies suggest that the visual system exhibits

improved performance under naturalistic input condi-

tions. For example, Lewen et al. [44] demonstrated that

the H1 neuron in the blowfly responds over a substantially

broader range of velocities for outdoor scenes than for

indoor scenes. Kern et al. [45] show that blowfly neurons

can encode turning directions independently of environ-

mental texture and spatial structure, but only when the

environment is ‘natural’. Although the connection has not

been fully established, the Efficient Coding Hypothesis

suggests that optimal characterization of a neural system

might be best performed using naturalistic stimuli.

Experiments to demonstrate this have been performed

(e.g. [46]), and recently developed analysis techniques

may provide the necessary tools for characterization

[47,48].

Optimal models
As mentioned above, the second method of testing the

Efficient Coding Hypothesis is to derive a model for the

efficient coding of the environment and then compare

it with physiological data. Many of the original attempts

to use this method were constrained to linear filtering

and second-order statistical modeling (e.g. [18,29–33]).

Recently, several authors have established relationships

between higher-order statistical properties and linear

filtering (e.g. [34,35]). Others have also used various forms

of non-linear processing, such as divisive gain control

[37,49�–51�]. In addition, some authors are beginning

to explore the cascades of redundancy-reduction stages.

For example, Hoyer and Hyvarinen [52�] have developed

a model that forms contour-like receptive fields on the

basis of the statistical properties of model V1 complex cell

responses under natural stimulus conditions.

Extensions
Researchers have recently used a variety of auxiliary

constraints or extensions to augment the efficiency

hypothesis. Several authors have tried to incorporate
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the metabolic costs of neural activity as a constraint

[53,54]. Recently, Balasubramanian and Berry [55]

demonstrated that retinal ganglion cells in the tiger

salamander are optimized to transmit visual information

at a minimal metabolic cost, assuming that the symbols of

the neural code are represented by spike bursts of a given

length. Although this result is interesting, the data were

recorded under artificial visual stimulation conditions,

and thus do not bear directly on the issue of environ-

mental statistics. Similarly, Gottschalk [56] shows that a

hyperbolic ratio provides an optimal neural response to

non-linearity, in that it maximizes information transmis-

sion subject to a simple model of neural costs that

includes both synaptic strength and spike rate. Again,

the result is implicitly based on white noise input stimuli,

and thus does not bear directly on the Efficient Coding

Hypothesis.

It has been proposed that efficient coding might also

apply to adaptive processes [57–59]. Brenner et al. and

Fairhall and co-workers [60,61�] have demonstrated that

adaptation of the fly’s H1 neuron to the variance of a

white-noise stimulus appears to optimize information

transmission.

Several other authors have also augmented efficient cod-

ing with other constraints or principles. Several authors

have derived models for V1 complex cells by maximizing

the independence or temporal coherence of cells con-

structed using non-linear combinations of linear subunits

(e.g., sums of squared linear filter responses) [62–64].

Balboa and Grzywacz [65] argue that lateral inhibition

in the retina is inconsistent with pure information max-

imization, and provide an alternative hypothesis suggest-

ing that the system is designed to detect and represent

image features in the presence of photon-absorption

noise. Additionally, Von-de-Twer and Mcleod [66]

showed that color representation in monkey ganglion

cells is best understood in the context of optimizing

the average ability to discriminate color signals in the

natural environment.

Conclusions
The recent resurgence of interest in efficient coding has

produced several interesting experimental and theoreti-

cal results. Rather than merely solidifying or disproving

the basic hypothesis, however, this body of work demon-

strates the complexity and subtlety of establishing a firm

quantitative connection between the properties of natural

stimuli and a neural response. Most of the difficulty lies in

the definition of the input (what is a ‘natural’ image?) and

the output (which neurons should be considered, and how

does one define ‘neural response’?), as well as in the

complexities of incorporating realistic constraints (e.g.

noise and metabolic costs) and computational goals. As

we wrestle with these issues, it becomes clear that the

value of efficient coding has already far exceeded its role

as a hypothesis to be evaluated. Effort directed at study-

ing this hypothesis has significantly advanced the field by

increasing the general level of quantitative investigation,

by leading us to carefully study and model the visual

environment from a statistical standpoint, by forcing us to

consider the influence of environmental statistics on

neural response, and by encouraging us to examine neural

response to natural stimuli. Although it seems improbable

that Efficient Coding will suffice as the sole principle for

understanding sensory system design, it is clear that it will

continue to play an important role.
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