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Seeing patterns in the noise

Eero P. Simoncelli

Howard Hughes Medical Institute, Center for Neural Science, and Courant Insitute for Mathematical Sciences, New York University,

4 Washington Place, Rm. 809, New York, NY 10003, USA

How do observers detect the presence of objects or

features in visual images? Stochastic stimuli (for

example, white noise) have become popular choices for

providing a linear characterization of early sensory

mechanisms. A recent paper by Neri and Heeger takes

this type of methodology a step further, and succeeds

in isolating and characterizing non-linear mechanisms

responsible for the detection and identification of a

specific visual target.

What is it that allows us to detect the presence of objects or
features in visual images? And are the mechanisms
responsible for detection also responsible for identification
of those features? Traditional attempts to answer such
questions are based on psychopysical experiments, in
which the experimentor measures the detectability or
identifiability of some fixed target as a function of target
brightness and perhaps other target attributes. Early on in
such research, experimentors realized the importance of
randomizing the presentation of stimuli, in order to avoid
unwanted history-dependence in their measurements.
Over thirty years ago, a number of authors proposed a
more extreme form of randomization, in which stimuli are
drawn randomly from an ensemble and presented in rapid
succession [1,2]. The stimuli are then labelled according to
responses (for example, ‘yes’ or ‘no’ in a psychophysical
detection task), and the properties of these ‘response-
triggered’ stimulus sets are analyzed.

Related approaches have also been developed, in which
a stimulus is buried in noise, and one analyzes the
influence of each particular sample of noise on the
subjective response (see, for example, [3,4]). There has
been a resurgence of interest in these techniques (see [5]
for a number of examples), partly as a result of the
development of computer hardware and software capable
of both real-time random stimulus generation and compu-
tationally intensive statistical analysis.

An example: detecting and identifying a target

A recent article by Neri and Heeger provides an intriguing
example of the use of this type of technique to reveal non-
linear mechanisms used for detection and identification of
a vertical bar [6]. The stimuli are movies, each nine frames
long, containing a set of eleven abutting vertical bars. The
intensities of the bars are chosen randomly on each frame
from a uniform distribution. An example stimulus is
illustrated in Fig. 1. After each movie is presented, the
subject reports whether they believe the central location of

the middle frame contained a target bar of known polarity
(bright or dark). The purpose of the experiment is to
determine those aspects of the 9 £ 11 space–time array of
intensities that determine the subject’s response.

Consider the intensity of a single bar in the movie. This
intensity takes on a random value for each trial, drawn
from some probability distribution. On each trial, the
observer indicates whether or not they have seen the
target. The result is a partition of the bar intensities into
two sets: those for which the subject answered ‘yes’, and
those on which they answered ‘no’. A comparison of these
two conditional distributions of bar values can tell us
something about the relationship between that particular
pixel and the subject’s behavior on this task.

Some hypothetical situations are illustrated with
simulated data in Fig. 2. Figure 2a shows the distribution
of bar intensities across all trials. If the subject’s responses
do not depend on this bar intensity, then the distribution of
stimuli associated with ‘yes’ (or ‘no’) responses should be
the same shape as the full stimulus distribution (up to
statistical sampling error) (Fig. 2b). Conversely, if these
response-triggered distributions do not match that of the
full set of stimuli, we can infer something about the
relationship between that bar and the response. For
example, Fig. 2c shows response-triggered distributions

Fig. 1. Depiction of a typical stimulus as used in Neri and Heeger’s experiments [6].

Each stimulus was a movie consisting of nine frames of eleven vertical bars,

whose intensities were chosen randomly from a uniform distribution on each

frame. Subjects were asked whether they saw a bright bar in the middle of the

stimulus block, on the middle frame.

TRENDS in Cognitive Sciences 

Time
X

Y

Corresponding author: Eero P. Simoncelli (eero@cns.nyu.edu).

Update TRENDS in Cognitive Sciences Vol.7 No.2 February 2003 51

http://tics.trends.com

http://www.trends.com


for a case where higher bar intensity increases the
probability of the subject’s responding ‘yes’. Similarly,
Fig. 2d shows a case in which ‘yes’ responses are more
likely when the bar intensity has a larger contrast (i.e.
when it deviates further from the background value). Bar
intensities near zero are more likely to elicit a ‘no’ response,
and those far from zero are more likely to elicit a ‘yes’.

These three example behaviors can be summarized
using the difference between the means and variances of
the two response-triggered distributions. Situation (d)
produces a large difference in variance, but small
difference in mean. Situation (c) produces a large
difference in mean but small difference in variance. And
situation (b) produces little difference in either mean or
variance.

Mechanisms for detection and idenification

Neri and Heeger performed the mean and variance
analysis for every bar in their movie stimuli, and
assembled the results to form two summary movies.
They refer to these as a ‘mean kernel’ (the difference in
mean intensity of the ‘yes’- and ‘no’-triggered distributions
for each location and frame of the stimulus) and a ‘variance
kernel’ (the same calculation for the variances of the
response-triggered distributions). The mean kernel shows
a center–surround type of organization: a positive region
spread over the middle frames, surrounded by two
negative regions that are also spread over the middle
frames.

If one assumes that each of the stimulus bars influences
the subjective response independently, and that the
probability of a ‘yes’ response varies monotonically with
the intensity of each bar, then this mean kernel represents
the most potent stimulus for generating a ‘yes’ response. In
physiological applications of reverse-correlation, this
kernel can provide a linear characterization of a neuron’s
receptive field (with a few assumptions) [7]. Psychophysi-
cally, the interpretation is similar: the mean kernel
provides a linear description of the mechanism that is
generating subject responses. Note that an ideal detector
for the target would simply measure the intensity at the
central location of the middle frame, and thus the mean
kernel for such a detector would consist only of a positive
central bar. The experimentally measured kernel implies
that the visual system is sub-optimal for this task, and
implies that subject responses are generated by a
mechanism with a center–surround organization, as
found in neurons in retina, lateral geniculate nucleus, or
primary visual cortex.

The more surprising result comes from the estimation of
the variance kernel, which shows a positive region in the
center of the stimulus spread over the earliest frames (i.e.
preceding the target frame). That is, subjects are more
likely to respond ‘yes’ when the early frames of the
stimulus movie contain high contrast bars in the center.
This means, for example, that a bar with large positive or
negative intensity occuring on the first or second frame
makes it more likely the subject will say that they saw a

Fig. 2. Hypothetical examples illustrating the analysis used by Neri and Heeger for a single bar within the stimulus (i.e. at a single location in a single frame). (a) Distribution

of intensity values (s), relative to mean background intensity, for 10 000 trials. (b,c,d) Three hypothetical distributions of bar intensity values conditioned on subject

response (solid ¼ yes, dashed ¼ no). (b) a bar that has no influence on the subjective response. In this case, both response-triggered intensity distributions are the same

shape as the raw stimulus distribution, apart from statistical variability; (c) a bar whose intensity affects the subject’s response: large intensities are more likely to elicit ‘yes’

responses; (d) a bar whose contrast (deviation from background intensity) affects subject’s response: large constrasts are more likely to elicit ‘yes’ responses.
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positive-intensity target in the middle frame. Again, this
implies a sub-optimal strategy for detecting the target, as
these early bar intensities are independent of the presence
or absence of the target. Neri and Heeger interpret this to
mean that these early high-contrast signals are engaging a
separate ‘attentional’ mechanism that is used to detect the
target. They ran a clever second experiment in which
subjects had both to detect and to identify the polarity of
the target, and the results demonstrated that the variance
kernel accounted for the detection task and the mean
kernel accounted for the identification task. The experi-
ment thus lends support to the hypothesis that the visual
system answers the questions of ‘what?’ and ‘where?’ using
separate mechanisms [8].

Conclusion

The resultsof Neriand Heeger’s experiments are intriguing,
and provide an elegant demonstration of the power of
stochastic stimuli in characterizing visual mechanisms. It
is worth considering the drawbacks of this approach, as
well as possible generalizations. First, designing and
executing this type of experiment is quite difficult, and
relies on a number of decisions about how to instruct
subjects, how much and what kind of training to allow, how
strong a target signal to use, and whether to provide
feedback. Second, the summary of their method in this
brief review has been simplified to ignore the distinction
between cases in which a target was present and those
when there was no target, because most of the analysis
presented in the paper by Neri and Heeger was done in this
fashion (although they do present results for the ‘False
Alarm’ case alone, which seem consistent with the
simplified yes/no case). Analysis and interpretation of
these sub-cases is more difficult, but can potentially offer
further insights into the nature of the underlying visual
mechanisms. It would also be interesting to extend the
analysis to include interactions between stimulus bars
(i.e. estimation of response-triggered covariance), as has
been done in physiological settings [9–11]. This could
provide a richer characterization of the underlying

mechanisms, at the expense of requiring more data for
reliable estimation.

Finally, it would be interesting to see this technique
applied to the detection, discrimination or identification of
more complex stimulus features, such as those defined by
orientation or motion (e.g. see [12]). Ultimately, refine-
ment of these techniques could allow us to formulate a
precise description of the mechanisms underlying all
aspects of vision, from detection of complex features, to
attentional and recognition processes.
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Imagined movements that leak out

Margaret Wilson
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In a case study that fundamentally alters our under-

standing of motor imagery, Schwoebel et al. report a

patient who unintentionally carries out imagined move-

ments. Furthermore, his ‘imagery’ movements are

more accurate than his intended movements, which

suggests that the inhibitory signal that normally pre-

vents us from acting out our motor imagery can be

selectively blocked. Removing this inhibition allows us

to observe motor imagery ‘in action’, and reveals that

motor imagery and motor planning for execution are

not identical.

In the last twenty years it has become accepted that
‘imagery’ of perceptual or motor events involves mental
representations that, in some important sense, resemble
the ‘real thing’. Visual imagery, for example, causes
activation in visual processing areas of the brain [1], and
motor imagery causes activation in motor areas [2]. ButCorresponding author: Margaret Wilson (mlwilson@cats.ucsc.edu).
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