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Abstract:

It has long been assumed that sensory neurons are adapted, through both evolutionary and

developmental processes, to the statistical properties of the signals to which they are exposed.

Attneave (1954) and Barlow (1961) proposed that information theory could provide a link be-

tween environmental statistics and neural responses through the concept of coding eÆciency.

Recent developments in statistical modeling, along with powerful computational tools, have en-

abled researchers to study more sophisticated statistical models for visual images, to validate

these models empirically against large sets of data, and to begin experimentally testing the

eÆcient coding hypothesis for both individual neurons and populations of neurons.

1 Introduction

Understanding the function of neurons and neural systems is a primary goal of sys-

tems neuroscience. The evolution and development of such systems is driven by three

fundamental components: (a) the tasks that the organism must perform, (b) the compu-

tational capabilities and limitations of neurons (this would include metabolic and wiring

constraints), and (c) the environment in which the organism lives. Theoretical studies

and models of neural processing have been most heavily in
uenced by the �rst two. But

the recent development of more powerful models of natural environments has led to in-
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creased interest in the role of the environment in determining the structure of neural

computations.

The use of such ecological constraints is most clearly evident in sensory systems, where

it has long been assumed that neurons are adapted, at evolutionary, developmental, and

behavioral timescales, to the signals to which they are exposed. Because not all signals

are equally likely, it is natural to assume that perceptual systems should be able to best

process those signals that occur most frequently. Thus, it is the statistical properties of

the environment that are relevant for sensory processing. Such concepts are fundamental

in engineering disciplines: Source coding, estimation, and decision theories all rely heavily

on a statistical \prior" model of the environment.

The establishment of a precise quantitative relationship between environmental statis-

tics and neural processing is important for a number of reasons. In addition to providing

a framework for understanding the functional properties of neurons, such a relationship

can lead to the derivation of new computational models based on environmental statistics.

It can also be used in the design of new forms of stochastic experimental protocols and

stimuli for probing biological systems. Finally, it can lead to fundamental improvements

in the design of devices that interact with human beings.

Despite widespread agreement that neural processing must be in
uenced by environ-

mental statistics, it has been surprisingly diÆcult to make the link quantitatively precise.

More than 40 years ago, motivated by developments in information theory, Attneave

(1954) suggested that the goal of visual perception is to produce an eÆcient represen-

tation of the incoming signal. In a neurobiological context, Barlow (1961) hypothesized

that the role of early sensory neurons is to remove statistical redundancy in the sensory

input. Variants of this \eÆcient coding" hypothesis have been formulated by numerous

other authors (e.g. Laughlin 1981, Atick 1992, van Hateren 1992, Field 1994, Rieke

et al. 1995).

But even given such a link, the hypothesis is not fully speci�ed. One needs also to

state which environment shapes the system. Quantitatively, this means speci�cation of a

probability distribution over the space of input signals. Because this is a diÆcult problem

in its own right, many authors base their studies on empirical statistics computed from

a large set of example images that are representative of the relevant environment. In

addition, one must specify a timescale over which the environment should shape the

system. Finally, one needs to state which neurons are meant to satisfy the eÆciency

criterion, and how their responses are to be interpreted.

There are two basic methodologies for testing and re�ning such hypotheses of sensory

processing. The more direct approach is to examine the statistical properties of neural

responses under natural stimulation conditions (e.g. Laughlin 1981, Rieke et al. 1995,

Dan et al. 1996, Baddeley et al. 1998, Vinje & Gallant 2000). An alternative approach

is to \derive" a model for early sensory processing (e.g. Sanger 1989, Foldiak 1990,

Atick 1992, Olshausen & Field 1996, Bell & Sejnowski 1997, van Hateren & van der

Schaaf 1998, Simoncelli & Schwartz 1999). In such an approach, one examines the

statistical properties of environmental signals and shows that a transformation derived

according to some statistical optimization criterion provides a good description of the

response properties of a set of sensory neurons. In the following sections, we review the

basic conceptual framework for linking environmental statistics to neural processing, and

we discuss a series of examples in which authors have used one of the two approaches

described above to provide evidence for such links.
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2 Basic Concepts

The theory of information was a fundamental development of the twentieth century.

Shannon (1948) developed the theory in order to quantify and solve problems in the

transmission signals over communication channels. But his formulation of a quantita-

tive measurement of information transcended any speci�c application, device, or algo-

rithm and has become the foundation for an incredible wealth of scienti�c knowledge

and engineering developments in acquisition, transmission, manipulation, and storage of

information. Indeed, it has essentially become a theory for computing with signals.

As such, the theory of information plays a fundamental role in modeling and under-

standing neural systems. Researchers in neuroscience had been perplexed by the apparent

combinatorial explosion in the number of neurons one would need to uniquely repre-

sent each visual (or other sensory) pattern that might be encountered. Barlow (1961)

recognized the importance of information theory in this context and proposed that an

important constraint on neural processing was informational (or coding) eÆciency. That

is, a group of neurons should encode as much information as possible in order to most

e�ectively utilize the available computing resources. We will make this more precise

shortly, but several points are worth mentioning at the outset.

1. The eÆciency of the neural code depends both on the transformation that maps

the input to the neural responses and on the statistics of the input. In particular,

optimal eÆciency of the neural responses for one input ensemble does not imply

optimality over other input ensembles!

2. The eÆcient coding principle should not be confused with optimal compression

(i.e. rate-distortion theory) or optimal estimation. In particular, it makes no men-

tion of the accuracy with which the signals are represented and does not require

that the transformation from input to neural responses be invertible. This may

be viewed as either an advantage (because one does not need to incorporate any

assumption regarding the form of representation, or the cost of misrepresenting the

input) or a limitation (because such costs are clearly relevant for real organisms).

3. The simplistic eÆcient coding criterion given above makes no mention of noise

that may contaminate the input stimulus. Nor does it mention uncertainty or

variability in the neural responses to identical stimuli. That is, it assumes that

the neural responses are deterministically related to the input signal. If these

sources of external and internal noise are small compared with the stimulus and

neural response, respectively, then the criterion described is approximately optimal.

But a more complete solution should take noise into account, by maximizing the

information that the responses provide about the stimulus (technically, the mutual

information between stimulus and response). This quantity is generally diÆcult to

measure, but Bialek et al. (1991) and Rieke et al. (1995) have recently developed

approximate techniques for estimating it.

If the eÆcient coding hypothesis is correct, what behaviors should we expect to see in

the response properties of neurons? The answer to this question may be neatly separated

into two relevant pieces: the shape of the distributions of individual neural responses,

and the statistical dependencies between neurons.
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2.1 EÆcient Coding in Single Neurons

Consider the distribution of activity of a single neuron in response to some natural

environment.1 In order to determine whether the information conveyed by this neuron is

maximal, we need to impose a constraint on the response values (if they can take on any

real value, then the amount of information that can be encoded is unbounded). Suppose,

for example, that we assume that the responses are limited to some maximal value,

Rmax. It is fairly straightforward to show that the distribution of responses that conveys

maximal information is uniform over the interval [0; Rmax]. That is, an eÆcient neuron

should make equal use of all of its available response levels. The optimal distribution

depends critically on the neural response constraint. If one chooses, for example, an

alternative constraint in which the variance is �xed, the information-maximizing response

distribution is a Gaussian. Similarly, if the mean of the response is �xed, the information-

maximizing response distribution is an exponential.2

2.2 EÆcient Coding in Multiple Neurons

If a set of neurons is jointly encoding information about a stimulus, then the eÆcient

coding hypothesis requires that the responses of each individual neuron be optimal, as

described above. In addition, the code cannot be eÆcient if the e�ort of encoding any

particular piece of information is duplicated in more than one neuron. Analogous to

the intuition behind the single-response case, the joint responses should make equal use

of all possible combinations of response levels. Mathematically, this means that the

neural responses must be statistically independent. Such a code is often called a factorial

code, because the joint probability distribution of neural responses may be factored into

the product of the individual response probability distributions. Independence of a set

of neural responses also means that one cannot learn anything about the response of

any one neuron by observing the responses of others in the set. In other words, the

conditional probability distribution of the response of one neuron given the responses

of other neurons should be a �xed distribution (i.e. should not depend on the response

levels of the other neurons). The beauty of the independence property is that unlike the

result for single neurons, it does not require any auxilliary constraints.

Now consider the problem faced by a \designer" of an optimal sensory system. One

wants to decompose input signals into a set of independent responses. The general

problem is extremely diÆcult, because characterizing the joint histogram of the input

grows exponentially with the number of dimensions, and thus one typically must restrict

the problem by simplifying the description of the input statistics and/or by constraining

the form of the decomposition. The most well-known restriction is to consider only linear

decompositions, and to consider only the second-order (i.e. covariance or, equivalently,

correlation) properties of the input signal. The solution of this problem may be found

using an elegant and well-understood technique known as principal components analysis

(PCA).3

1For the time being, we consider the response to be an instantaneous scalar value. For

example, this could be a membrane potential, or an instantaneous �ring rate.
2More generally, consider a constraint of the form E (�(x)) = c, where x is the response,

�(�) is a constraint function, E (�) indicates the expected or average value over the responses to

a given input ensemble, and c is a constant. The maximally-informative response distribution

(also known as the Maximum Entropy distribution (Jaynes 1978)) is P (x) / e���(x), where �

is a constant.
3The axes may be computed using standard linear algebraic techniques: They correspond to
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The principal components are a set of orthogonal axes along which the components

are decorrelated. Such a set of axes always exists, although it need not be unique. If the

data are distributed according to a multi-dimensional Gaussian4, then the components

of the data as represented in these axes are statistically independent. This is illustrated

for a two-dimensional source (e.g. a two-pixel image) in Figure 1. After transforming a

data set to the principal component coordinate system, one typically rescales the axes of

the space to equalize the variance of each of the components (typically, they are set to

one). This rescaling procedure is commonly referred to as \whitening", and is illustrated

in Figure 1.
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Figure 1: Illustration of principal component analysis on Gaussian-distributed data in two

dimensions. (a) Original data. Each point corresponds to a sample of data drawn from

the source distribution (i.e. a two-pixel image). The ellipse is three standard deviations

from the mean in each direction. (b) Data rotated to principal component coordinate

system. Note that the ellipse is now aligned with the axes of the space. (c) Whitened

data. When the measurements are represented in this new coordinate system, their

components are distributed as uncorrelated (and thus independent) univariate Gaussians.

When applying PCA to signals such as images, it is commonly assumed that the

statistical properties of the image are translation invariant (also known as stationary).

Speci�cally, one assumes that the correlation of the intensity at two locations in the

image depends only on the displacement between the locations, and not on their abso-

lute locations. In this case, the sinusoidal basis functions of the Fourier transform are

guaranteed to be a valid set of principal component axes (although, as before, this set

need not be unique). The variance along each of these axes is simply the Fourier power

spectrum. Whitening may be achieved by computing the Fourier transform, dividing

each frequency component by the square root of its variance, and (optionally) computing

the inverse Fourier transform. This is further discussed below.

Although PCA can be used to recover a set of statistically independent axes for rep-

resenting Gaussian data, the technique often fails when the data are non-Gaussian. As

a simple illustration, consider data that are drawn from a source that is a linear mixture

of two independent non-Gaussian sources (Figure 2). The non-Gaussianity is visually

evident in the long tails of data that extend along two oblique axes. Figure 2 also shows

the rotation to principal component axes and the whitened data. Note that the axes of

the eigenvectors of the data covariance matrix.
4A multi-dimensional Gaussian density is simply the extension of the scalar Gaussian density

to a vector. Speci�cally, the density is of the form P (~x) / exp [�~xT��1~x=2], where � is the

covariance matrix. All marginal and conditional densities of this density are also Gaussian.
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Figure 2: Illustration of principal component analysis and independent component anal-

ysis on non-Gaussian data in two dimensions. (a) Original data, a linear mixture of two

non-Gaussian sources. As in Figure 1, each point corresponds to a sample of data drawn

from the source distribution, and the ellipse indicates three standard deviations of the

data in each direction. (b) Data rotated to principal component coordinate system. Note

that the ellipse is now aligned with the axes of the space. (c) Whitened data. Note that

the data are not aligned with the coordinate system. But the covariance ellipse is now a

circle, indicating that the second-order statistics can give no further information about

preferred axes of the data set. (d) Data after �nal rotation to independent component

axes.

the whitened data are not aligned with those of the space. In particular, in the case when

the data are a linear mixture of non-Gaussian sources, it can be proven that one needs an

additional rotation of the coordinate system to recover the original independent axes.5

But the appropriate rotation can only be estimated by looking at statistical properties

of the data beyond covariance (i.e. of order higher than two).

Over the past decade, a number of researchers have developed techniques for estimat-

ing this �nal rotation matrix (e.g. Cardoso 1989, Jutten & Herault 1991, Comon 1994).

Rather than directly optimize the independence of the axis components, these algorithms

typically maximize higher-order moments (e.g. the kurtosis, or fourth moment divided

by the squared second moment). Such decompositions are typically referred to as In-

dependent Component Analysis (ICA), although this is a bit of a misnomer as there is

no guarantee that the resulting components are independent unless the original source

actually was a linear mixture of sources with large higher-order moments (e.g. heavy

tails). Nevertheless, one can often use such techniques to recover the linear axes along

which the data are most independent.6 Fortuitously, this approach turns out to be quite

successful in the case of images (see below ).

3 Image Statistics: Case Studies

Natural images are statistically redundant. Many authors have pointed out that of all

possible visual images, we see only a very small fraction (e.g. Attneave 1954, Field

5Linear algebraically, the three operations (rotate-scale-rotate) correspond directly to the

singular value decomposition of the mixing matrix.
6The problem of blind recovery of independent sources from data remains an active area of

research (e.g. Hyv�arinen & Oja 1997, Attias 1998, Penev et al. 2000).
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1987, Daugman 1989, Ruderman & Bialek 1994). Kersten (1987) demonstrated this re-

dundancy perceptually by asking human subjects to replace missing pixels in a four-bit

digital image. He then used the percentage of correct guesses to estimate that the per-

ceptual information content of a pixel was approximately 1.4 bits (a similar technique

was used by Shannon (1948) to estimate the redundancy of written English). Modern

technology exploits such redundancies every day, in order to transmit and store digi-

tized images in compressed formats. In the following sections, we describe a variety of

statistical properties of images and their relationship to visual processing.

3.1 Intensity Statistics

The simplest statistical image description is the distribution of light intensities in a vi-

sual scene. As explained in the previous section, the eÆcient coding hypothesis predicts

that individual neurons should maximize information transmission. In a nice con�rma-

tion of this idea, Laughlin (1981) found that the contrast-response function of the large

monopolar cell in the 
y visual system approximately satis�es the optimal coding cri-

terion. Speci�cally, he measured the probability distribution of contrasts found in the

environment of the 
y, and showed that this distribution is approximately transformed

to a uniform distribution by the function relating contrast to the membrane potential

of the neuron. Baddeley et al. (1998) showed that the instantaneous �ring rates of

spiking neurons in primary and inferior temporal visual cortices of cats and monkeys are

exponentially distributed (when visually stimulated with natural scenes), consistent with

optimal coding with a constraint on the mean �ring rate.

3.2 Color Statistics

In addition to its intensity, the light falling on an image at a given location has a spectral

(wavelength) distribution. The cones of the human visual system represent this distri-

bution as a three-dimensional quantity. Buchsbaum & Gottshalk (1984) hypothesized

that the wavelength spectra experienced in the natural world are well approximated by

a three-dimensional subspace that is spanned by cone spectral sensitivities. Maloney

(1986) examined the empirical distribution of re
ectance functions in the natural world,

and showed not only that it was well-represented by a low-dimensional space, but that

the problem of surface re
ectance estimation was actually aided by �ltering with the

spectral sensitivities of the cones.

An alternative approach is to assume the cone spectral sensitivities constitute a �xed

front-end decomposition of wavelength, and to ask what processing should be performed

on their responses. Ruderman et al. (1998), building on previous work by Buchsbaum

& Gottschalk (1983), examined the statistical properties of log cone responses to a large

set of hyperspectral photographic images of foliage. The use of the logarithm was loosely

motivated by psychophysical principles (the Weber-Fechner law) and as a symmetrizing

operation for the distributions. They found that the principal component axes of the

data set lay along directions corresponding to fL+M + S;L+M � 2S;L�Mg, where

fL;M; Sg correspond to the log responses of the long, middle, and short wavelength

cones. Although the similarity of these axes to the perceptually and physiologically mea-

sured \opponent" mechanisms is intriguing, the precise form of the mechnisms depends

on the experiment used to measure them (see Lennie & D'Zmura 1988).
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Figure 3: (a) Joint distributions of image pixel intensities separated by three di�erent

distances. (b) Autocorrelation function.

3.3 Spatial correlations

Even from a casual inspection of natural images, one can see that neighboring spatial

locations are strongly correlated in intensity. This is demonstrated in Figure 3, which

shows scatterplots of pairs of intensity values, separated by three di�erent distances, and

averaged over absolute position of several di�erent natural images. The standard mea-

surement for summarizing these dependencies is the autocorrelation function, C(�x;�y),

which gives the correlation (average of the product) of the intensity at two locations as

a function of relative position. From the examples in Figure 3, one can see that the

strength of the correlation falls with distance.7

By computing the correlation as a function of relative separation, we are assuming

that the spatial statistics in images are translation invariant. As described above,

the assumption of translation invariance implies that images may be decorrelated by

transforming to the frequency (Fourier) domain. The two-dimensional power spectrum

can then be reduced to a one-dimensional function of spatial frequency by performing a

rotational average within the two-dimensional Fourier plane. Empirically, many authors

have found that the spectral power of natural images falls with frequency, f , according

to a power law, 1=fp, with estimated values for p typically near 2 (see Tolhurst (1992)

or Ruderman & Bialek (1994) for reviews). An example is shown Figure 4.

The environmental causes of this power law behavior have been the subject of con-

siderable speculation and debate. One of the most commonly held beliefs is that it is

due to scale invariance of the visual world. Scale invariance means that the statistical

properties of images should not change if one changes the scale at which observations are

made. In particular, the power spectrum should not change shape under such rescaling.

Spatially rescaling the coordinates of an image by a factor of � leads to a rescaling of

the corresponding Fourier domain axes by a factor of 1=�. Only a Fourier spectrum that

falls as a power law will retain its shape under this transformation. Another com-

monly proposed theory is that the 1=f2 power spectrum is due to the presence of edges

in images, because edges themselves have a 1=f2 power spectrum. Ruderman (1997) and

Lee & Mumford (1999) have argued, however, that it is the particular distribution of the

sizes and distances of objects in natural images that governs the spectral fallo�.

Does the visual system take advantage of the correlational structure of natural images?

This issue was �rst examined quantitatively by Srinivasan et al. (1982). They measured

the autocorrelation function of natural scenes and then computed the amount of sub-

7Reinagel & Zador (1999) recorded eye positions of human observers viewing natural images,

and found that correlation strength falls faster near these positions than generic positions.
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Figure 4: Power spectrum of a natural image (solid line) averaged over all orientations,

compared with 1=f2 (dashed line).

tractive inhibition that would be required from neighboring photoreceptors in order to

e�ectively cancel out these correlations. They then compared the predicted inhibitory

surround �elds to those actually measured from �rst-order interneurons in the compound

eye of the 
y. The correspondence was surprisingly good and provided the �rst quanti-

tative evidence for decorrelation in early spatial visual processing.

This type of analysis was carried a step further by Atick & Redlich (1991, 1992), who

considered the problem of whitening the power spectrum of natural images (equivalent

to decorrelation) in the presence of white photoreceptor noise. They showed that both

single-cell physiology and the psychophysically measured contrast sensitivity functions

are consistent with the product of a whitening �lter and an optimal lowpass �lter for noise

removal (known as the Wiener �lter). Similar predictions and physiological comparisons

were made by van Hateren (1992) for the 
y visual system. The inclusion of the Wiener

�lter allows the behavior of the system to change with mean luminance level. Speci�cally,

at lower luminance levels (and thus lower signal-to-noise ratios), the �lter becomes more

low-pass (intuitively, averaging over larger spatial regions in order to recover the weaker

signal). An interesting alternative model for retinal horizontal cells has been proposed by

Balboa & Gryzwacz (2000). They assume a divisive form of retinal surround inhibition,

and show that the changes in e�ective receptive �eld size are optimal for representation

of intensity edges in the presence of photon-absorption noise.

3.4 Higher-order statistics

The agreement between the eÆcient coding hypothesis and neural processing in the retina

is encouraging, but what does the eÆcient coding hypothesis have to say about cortical

processing? A number of researchers (e.g. Sanger 1989, Hancock et al. 1992, Shouval

et al. 1997) have used the covariance properties of natural images to derive linear basis

functions that are similar to receptive �elds found physiologically in primary visual cortex

(i.e. oriented band-pass �lters). But these required additional constraints, such as spatial

locality and/or symmetry, in order to achieve functions approximating cortical receptive
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Figure 5: (a) Sample of 1=f Gaussian noise; (b) whitened natural image.

�elds.

As explained in the introduction, PCA is based only on second-order (covariance)

statistics and can fail if the source distribution is non-Gaussian. There are a num-

ber of ways to see that the distribution of natural images is non-Gaussian. First, we

should be able to draw samples from the distribution of images by generating a set of

independent Gaussian Fourier coeÆcients (i.e. Gaussian white noise), unwhitening these

(multiplying by 1=f2) and then inverting the Fourier transform. Such an image is shown

in Figure 5a. Note that it is devoid of any edges, contours, or many other structures

we would expect to �nd in a natural scene. Second, if it were Gaussian (and translation

invariant), then the Fourier transform should decorrelate the distribution, and whitening

should yield independent Gaussian coeÆcients (see Figure 1). But a whitened natural

image still contains obvious structures (i.e. lines, edges, contours, etc), as illustrated in

Figure 5b. Thus, even if correlations have been eliminated by whitening in the retina

and lateral geniculate nucleus, there is much work still to be done in eÆciently coding

natural images.

Field (1987) and Daugman (1989) provided additional direct evidence of the non-

Gaussianity of natural images. They noted that the response distributions of oriented

bandpass �lters (e.g. Gabor �lters) had sharp peaks at zero, and much longer tails

than a Gaussian density (see Figure 6). Because the density along any axis of a multi-

dimensional Gaussian must also be Gaussian, this constitutes direct evidence that the

overall density cannot be Gaussian. Field (1987) argued that the representation corre-

sponding to these densities, in which most neurons had small amplitude responses, had

an important neural coding property, which he termed sparseness. By performing an

optimization over the parameters of a Gabor function (spatial-frequency bandwidth and

aspect ratio), he showed that the parameters that yield the smallest fraction of signi�cant

coeÆcients are well matched to the range of response properties found among cortical

simple cells (i.e. bandwidth of 0:5� 1:5 octaves, aspect ratio of 1� 2 ). Physiologically,

Vinje & Gallant (2000) showed that responses of neurons in primary visual cortex were

more sparse during presentation of natural scene stimuli.

Olshausen & Field (1996; 1997) reexamined the relationship between simple-cell re-

ceptive �elds and sparse coding without imposing a particular functional form on the

receptive �elds. They created a model of images based on a linear superposition of basis

functions and adapted these functions so as to maximize the sparsity of the representa-

tion (number of basis functions whose coeÆcients are zero) while preserving information
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Figure 6: Histogram of responses of a Gabor �lter for a natural image, compared with a

Gaussian distribution of the same variance.

in the images (by maintaining a bound on the mean squared reconstruction error). The

set of functions that emerges after training on hundreds of thousands of image patches

randomly extracted from natural scenes, starting from completely random initial condi-

tions, strongly resemble the spatial receptive �eld properties of simple cells { i.e. they

are spatially localized, oriented, and band-pass in di�erent spatial frequency bands (Fig-

ure 7). This method may also be recast as a probabilistic model that seeks to explain

images in terms of components that are both sparse and statistically independent (Ol-

shausen & Field 1997) and thus is a member of the broader class of ICA algorithms (see

above). Similar results have been obtained using other forms of ICA (Bell & Sejnowski

1997, van Hateren & van der Schaaf 1998, Lewicki & Olshausen 1999), and Hyv�arinen

& Hoyer (2000) have derived complex cell properties by extending ICA to operate on

subspaces.

It should be noted that although these techniques seek statistical independence, the

resulting responses are never completely independent. The reason is that these models

are limited to describing images in terms of linear superposition, but images are not

formed as sums of independent components. Consider, for example, the fact that the

light coming from di�erent objects is often combined according to the rules of occlusion

(rather than addition) in the image formation process. Analysis of the form of these

statistical relationships reveals nonlinear dependencies across space as well as across

scale and orientation (Wegmann & Zetzsche 1990, Simoncelli 1997, Simoncelli & Schwartz

1999).

Consider the joint histograms formed from the responses of two nonoverlapping linear

receptive �elds, as shown in Figure 8a. The histogram clearly indicates that the data

are aligned with the axes, as in the independent components decomposition described

above. But one cannot determine from this picture whether the responses are indepen-

dent. Consider instead the conditional histogram of Figure 8b. Each column gives the

probability distribution of the ordinate variable r2, assuming the corresponding value for

the abscissa variable, r1. That is, the data are the same as those in Figure 8a, except

that each column has been normalized independently. The conditional histogram illus-

trates several important aspects of the relationship between the two responses. First,

they are (approximately) decorrelated: The best-�tting regression line through the data
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Figure 7: Example basis functions derived using sparseness criterion (see Olshausen &

Field 1996).

is a zero-slope line through the origin. But they are clearly not independent, because the

variance of r2 exhibits a strong dependence on the value of r1. Thus, although r2 and

r1 are uncorrelated, they are still statistically dependent. Furthermore, this dependency

cannot be eliminated through further linear transformation.

Simoncelli & Schwartz (1999) showed that these dependencies may be eliminated using

a nonlinear form of processing, in which the linear response of each basis function is

recti�ed (and typically squared) and then divided by a weighted sum of the recti�ed

responses of neighboring neurons. Similar \divisive normalization" models have been

used by a number of authors to account for nonlinear behaviors in neurons (Reichhardt

& Poggio 1979, Bonds 1989, Geisler & Albrecht 1992, Heeger 1992, Carandini et al.

1997). Thus, the type of nonlinearity found in cortical processing is well matched to

the non-Gaussian statistics of natural images. Furthermore, the weights used in the

computation of the normalization signal may be chosen to maximize the independence

of the normalized responses. The resulting model is surprisingly good at accounting for

a variety of neurophysiological observations in which responses are suppressed by the

presence of nonoptimal stimuli, both within and outside of the classical receptive �eld

(Simoncelli & Schwartz 1999, Wainwright et al. 2001).

The statistical dependency between oriented �lter responses is at least partly due to

the prevalence of extended contours in natural images. Geisler et al. (2001) examined

empirical distributions of the dominant orientations at nearby locations, and used them

to predict psychophysical performance on a contour detection task. Sigman et al. (2001)

showed that these distributions are consistent with cocircular oriented elements, and

related this result to the connectivity of neurons in primary visual cortex.
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Figure 8: (a) Joint histogram of responses of two non-overlapping receptive �elds, de-

picted as a contour plot. (b) Conditional histogram of the same data. Brightness

corresponds to probability, except that each column has been independently rescaled to

�ll the full range of display intensities (see Buccigrossi & Simoncelli 1999, Simoncelli &

Schwartz 1999).

3.5 Space-time statistics

A full consideration of image statistics and their relation to coding in the visual sys-

tem must certainly include time. Images falling on the retina have important temporal

structure arising from self-motion of the observer, as well as from the motion of objects

in the world. In addition, neurons have important temporal response characteristics,

and in many cases it is not clear that these can be cleanly separated from their spatial

characteristics. The measurement of spatio-temporal statistics in natural images is much

more diÆcult than for spatial statistics, though, because obtaining realistic time-varying

retinal images requires the tracking of eye, head, and body movements while an animal

interacts with the world. Nevertheless, a few reasonable approximations allow one to

arrive at useful insights.

As with static images, a good starting point for characterizing joint space-time statis-

tics is the autocorrelation function. In this case, the spatio-temporal autocorrelation func-

tion C(�x; �y; �t) characterizes the pairwise correlations of image pixels as a function

of their relative spatial separation �x;�y and temporal separation �t. Again, assuming

spatio-temporal translation invariance, we �nd that this function is most conveniently

characterized in the frequency domain.

The problem of characterizing the spatio-temporal power spectrum was �rst studied

by van Hateren (1992), who assumed a certain image velocity distribution and a 1=f2

spatial power spectrum, and inferred from this the joint spatio-temporal spectrum. Based

on this inferred power spectrum, van Hateren then computed the optimal neural �lter

for making the most e�ective use of the postreceptoral neurons' limited channel capacity

(similar to Atick's whitening �lter). He showed from this analysis that the optimal neural

�lter matches remarkably well the temporal response properties of large monopolar cells

in di�erent spatial frequency bands. He was also able to extend this analysis to human

vision to account for the spatio-temporal contrast sensitivity function (van Hateren 1993).

Dong & Atick (1995a) estimated the spatio-temporal power spectrum of natural im-
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Figure 9: Spatiotemporal power spectrum of natural movies. (a) Joint spatiotemporal

power spectrum shown as a function of spatial-frequency for di�erent temporal frequen-

cies (1.4, 2.3, 3.8, 6, and 10 Hz, from top to bottom). (b) Same data, replotted as a

function of temporal-frequency for di�erent spatial frequencies (0.3, 0.5, 0.8, 1.3, and 2.1

cy/deg, from top to bottom). Solid lines indicate model �ts according to a power-law

distribution of object velocities (from Dong & Atick 1995b).

ages directly by computing the three-dimensional Fourier transform on many short movie

segments (each approximately 2-4 seconds in length) and averaging together their power

spectra. This was done for an ensemble of commercial �lms as well as videos made by

the authors. Their results, illustrated in Figure 9, show an interesting dependence be-

tween spatial and temporal frequency. The slope of the spatial-frequency power spectrum

becomes shallower at higher temporal frequencies. The same is true for the temporal fre-

quency spectrum { i.e. the slope becomes shallower at higher spatial frequencies. Dong &

Atick (1995a) showed that this interdependence between spatial and temporal frequency

could be explained by assuming a particular distribution of object motions (i.e. a power

law distribution), similar in form to van Hateren's assumptions. By again applying the

principle of whitening, Dong & Atick (1995b) computed the optimal temporal �lter for

removing correlations across time and showed that it is closely matched (at low spa-

tial frequencies) to the frequency response functions measured from lateral geniculate

neurons in the cat.

Although the match between theory and experiment in the above examples is encour-

aging, it still does not answer the question of whether or not visual neurons perform as

expected when processing natural images. This question was addressed directly by Dan

et al. (1996) who measured the temporal frequency spectrum of LGN neuron activity

in an anaesthetized cat in response to natural movies. Consistent with the concept of

whitening, the output power of the cells in response to the movie is fairly 
at, as a func-

tion of temporal frequency. Conversely, if one plays a movie of Gaussian white noise,

in which the input spectrum is 
at, the output spectrum from the LGN cells increases

linearly with frequency, corresponding to the temporal-frequency response characteristic

of the neurons. Thus, LGN neurons do not generically whiten any stimulus, only those

exhibiting the same correlational structure as natural images.

The analysis of space-time structure in natural images may also be extended to higher-

order statistics (beyond the autocorrelation function), as was previously described for

static images. Such an analysis was recently performed by van Hateren & Ruderman
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Figure 10: Independent components of natural movies. Shown are four space-time basis

functions (rows labeled 'IC') with the corresponding analysis functions (rows labeled

'ICF') which would be convolved with a movie to compute a neuron's output (from van

Hateren & Ruderman 1998).

(1998) who applied an ICA algorithm to an ensemble of many local image blocks (12�12

pixels by 12 frames in time) extracted from movies. They showed that the components

that emerge from this analysis resemble the direction-selective receptive �elds of V1 neu-

rons { i.e. they are localized in space and time (within the 12�12�12 window), spatially

oriented, and directionally selective (see Figure 10). In addition, the output signals that

result from �ltering images with the learned receptive �elds have positive kurtosis, which

suggests that time-varying natural images may also be eÆciently described in terms of

a sparse code in which relatively few neurons are active across both space and time.

Lewicki & Sejnowski (1999) and Olshausen (2001) have shown that these output signals

may be highly sparsi�ed so as to produce brief, punctate events similar to neural spike

trains.

4 Discussion

Although the eÆcient coding hypothesis was �rst proposed more than forty years ago, it

has only recently been explored quantitatively. On the theoretical front, image models

are just beginning to have enough power to make interesting predictions. On the ex-

perimental front, technologies for stimulus generation and neural recording (especially

multiunit recording) have advanced to the point where it is both feasible and practical

to test theoretical predictions. Below, we discuss some of the weaknesses and drawbacks

of the ideas presented in this review, as well as several exciting new opportunities that

arise from our growing knowledge of image statistics.

The most serious weakness of the eÆcient coding hypothesis is that it ignores the

two other primary constraints on the visual system: the implementation and the task.

Some authors have successfully blended implementation constraints with environmental

constraints (e.g. Baddeley et al. 1998). Such constraints are often diÆcult to specify, but

clearly they play important roles throughout the brain. The tasks faced by the organism
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are likely to be an even more important constraint. In particular, the hypothesis states

only that information must be represented eÆciently; it does not say anything about what

information should be represented. Many authors assume that at the earliest stages of

processing (e.g. retina and V1), it is desirable for the system to provide a generic image

representation that preserves as much information as possible about the incoming signal.

Indeed, the success of eÆcient coding principles in accounting for response properties

of neurons in the retina, LGN, and V1 may be seen as veri�cation of this assumption.

Ultimately, however, a richer theoretical framework is required. A commonly proposed

example of such a framework is Bayesian decision/estimation theory, which includes

both a prior statistical model for the environment and also a loss or reward function

that speci�es the cost of di�erent errors, or the desirability of di�erent behaviors. Such

concepts have been widely used in perception (e.g. Knill & Richards 1996) and have

also been considered for neural representation (e.g. Oram et al. 1998).

Another important issue for the eÆcient coding hypothesis is the timescale over which

environmental statistics in
uence a sensory system. This can range from millenia (evo-

lution), to months (neural development), to minutes or seconds (short-term adaptation).

Most of the research discussed in this review assumes the system is �xed, but it seems

intuitively sensible that the computations should be matched to various statistical prop-

erties on the time scale at which they are relevant. For example, the 1=f2 power spectral

property is stable and, thus, warrants a solution that is hardwired over evolutionary time

scales. On the other hand, several recent results indicate that individual neurons adapt

to changes in contrast and spatial scale (Smirnakis et al. 1997), orientation (M�uller et al.

1999), and variance (Brenner et al. 2000) on very short time scales. In terms of joint

response properties, Barlow & Foldiak (1989) have proposed that short-term adaptation

acts to reduce dependencies between neurons, and evidence for this hypothesis has re-

cently been found both psychophysically (e.g. Atick et al. 1993, Dong 1995, Webster

1996, Wainwright 1999) and physiologically (e.g. Carandini et al. 1998, Dragoi et al.

2000, Wainwright et al. 2001).

A potential application for eÆcient coding models, beyond predicting response prop-

erties of neurons, lies in generating visual stimuli that adhere to natural image statis-

tics. Historically, visual neurons have been characterized using fairly simple test stimuli

(e.g. bars, gratings, or spots) that are simple to parameterize and control, and that are

capable of eliciting vigorous responses. But there is no guarantee that the responses mea-

sured using such simple test stimuli may be used to predict neural responses to a natural

scene. On the other hand, truly naturalistic stimuli are much more diÆcult to control.

An interesting possibility lies in statistical texture modeling, which has been used as a

tool for understanding human vision (e.g. Julesz 1962, Bergen & Adelson 1986). Knill

et al. (1990)(Knill et al. 1990) and Parraga et al. (1999) have shown that human perfor-

mance on a particular discrimination task is best for textures with natural second-order

(i.e. 1=f2) statistics, and degraded for images that are less natural. Some recent models

for natural texture statistics o�er the possibility of generating arti�cial images that share

some of the higher-order statistical structure of natural images (e.g. Heeger & Bergen

1995, Zhu et al. 1998, Portilla & Simoncelli 2000).

Most of the models we have discussed in this review can be described in terms of

a single-stage neural network. For example, whitening could be implemented by a set

of connections between a set of inputs (photoreceptors) and outputs (retinal ganglion

cells). Similarly, the sparse coding and ICA models could be implemented by connections

between the LGN and cortex. But what comes next? Could we attempt to model

the function of neurons in visual areas V2, V4, MT or MST using multiple stages of
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eÆcient coding? In particular, the architecture of visual cortex suggests a hierarchical

organization in which neurons become selective to progressively more complex aspects of

image structure. In principle, this can allow for the explicit representation of structures,

such as curvature, surfaces, or even entire objects (e.g. Dayan et al. 1995, Rao & Ballard

1997), thus providing a principled basis for exploring the response properties of neurons

in extra-striate cortex.

Although this review has been largely dedicated to �ndings in the visual domain, other

sensory signals are amenable to statistical analysis. For example, Attias & Schreiner

(1997) have shown that many natural sounds obey some degree of self-similarity in their

power spectra, similar to natural images. In addition, M. S. Lewicki (personal com-

munication) �nds that the independent components of natural sound are similar to the

\Gammatone" �lters commonly used to model responses of neurons in the auditory nerve.

Schwartz & Simoncelli (2001) have shown that divisive normalization of responses of such

�lters can serve as a nonlinear whitening operation for natural sounds, analogous to the

case for vision. In using natural sounds as experimental stimui, Rieke et al. (1995) have

shown that neurons at early stages of the frog auditory system are adapted speci�cally

to encode the structure in the natural vocalizations of the animal. Attias & Schreiner

(1998) demonstrated that the rate of information transmission in cat auditory midbrain

neurons is higher for naturalistic stimuli.

Overall, we feel that recent progress on exploring and testing the relationship between

environmental statistics and sensation is encouraging. Results to date have served

primarily as post-hoc explanations of neural function, rather than predicting aspects of

sensory processing that have not yet been observed. But it is our belief that this line of

research will eventually lead to new insights and will serve to guide our thinking in the

exploration of higher-level visual areas.
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