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Abstract

This paper proposes a class of linear transformations which are particularly
well suited for image processing tasks such as data compression, progressive
transmission, and machine vision. The basis functions of these transformations
form a complete orthogonal set and are localized in both the spatial and spatial
frequency domains. In addition, they may be implemented efficiently using cas-
caded convolutions with relatively small filters. Formulation of the problem is
discussed in both the spatial frequency and spatial domains. Frequency domain
formulation allows the isolation of aliasing errors and simple analysis of cascaded
systems. Spatial domain formulation simplifies the problem of transform inver-
sion, and provides a more obvious interpretation of the issues involved in filter
design. Two simple design methods are proposed: a general spatial domain tech-
nique which is easily extended to multiple dimensions, and a frequency domain
technique for the design of one-dimensional transforms. Examples of data com-
pression and progressive transmission are given, and the extension of the results
to two and three dimensions with arbitrary sampling geometries is discussed.
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Introduction

The task of vision may be viewed as the transformation of an image from an array
of intensity values into a more suitable representation [1,2]. The same statement
may be made concerning many image processing applications, particularly data
compression. According to this viewpoint, the central issue is the choice of
a representation. Some representations are preferable to others due to the fact
that ... any particular representation makes certain information explicit at the
expense of information that is pushed into the background and may be quite hard
to recover”[1]. A common approach is to narrow the set of choices to the class
of linear transformations, which are easily characterized and well understood.
The rapid growth of the field of digital image processing is due in part to the
usefuleness of linear transformations in analyzing signals and converting them
into more desirable representational forms. This paper is concerned with the

choice of linear transformations for efficient image representation.

One property that is widely accepted as being a necessity for effective
image processing is an explicit representation of scale [1,3,2,4,5,6]. The argument
is usually presented that images contain objects and features of many different
sizes which may be viewed over a large range of distances, and therefore, a
transformation should 'analyze the image simultaneously at different scales. To
further support this notion, Pentland [7| has shown that many natural textures

may be modeled with fractals.

As an equivalent description of the notion of scale, we may refer to sub-

bands in the frequency domain representation of the image. A localized region



in the frequency plane corresponds to information in the image which occurs
at a particular scale and orientation. Thus, the basis functions of a useful
transformation should partition the input signal into localized patches in the
frequency domain. In addition to localization in frequency, it is advantageous for
the basis functions to be spatially localized. The necessity of spatial localization
is particularly apparent in machine vision systems, where information about the

location of features in the image is critical.

These properties may also be motivated by analogy with biological sys-
tems. It is commonly known that an important characteristic of the simple
cells found in the mammalian visual cortex is a response that is selective for
frequency and orientation [8,9,10,11|. Furthermore, each of these cells processes
the information contained in a limited region of the entire visual field, so that
an array of such cells may be considered to perform an operation analogous to
convolution. Thus, the early stages of the visual system use a representation

which is localized in space as well as in spatial frequency.

This notion of joint localization may be contrasted with the two most
common representations used for the analysis of linear systems: the sampled or
discrete signal, and its Fourier transform. For each of these representations (and
for any other linear transform representation), we may write the sampled signal
as a weighted sum of basis functions. The standard basis functions for discrete
signals consist of impulses located at each sample location and are thus max-
imally localized in space, but convey no information about scale. The Fourier
basis set is composed of even and odd phase sinusoidal sequences, whose use-

fulness is primarily due to the fact that they are the eigenfunctions of the class



of linear shift-invariant systems. Although they are maximally localized in the
frequency domain, they are not localized in space. It is clear that representation
in the space or frequency domains is extremely useful for purposes of system
analysis, but this does not imply that impulses or sinusoids are the best way to
represent signal information. In a number of recent papers [8,12,13,14,15,16,17|,
the importance of this issue is addressed and related to a 1946 paper by Dennis
Gabor (18], who showed that the class of linear transformations may be con-
sidered to span a range of joint localization with the impulse basis set and the
Fourier basis set at the two extemes, and that one-dimensional signals can be
represented in terms of basis functions which are localized both in time and

frequency.

Traditicnally, transformations used in signal processing are broken into
two categories: orthogonal transforms and sub-band transforms. This distinc-
tion is especially obvious in the area of image coding [19,20|, and is due in part

to the nature of the computational methods used for the two types of transform.

Orthogonal Transforms

The phrase “orthogonal transform” is usually used to refer to transforms such
as the discrete Fourier transform, the discrete cosine transform, and the Kar-
hunen-Loeve transform. Two advantages of using an orthogonal transform are
the simplicity of transform inversion and the isolation of different types of in-
formation in different coefficients, which provides a more obvious interpreta-
tion of the meaning of the transform coefficients [19,21]. In addition, many

of these transforms have highly efficient implementations involving cascades of



“butterfly” computations {22,23|. Based on the previous discussion, an obvious

disadvantage is the nearly complete loss of positional information.

Sub-band Transforms

Sub-band tranzforms are generally computed by convolving the input signal with
bandpass filters and decimating the resulting images. Each sub-band image
contains information occuring at a particular scale. The most obvious sub-
band system incorporates ideal or “brick-wall” bandpass filters to avoid the
occurance of aliasing when the filtered images are subsampled. But filters with
sharp transitions produce ringing (Gibbs phenomenon) in the spatial domain

which is perceptually undesirable.

The distinction between orthogonal and sub-band transforms is an arbi-
trary one. Consider, for example the block DCT, in which the signal (image) is
divided into non-overlapping blocks and a discrete cosine transform is computed
for each block. Several of the basis functions for this transform are depicted in
figure 1. The basis functions are clearly orthogonal, since the DCT is orthogonal
and the blocks are chosen so that they do not overlap. In addition, we can view
this as a sub-band transform. Computing a DCT on non-overlapping blocks is
equivalent to convolving the image with each of the block DCT basis functions
and then subsampling by a factor equal to the block size. The Fourier transform
of the basis functions (also shown in figure 1) indicates that this is a sub-band
transform, although it is clear that the sub-band localization is rather poor: the
sharp discontinuities at the block boundaries lead to ringing in the frequency

domain.
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Figure 1: Several of the 16-point DCT basis functions and their DTFTs,
plotted with a linear scale.



Smoother lowpass filters have been employed by several authors. Burt
et al. [24,25,2] built a multi-scale representation from small gaussian-like fil-
ters which they termed a pyramid. The basis functions of this representation
are jointly localized in space and spatial frequency, the computation of the rep-
resentation is efficient, and the transformation is easily inverted, despite the
non-orthogonality of the basis functions. The cascaded (pyramid) construction
method is of particular interest and will play an important role in the trans-
forms discussed in this paper. The primary disadvantages of this transform are
that the basis functions are not oriented and the representation is overcomplete,
requiring an increase by a factor of § in the number of sample points over the

original image.

Another recent development in the area of sub-band transforms is that
of quadrature mirror filters (QMF). These were developed by Croiser, Esteban
and Galand in [26,27] for sub-band coding of speech signals. They found that it
was possible to choose non-ideal FIR bandpass filters and still avoid aliasing in
the overall system output. These filters provide a central example for the type

of transformations advocated in this paper, and will be discussed in section 2.

The purpose of the present paper is to describe orthogonal linear trans-
formations which explicitly represent information at different scales and which
satisfy the criterion of joint localization. It is divided into five major sections.
Section 1 introduces the matrix and frequency domain notations which are used
throughout the paper. Since the design constraints involve both the spatial
and the spatial frequency domains, we will describe the problem and results in

both domains. Section 2 discusses two-band one-dimensional systems, which
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includes the class of QMF. Section 3 discusses filter design. We restrict the fil-
ter design problem to FIR filters, thus avoiding complicated multi-dimensional
stability issues. A general spatial domain design method is described, along
with a one-dimensional frequency domain method. In section 4, some examples
of data compression and progressive transmission are presented. Finally, sec-
tion 5 discusses the extension of subsampling and filter design issues to two- and

three-dimensional systems.
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1 Linear Transformations on Finite Images

The results presented in this paper are based on analysis in both the signal and
the frequency domains, and thus rely on two separate notational frameworks:
the standard matrix notation used in linear algebra, and the frequency domain
representations commonly used in digital signal processing. In this section, we
describe the two types of notation and make explicit the connection between

them.

Analysis/Synthesis Filter Bank Formulation

As mentioned in the introduction, we are interested in linear transformations
on images of a finste size which may be expressed in terms of convolutions with
finite impulse response (FIR) filters. The schematic diagram in figure 2 depicts a
corvolution-based system known as an analysis/synthesis (A/S) filter bank |28).

The notation in the diagram is standard for digitial signal processing (22|, except

that for the purposes of this paper, the boxes | F;(w) |indicate efrcular convolution

of a finite input image of size N with a filter with impulse response f;{n| and

discrete time Fourier transform (DTFT)
Fi(w) = 3_ filn]e™*"
n
We do not place a causality constraint on the filter impulse responses, since they

are meant for application to images. We do, however, assume that the lengih

(region of support) of the filter is less than the image size. The boxes |k; |

indicate that the sequence is subsampled by a factor of k; where k, is an integer

for all 1. The boxes |k; T|indicate that the sequence should be upsampled by
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Figure 2: An analysis/synthesis filter bank.

inserting k; — 1 zeros between each sample. For most of this paper, we will

assume that k; = k for each + and that the integer k divides N evenly.

The analysis section of the A/S system takes an input sequence z(n| of
length N and performs a linear transformation to decompose it into M sig-
nals y;[n] of length N/k. As we will show shortly, such an analysis system is
general enough to represent any linear transformation. The synthesis section
corresponds to the inverse of the analysis transformation. Here the M signals
yi[n| are upsampled and, after filtering with filters g;(n|, are combined additively
to give an approximation Z[n| to the original signal. Note that although one-
dimensional signals are indicated in the diagram, the system is equally valid for
multi-dimensional signals if we replace occurances of scalars n,w, k; with vec-
tors n, w, and matrix K;, respectively. The multi-dimensional problem will be

discussed in section 5.

The use of the A/S formulation emphasizes the computation of the trans-
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form coefficients through convoluti‘bn. As we mentioned in the introduction, this
is desirable since we would like to V,‘;‘reat different regions of the image in the same
manner. Furthermore, the exprci,'ésion of the problem in the frequency domain
allows us to easily separate the a;":rror e[rn] = Z[n] — z[n| into two parts: an alias-

ing component and a shift-invariant component. To see this, we may write the

i

contents of the intermediate si/’;nals yi[n] in the frequency domain as
e = EnleE) X

and the A/S system output IIJS
. M-1 if
X(w) = Z 1:’.~(kw)G¢(w)
i=0 |
! .
where we have used well-knc?wn facts about the effects of upsampling and down-

r
sampling in the frequency djoma.in [22]. Combining the two gives

~ M’- k- ]
K@) = ¢ X EF (w+ %) X (w + )| Gilw)
lM -1
= % }1) Fi(w)Gi(w) X (w)
k-1 M-1
YK )T REeE) G )

The first term corresponds to a linear shift-invariant system response, and the

second contains the system aliasing.

Cascaded Systems

A further advantage of the A /S system is that it allows explicit depiction and
analysis of hierarchically constructed transformations. If we assume that we

are dealing with A/S systems with perfect response (that is, £(n| = z[n]), then

14



an intermediate signal y;[n| of one A/S system may be further decomposed by
application of any other A/S system. To make this notion more precise, an
example is given in the diagram of figure 3 in which an A/S system has been
re-applied to its own intermediate signal yo[n]. If the original A/S system (as
shown in figure 2) had a perfect response then it is clear that the two-stage
system shown in figure 3 will also have a perfect response. If the cascading is
applied to each of the M intermediate signals y;[n|, we will call the systemn a

unsform cascade system. Otnerwise, it will be termed a non-unsform or pyramid

cascade.

Matrix Formulation

An alternative to the frequency domain notation associated with the A/S filter
bank is the matrix notation of linear algebra. An image of finite extent which has
been sampled on a discrete lattice may be written as a finite length column vector
z which corresponds to a point in RV, the set of all real N-tuples. The value
of each component of z is simply the corresponding sample value in the image.
Multi-dimensional images are converted to this vector format by imposing an
arbitrary but fixed order on the lattice positions. If we let N be the length of
the vector z, a linear transformation on the image corresponds to multiplication

by some matrix M with N columns.

Since the analysis and synthesis stages of the system in figure 2 each
represent a linear transformation, it is clear that we may represent the same
transformations using matrix notation. From the definition of convolution, and
assuming a one-dimensional system for simplicity, we may write

15
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Figure 3: A non-uniformly cascaded analysis/synthesis filter bank.
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wim| = Z 2]k — 1
and

N
M-1k71

En| = Z(:) Z—o yi[mlgiln — kim|

where the filter sample locations (k;m — ) and (n — k;m) are computed modulo

N. These expressions may be formulated as matrix-vector products
y = F'z

and

N
i
P!
<

or combining these two equations
& = GF'z (2)

where y and z are N-vectors, the superscript ¢ indicates matrix transposition,

and
[ flo]  folko) fol Akl
fo[—1]  folko—1] A1) filki-1]
fol 2] folko—2] H(=2] filki—-2]
F = Y folko—3] - P filk-3) e (3)
Jolko—4] Silkr—4)
fol2| : hl2|
| fof1) A1)
and
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. 90(0]
go(1)

go[2]

g0(—2]

| 90[—1]

gol ko
golko+1]
go[ko+2]
go|ko+3|

golko+4|

g1(0} AL

a(l] a1k +1]

91(2]  g1[k1+2]
g1lky +3]
g1ky+4]

91{-2]
g1[-1]

(4)

It is worth noting that the columns of G are composed of copies of the filters

gi[n| shifted by increments of k;, but those of F are composed of copies of the

time-inverted filters f;[—n| shifted by increments of k;. Also, it is apparent that

the order of the columns may be changed without changing the characteristics

of the transformation, as long as we rearrange both F and G in the same way.

The ordering indicated above, in which the amount of shift varies faster than

the filter number as we cycle through the columns will be referred to as the

standard form of the transformation matrix. For systems in which k; = k for

each 1, an alternative ordering of the columns will be useful. In this ordering,

the filter number is varied faster than the amount of shift. For example, the

matrix F in equation (3) would be written as

L o] Ad0] f2[0)
-1 Al-1] 1)
fol=2] fi[-2] fa[-2]

fol2]  fi[2]  fa[2]
| fl1] AN [l
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We will refer to this ordering as the snterdigsitated form of the transformation

matrix.

From the above discussion, it is clear that we can express any A /S system
in matrix form. The converse of this result is also true: there is an A/S system
corresponding to the linear transformation and inverse transformation defined
by any invertible matrix M. Given a transformation matrix M with !/ rows,
we simply create an analysis filter bank with k; = N for each ¢, containing [

different filters, each defined by a row of the matrix M.

Inverse Transforms

A primary advantage of the matrix notation is the ease with which a given
transformation may be inverted. From equation (2), we see that in order for the
A/S system to perfectly reconstruct the original signal z[n|, the corresponding

matrices must obey

GF' =1 (5)

where I is the identity matrix. If F has rank N and is square, we may choose a

synthesis matrix

G = (F) (6)

which will also be square with rank N. Thus, transform inversion in the spatial
domain is a conceptually simple procedure and we will find it useful in the

analysis and design of A/S systems.

If the matrix F is of rank NV but is not square (that is, the representation is
overcomplete), we may always build a perfect reconstruction system by choosing

19



G to be the generalized inverse or pseudo-inverse 29| of F:
G = (FF)'F

If F is square, this reduces to the solution given in equation (6). Similarly,
if we start with a (possibly non-square) matrix G of rank N, we may choose

F = (GG')"'G.

In the square matrix case, we may use the commutative property of ma-

trix inversion to switch the order of G and F*, which gives
F!'G =1

This corresponds to switching the analysis and synthesis sections of the system,
thus converting the A/S system to a multiplezing system. Such a system com-
bines M input signals z;[n| to form a single signal y[n|. This signal may later be
decomposed into approximations Z;|n| of the original signals. This is illustrated
in figure 4. In this way, all of tue results of this paper and all of the filter designs

may be used for the purpose of multiplexing.

Orthogonal Transforms

As discussed in the introduction, this paper will be primarily concerned with
orthogonal transformations. A matrix A corresponding to an orthogonal trans-

formation is a square matrix with the property that
AA'=A'A =1 (7)

This condition places a number of restrictions on the corresponding A/S system.

Since the transformation matrix must be square, the number of samples in the

20
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Figure 4: A multiplexing system.

transformed signal must be equal to N, the number of samples in the original

image. For the A/S system, this means that
M-1 4 .
— ki

where we have assumed that N is divisible by all of the k;. Such a system has

been termed a mazimally decimated filter bank [28).

A second, more important constraint is placed on the A/S system by
orthogonality. Combining the perfect reconstruction requirement in (5) with

the orthogonality constraint in (7) gives
G=F

If we consider the relationships between the A/S and matrix formulations given

in (3) and (4), this means that the filters must obey
gilnl = fi[-n|, for all ¢ (8)

The synthesis filters should be time-reversed versions of the analysis filters.

21



Another property of orthogonal matrices will prove to be helpful in un-
derstanding A/S systems: the inner product of distinct columns of an orthogonal
matrix must be zero. In terms of the filtering matrix F, it is useful to express

this condition in the form of two separate equations:

N-1
Y filn)filn — mkj] = o0, for all m #0, for all (9)
n=0

and
N-1
Y filnlfiln - mk;] = o0, for all m, for all § # 5 (10)
n=0

where, as before, the filter sample locations are computed modulo N. Equation
(9) states that the inner product of the impulse response of a filter with a
copy of itself delayed by a multiple of k; is zero. We will refer to this as the
self-orthogonality condition. Equation (10) states that the dot product of the
impulse responses of any two shifted distinct filters f; and f; is zero. Consider
the columns of the matrix F containing shifted copies of the impulse response
of one of the filters, say f;[n|. We will refer to the subspace of R" spanned by
these columns as the associated subspace of the filter fi[n|. Then equation (10)
states that for an orthogonal transform, the M associated subspaces of the filters
fi|n] are orthogonal subspaces of R¥. In other words, the M subspaces, each
spanned by the columns of F containing shifted copies of one of tﬁe filters f;, are
orthogonal. We will refer to this as the mutual orthogonality condition. These
two equations provide necessary and sufficient conditions for the orthogonality

of the matrix F, and we will refer to them often in the next sections.
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2 One-Dimensional, Two-band Systems

In order tc elucidate the concept of FIR orthogonal filters we will first consider
the splitting of a finite-length one-dimensional signal into two orthogonal sub-
signals. For such a system, the subsampling factors are ko = k; = 2, and we will
assume that the size of the image N is a power of 2. In addition to being the
simplest to understand, this type of system lends itself easily to the cor{struction
of octave-band representations. An octave bandwidth partition of the frequency
domain has ben advocated by several authors (1,6,4] for use in image analysis
and machine vision. For illustrative purposes, consider the use of lowpass and
highpass filters in the two-band A/S system. If we form a pyramid by applying
the transform recursively to the lowpass sub-signal, the resultant sub-signals will
correspond to a segmentation of the original into octave width frequency sub-
bands, as illustrated in the idealized diagram in figure 5. Such one-dimensional
systems yield surprisingly useful transforms which may be applied separably to

multi-dimensional signals.

There is a substantial literature concerned with the construction of band-
pass filter sets which allow signal reconstruction without aliasing. The history
of these efforts has been reviewed in (28] and more recently in [30| and [31]. The
initial concepts for two-band systems were established by Croiser, Esteban and
Galand in (26,27] and the resulting set of filters were termed quadrature mirror
filters (QMF). These authors were interested in sub-band coding of speech sig-
nals using filters of reasonable length. The authors also discuss the extension
of these results to multiple band systems using uniform cascading techniques.

Clearly, this only includes cases where the number of bands is a power of two.

23



Figure 6: Octave band splitting produced by a four-level pyramid cascade of
a two-band A/S system. The top picture represents the splitting of the two-
band A/S system. Each succesive picture shows the effect of reapplying the
system to the lowpass signal (indicated in grey) of the previous picture. The
bottom picture gives the final four-level partition of the frequency domain. All
frequency axes cover the range from 0 to «.

In addition, they suggested an efficient polyphase filter implementation. Sev-
eral suggestions for more efficient realizations have been made by the same

authors (32,33|.

The issue of the general multiple-band problem was first discussed by
Rothweiler (34|, who gave a complex solution. This was made more precise
by Galand and Nussbaumer in 35|, where the case of odd-length symmentric
filters was also presented using suitable delays in the A/S system. The complex
solution was also discussed by Chu in [36]. Nussbaumer and Vetterli [37,38]
discovered a real multiple-band solution which cancelled aliasing only in adjacent

bands, thus relying on negligible aliasing between non-adjacent bands.

Smith and Barnwell [39] were the first to publish perfect reconstruction

systems. A similar result was published by Wackersreuther in (40|, which in-

24



cluded the multiple band case. Smith and Barnwell clarified their orignal work
in [41] and an efficient implementation was found by Galand and Nussbaumer
[42]. Analysis of the problem in terms of a matrix of Z-transform polynomials
known as the aliasing cancellation or A/C matrix was independently proposed

by Ramstad (43|, Smith and Barnwell [44], and Vetterli [45].

Vetterli [45,46,47,31] used the A /C matrix notation to prove that there
is no solution for the general multiple band case using FIR modulated filters,
derived some multiple-band solutions, and showed that the multiplexing prob-
lem is closely related. Vaidyanathan [48,49| further clarified the multiple-band
problem. For reference, several authors [50,51,52,53] have explored IIR solutions

for the two-band case.

Some Simple Examples

The simplest example of a two-band orthogonal system is a matrix containing

non-overlapping planar rotation submatrices along the diagonal:
Cy 89 0 o -.. 0
—8y Cyp 0 0

0 0 Cy 8y

FO)=] 0 0 —-s ¢ (11)

Co 3y

0 —989 Cq
where ¢y = cos(d) and sy = sin(8) for some arbitrary 6. This transformation
may also be viewed as a two-point DFT. The matrix is clearly orthogonal since
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the individual rotation matrices are orthogonal and they have been placed in
the matrix so as to act upon distinct pairs of points in the image. The arrange-
ment of the columns in the matrix corresponds to the interdigitated ordering,
and the impulse responses of the corresponding A/S filters may be read directly
from the matrix in equation (11) using the relationships defined in equations (3)
or (4) and will each contain two samples. Clearly, the transformation matrix
F(0) corresponds to the identity transformation. In addition, both the Haar
and the Walsh-Hadamard transformation may be obtained through pyramid
and uniform cascading, respectively, of the A/S bank corresponding to F(n/4).
In this case, the impulse responses of the filters are [1,1] and (1, —1]. An illus-
tration of the construction (')f the Haar basis set in the spatial domain is given
in figure 6. The construction of the Hadamard basis set is given in figure 7.
The transformation corresponding to F(r/4) will be referred to as the primstive
Haar transformation. Altkough this transformation is simple to implement and

computationally efficient, its poor frequency response limits its usefulness.

A more interesting transformation can be formed by concatenating two
planar rotation matrices: one like the one given above, the other shifted along

the diagonal by one sample
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Figure 7: Uniform cascaded construction of the Hadamard basis set. See
figure 6.

27

Ll Ll L1t
| | — LLl]
il
| L1 Ll
I 1
| 1 || |
[l 1
| | | |
[ - |
1 I | |
I I |
| I |
I | I
| I | 1
| I |
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= 0 808 —80C€; €€ €081
0 0 0 —Co81  CoCi
0 0 0 8081 —80cC)
where
co = cos(fy), 8o =s8in(6), ¢1 = cos(d), and s, = sin(0,).

The matrix F(6o,0,) is clearly orthogonal since the product of two orthogonal
matrices is orthogonal. The construction of the transformation as a product of
two planar rotation matrices indicates that the transformation could be imple-

mented efficiently as a butterfly network.

As in the previous example, the matrix is in interdigitated form, and
we may simply read off the two filters, each of length four, for use in the cor-
responding A/S system. This transformation class may be reduced to a one
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parameter family by arbitrarily selecting one of the filters to be a highpass filter
by constraining it to have a D.C. frequency response of zero. For example, one
choice is

80C) + o€y — €08y + 808 =0

which becomes, using standard trigonometric identities,
8in(00 - 01) + 608(00 - 01) =0
This equation has two solutions

00“01::“41, or 00—012141

The two solutions are the same up to an overall sign change. If we had chosen
the other filter as a highpass, the roles of 6, and 8, would be reversed. An
example with 6y = 0.1677 and 6, = 1.9177 is shown in figure 8. The values of 6,

were chosen to minimize aliasing energy in the lowpass A/S branch. As desired,

the transform is both orthogonal and sub-band.

Although these filters are capable of better localization in the frequency
domain than the those in (11), they are always asymmetric (except for degener-
ate cases such as 0§ = 0 or 6, = 0 which are the same as the primitive Haar set.
defined in (11)) and thus do not have a linear phase response. One can continue
to generate even-lengtﬁ filters by cascading additional rotation matrices, but for
the purposes of this paper, we will take a more general approach in order to

develop symmetric (linear phase) filters.
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Figure 8: An example of a two-band A/S eystem corresponding to the matrix
in equation (12). On the left are the low and highpass filter impulse response
samples. On the right are the corresponding DTFT's, plotted from 0 to # on
linear scale axes.

General Solutions

To investigate more general filter solutions for the two-band A/S system, we
begin by writing an expression for X (w), the DTFT of the two-band A /S system

output. The intermediate (transform) signals are

Volw) = [R(5)X($)+ Ful§ + mX(5 + )]
and

Vi) = S[RE)X(E) + R +mX(§ + )
and the A/S system output is

X(w) = Yo(2w)Go(w) + Y1 (2w)Gy(w)
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Combining these equations gives
() = 5 [Fo(w)Golw) + Fi()Ga(w)] X ()
+ %[Fo(w +1)Gow) + Fylw + m)Gi(w)] X(w + ) (13)

As mentioned in the previous section, expression of the problem in the frequency
domain has allowed us to write the system response as a sum of a shift-invariant
component and an aliasing component, thus isolating the aliasing errors in the

second term.

Since we are seeking an orthogonal transform, we will require, as in (8),

that
giln] = fi|-n|, for all ¢

or, in the frequency domain
Gi(w) = F(-w)

By observing the relationship between the filters corresponding to the examples
in (11) and in (12), we may impose a relationship between filters f, and f; which
will eliminate the aliasing term in (13) and will ensure that the filters obey the

mutual orthogonality condition given in equation (10). The choice is to define
filn] = (=)0 fo[-1 - n] (14)
or equivalently,
Filw) = 3 fol=1-n|(=1)"eer
n

= ¥ fo|m]ele-mIm
m

= &YFy(-w+ ) (15)
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This definition clearly includes the examples given in equations {11) and (12).

In addition it includes as as sub-case the filter choices used by Esteban and

Galand:
foln] = h[n],  filn] = (=1)"hn],
goln] = hinl,  and  gyfn] = (~1)"Vh[n)
for h[n| an even-length symmetric filter.

It is straightforward to show that the aliasing term of equation (13) van-

ishes:
%[Fo(w + 7)Go(w) + Fy(w + w)G,(w)] X(w + 7)
= -;-[Fo(w + W)Fo(—w) + ei(“*')Fo(—w)c'j“Fo(w + ﬂ)]X(w + ")
= %[Fo(w + 7) Fo(—w) — Fo(—w) Fo(w + 1r)] X(w +m)
=0

Similarly, it is easy to see that the self-orthogonality condition of equation (10)

holds for this choice of filters:

S folnlfiln=2m] = 3 foln](=1)"™ fy[ -1 = n +2m)|

z folnlfo[-1-n+2m| — > foln|fo|-1—n+2m]

n odd n even

= Z fO[n]fo[—l--n+2m]— z fO[—l_n'+2mlfo[nll

n odd n' odd

= 0, for all m

The factor e in equation (15) suggests a modification of the A/S system where

the sampling on the two branches is staggered. That is, we keep the even samples
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on one branch and the odd samples on the other. This is illustrated in figure 9.

The box |e~7“ | indicates a one sample delay.

x[n] yfnl x[n
—I—" Hw) 2 J—e—»{2 T H(-w) —'I'_’
eJ“’ gi[n] _e";(.)
l—PH(-hJ*'TT) 2 JH—o—» 2 TH{H(w+T) [

Figure 9: A staggered two-band analysis/synthesis filter bank.

If we let Fy(w) = H(w), then from equations (14), (15), and (13), we see
that the filter design problem is now reduced to design of a single filter h[n| with

DTFT obeying
Hw)H(-w) + H(-w + m)H(w + 7) = 2

or

2 2
H(W)| +[H(w +m)| =2 (16)

In the spatial domain, this requirement is
Y h(n]h[n + 2m| = bmo, for all m #0 (17)

which is precisely the same as the self-orthogonality equation given in (9).

Symmetric Filters

We would like to design a symmetric filter satisfying equation (17). Symmetric
filters have linear phase responses and in addition are more effiecient computa-
tionally, especially in systems where multiplication is a more expensive operation
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than addition. A simple observation suffices to show that only trivial symmetric
solutions {the identity transform and the primitive Haar transform) exist for
filters of length M < ( %) where N is the size of the image. Assume that the
support of the filter h|n| is the region {0 < n < M -1}, although the following
argument holds for any region of support of length M. For M > 1 odd, consider

the dot product of the first column of the standard form analysis matrix F with

the (¥:1)th:

i 4 - :
h[o] h[M - 1]
0 h|M - 2]
0 h(M - 3]
0 | s s)
h[M —1] h(o]
h|M -2 0
h|M -3 0
M || o

According to the self-orthogonality condition, this product must be zero. If
N > 2M —1, then the product in (18) yields h[0)h|M—1] which, by the symmetry
of h|n| is equal to k[0]k[0]. This is non-zero by our assumption concerning the
region of support of the filter. If N = 2M — 2 (remember we are assuming
that N is a power of 2 for this section), then the product (18) yields twice
this value, and is thus also non-zero. So if M > 1 and M is odd, ~e require
that N < 2M — 4 for the product (18) to be zero. For even-leng'h symmetric
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filters, the corresponding result is that N < 2M — . Vaidyanathan [54] has
proven the corresponding result for one-dimensional time sequences which are
infinite in length: there are no two-band symmetric FIR solutions except for the
identity and the primitive Haar transform defined in (11). This fact is rather
unfortunate. It means that non-trivial linear phase orthogonal filters must be
approximately half the size of the image. In the next section, however, we will

show that it is possible to design smaller filters which are very nearly orthogonal.
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3 One-dimensional Filter Design

In this section, we will discuss the design of approximately orthogonal filters
for use in A/S banks. The goal will be the determination of a simple design
method that is readily extensible to A/S systems in multiple dimensions. The
history of design methods for QMF's is somewhat sparse. The original papers of
Croisier, Esteban and Galand [26,27| do not discuss design issues. Johnston [55]
designed a set of widely used filters by minimizing an error function containing
a shift-invariant error term and a weighted stopband ripple term for a fixed
number of filter taps. Jain and Crochiere [56,57] used a similar error criterion
in the time domain, and formulated an iterative design scheme which in which
each iteration required the constrained minimization of a quadratic function. A
technique for design of perfect reconstruction filter sets ia given by Smith and

Barnwell in [39]. They first design a product filter F{w) which is factorable as
2
F(w) = |H(w)|

and which satisfies

(14 (-1)")

f(m) > = b(n)

The resulting F(w) is factored to get h(n), the lowpass filter. Wackersreuther [40)
independently arrived at an identical design method in the time domain. The
problem with this design method is the somewhat arbitrary choice of the product

filter.

In this paper, we present two design methods, each motivated by the
fact that exactly orthogonal symmetric solutions exist only if the image size

N satisfies N < 2M — 4, where M is the filter size. The methods were not
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developed as optimal design methods, but as useful research tools for exploring

and understanding the class of orthogonal sub-band transforms. It has ' een

found, however, that the resulting filters perform quite well in practice.

Spatial Domain Design

The first method is a spatial domain technique. Given an initial set of analysis
filters for use in any two-band A/S system, we would like to orthogonalize the
corresponding transformation matrix, retaining the form of the A/S system
matrix. In other words, the columns of the resulting matrix should correspond to
shifted versions of filters. Gram-Schmidt orthogonalization (29| is inappropriate
here, since it orthogonalizes the matrix columns (or rows) in an arbitrary order,
thus breaking the symmetry of the A/S system. We need instead a method
which orthogonalizes the rows of the matrix in parallel. One possibility is that
of iteratively averaging the analysis and synthesis matrices. Assuming that we
start with a square full-rank analysis matrix A, the appropriate synthesis matrix

is given by equation (6), and one step of the iterative procedure is written
' 1 —1yt
A 2—,[A +(A7Y)] (19)

We emphasize again that we are assuming here that the initial matrix A is
invertible. The result of this iterative procedure will clearly depend on the
starting pcint. Several observations may be made concerning the properties of

the iterative step.

Proposition 1 If the initial matriz A corresponds to a particular A/S filter

bank, the resulting matriz A' will be consistent with the same filter bank. In
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other words, if the matriz A is formed from shi[téd versions of filter smpulse

responses, the matriz A' will have the same form.

Proof: Assume the matrix A is written in interdigitated form. Then we can

express the fact that A is composed of shifted versions of filters by the equation
Ai; = Aigijok (20)

where the subscripts indicate row and column of a matrix entry, k is the subsam-
pling factor (assumed to be the same for each branch of the A/S system), and
the & operator indicates addition modulo N. By definition, the inverse matrix

A~ must obey

N-1

D (A )in(A)n; = 65 (21)
n=0

where §; ; is one when 1 = j and zero otherwise. Substituting equation (20) into

equation (21) gives

2

Ny,

(A™YinAnerjor = bi

3
I}
(=]

which becomes, with a change of variables
N-1
Y (A )ioknorAn; = biorjor = bi;
n=0
where the © operator indicates subtraction modulo N. This means that
(A iokjor = (A7")i;
or, with another change of variables
(A = (A iokjer

So A! retains the original interdigitated symmetry. It is clear that (A~')* and

thus A’ will have the same symmetry. il
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Proposition 2 If the original matrsz A 18 full rank, then the procedure given

in (19) will produce a full rank matriz A'.

Proof: Assume A is full rank but A’ is not. Then there exists some non-trivial
vector v such that
Alv = [A + (A")']v =0
This can be rewritten as
A'Av = —v
This equation states that v is an eigenvector of the matrix A‘A with eigenvalue
—1. But since by assumption, A was full rank, A‘A must be positive definite [29)]

and so cannot have negative eigenvalues. Thus A’ must be full rank. il

Proposition 3 An orthogonal matriz is a stable limit point of the steration, and
if the initial matriz A is such that the eigenvalues \; of A*A are all greater than

0.2, the steration will converge to an orthogonal matriz.

Proof: It is easy to see that orthogonal matrices represent limit points since
(A™")* = A if A is orthogonal. To demonstrate convergence, we want to show
that (A')*A' is in some sense “closer” to the identity matrix I than is A'A. We
can do this by showing that the product of the matrix (A')*A’ with any vector
v produces a vector which is closer to v than the corresponding product using

the matrix A. Mathematically, we want to show that
|A‘AY - Iv| > |[(A)' A’y - 1|
or equivalently,
o [(A'A -T)(A'A -T)] v — o [((A)'A' - 1) ((A)A - T)] v >0
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for any unit vector v, with equality occuring when A is orthogonal. Since A
is full rank, the product A‘A is positive definite and will have N eigenvalues
A and N orthogonal eigenvectors v;. If we can show that the above expression
holds for all of the eigenvectors, then by superposition it will hold for any vector

0.

So we will assume that v in the above expression is a normalized eigen-

vector of A*A with eigenvalue A. Then
vt [A‘A] v = A
and
v'[(A)A]v = lo[A'A+20+ AT Ao
= r+2+}]
and so the condition that we are trying to prove becomes
vt [(A‘A)2 —2A'A + 1] v— v [((A')‘A')2 - 2(A")'A’ + I} v

= M-+ - F[\ a2 a4t ]

- - bed () - ()

> 0

A minimal amount of investigation reveals that this expression holds for all
A > 0.2, and thus if our starting matrix A is such that the eigenvalues of A'A
are all greater than 0.2, the iterative procedure will converge. Note that the

eigenvalues of A*A are the squares of the singular values of the matrix A. i

Proposition 4 If .he the associated subspaces of the original filters are orthog-

onal subspaces (and thus the original transformation matriz A partitions RN
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into orthogonal subspaces), then (A~')! and thus A' will partition RN into the

same orthogonal subspaces.

Proof: We will show this result for a two-band system. The extension to
multiple subspaces is straightforward. Consider a standarc form transformation
matrix A which is composed of two filters obeying the mutual orthogonality

condition given in equation (10):
A= [Al | Az]

where A, and A; are N x -’2! matrices, each containing shifted versions one of

the two filters, and therefore spanning orthogonal subspaces. Then the inverse

of the matrix may be written

Al = 'A‘A]"A‘
B [ALA,]™! 0 Al
0 (ASAL]7H || AS
Al
| A

where 1 indicates the Moore-Penrose pseudo-inverse [29]:
Al = [AlA]7 Al

From the form of A~!, and since a matrix and its pseudo-inverse span the
same space [29], it is clear that A' = éi(%——l)-‘- will partition R¥ into the same

orthogonal subspaces as A. I
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The disadvantages of this iterative method are that it depends on the
initial conditions and that we have no control over the frequency response of the
outcome. The advantages of this method are its simplicity and its flexibility,
both of which make it useful as an exploratory tool. We shall see in section 5

that it is easily extended to multiple dimensions.

Proposition 4 allows us to reduce the computational load of the design
method if the initial fiiters are chosen so that their associated subspaces are
orthogonal (ie, if they are chosen to satisfy equation (10). For the two-band
system, designing such filters involves selecting an initial lowpass filter and a
matrix (image) dimension N’, placing shifted copies of the filter into the columns
of an N' x NT' matrix A,, and iteratively averaging the matrix with the transpose
of its pseudo-inverse:

Ay ~ % [A1+(A})]
From the results of the previous section, the size of the resulting orthogonalized
filter will be M > (%) and in practice, the iterative procedure produces filters
of size N'. Thus, N' should be chosen to be the desired filter length. If the
desir.  Slter length is odd, the initial filter choice must be adjusted until the

procedure produces filters with one impulse response sample equal to zero.

As an example of the flexibility of the method, consider a three-band
design problem where we would like a highpass filter covering the top third of
the frequency band and two lowpass filters with the same magnitude frequency
response and (possibly) different phase covering the lower two thirds. For this

example, we choose an image size N' = 15 (this must be divisible by the sub-
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sampling factor 3) and initial filters

fo = [z, 10, z)
f] = [I, 1.0, .’B]
fg = [*IIZ, 1.0, *.’L‘]

Since the subspaces associated with these filters are not orthogonal (ie, they
do not satisfy equation (10)), choosing z = 0.5 will not guarantee that the
filters produced by the iterative procedure will be highpass and lowpass The
Parameter z can be adjusted until the resulting highpass filter has a zero D.C.
response. This was found to occur at z = 0.6735, and the resulting set of filters
is shown in figure 10, Note that the highpass filter is symmetric and the lowpass
filters are inverted versions of each other. These filters are not optimal, but the
iterative technique indicates that such filters exist, and indicates an appropriate
sampling strategy and Symmetry relationship between the two lowpass filters.
An optimization routine could now be written to achieve filters with sharper
transitions in the frequency domain. This will be dernonstrated for the two-

band case in the next section.

Frequency Domain Design

We now describe an alternative design procec'ure which is easily applied to
the one-dimensional two-band case. [t may be modified for application to any
one-dimensional system. [n the frequency domain, the conditjon for perfect
reconstruction (assuming the filters have been chosen to eliminate the aliasing

term as in equation (14)) is

[H@)[ + |Hw + )| =2 (22)
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Figure 10: An asymmetric three-band system. On the left side are the filter
impulse responses, and on the right are their DTFTs, plotted from 0 to « with a
linear scale. The two lowpass filters have identical power spectra, but conjugate
phase. The highpass filter is symmetric.
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The matrix averaging method described above produces filters satisfying this
constraint at the points w = ”’“ for k € {0,1,...,N'—1}. This suggests that
an aiternative design method is that of frequency sampling, in which we force
the filters to obey the constraint in (22) at the frequency samples of an N'-
point DFT. It is known that digital filter designs based on frequency sampling
are usually unsatisfactory due to poor behavior between the sample points (22].
This is because typical design specifications involve sharp transitions in the
frequency domain. The present design constraints, however, do not necessitate

sharp transitions and the frequency sampling designs perform remarkably well.

In designing the filter h(n| by frequency sampling, there are #J free
parameters (where |:| indicates the floor function) corresponding to the fre-
quency response H (™) for k € { oo lﬂ'{—z“ The value of H (%) for

k € {I.’—V%j +1, |‘¥J +1,...,N'—1} are determined from the filter symmetry

equation
Hw) = H(-w)

and, by rewriting equation (22):

H(w) \/Z—Hz(w+1r)

where we have dropped the modulus symbol from equation (22) because H(w)
is real. Since we are interested in a lowpass filter, the typical choice is to let
H(%%) = 2 fork € {O 1,. l = J} If the desired filter length is N, we need
only invert the resulting transform H(w) to get h(n|. If the desired filter length
is odd, we must adjust one or more of the parameter choices until the resulting

filter has one impulse response sample equal to zero. It was found empirically

45



that the best results were achieved by allowing only the last free parameter

H(l#]) to vary.

We have used the frequency sampling technique discussed above to design
filters of length 5, 7, 8,9, 11, 12 and 13 for use in the two-band A/S system. For
the 5-tap filter, the orthogonality equations may be solved analytically and this
is done in Appendix A. In Appendix B, we provide the values of the impulse
response samples for the filters. Table 1 gives several useful error measures for
each of the filters given in appendix B, as well as for two of Johnston'’s filters [55].
The value of E,jiasing provides a measur _. the aliasing energy in the lowpass
filter. It is the RMS difference betwe. . the response of the lowpass branch of
the A/S system to an impulse at n = 0 and one at n = 1. Let £°)n| be the
response of the lowpass branch of the A/S system to an impulse at n = 0. Let
#(M[n| be the response of the lowpass branch of the A/S system to an impulse

at n = 1. Then define
2 %
Ealiuing = [Z (i(o)[n] - :E")[n + ll) ]
n
The value of E,., provides a mean-squared measure of the overall system re-

construction error. Let £[n| be the overall A/S system impulse response. Then

define
i
3
B = [ (el - 6ol
The value of E,., indicates the absolute value of the largest error which occurs

when the A/S system is applied to the 256 x 256 “Lena” image.

Several of Johnston’s filters |55| are provided for comparison with the

even-length filters. These are indicated by the letter “J”. An A/S system based
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filter | Ealiasing | Fortn Eqabs

5 0.617 | 8.19E-3 | 2.597

7 0.595 | 7.95E-5 | 0.023

8A | 0.595 | 6.53E-4 | 0.265

8B 0.519 | 3.86E-3 | 1.567

8J 0.519 | 2.93E-3 | 1.572

9 0.478 | 1.35E-3 | 0.432

11 0.486 | 7.54E-4 | 0.283

12A | 0.478 | 8.63E-4 | 0.271

12B | 0.455 | 1.59E-3 | 0.415

12J | 0.455 | 1.14E-3 | 0.899

13 0.404 | 1.59E-3 | 0.593

Table 1: Error measures of the filters given in Appendix B.
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on his filters has a slightly lower MSE than the filters designed here, but the

maximum absolute value error is in general higher.

Figures 11 through 13 give plots of the basis functions and thei‘r DTFTs
for a four-level pyramid using the 5, 9 and 13-tap filters. These should be
compared to the DTFTs of several of the 16-point DCT basis functions which
are given in figure 1 of the introduction. Although the basis functions of the
full-size DCT are maximally localized in spatial frequency, the block DCT is
rather poorly localized. The block nature of the transform leads to exaggerated
Gibbs ringing in the frequency domain and suggests that the orthogonal sub-

band representation may be preferable for many tasks.

Non-orthogonal Systems

For some applications, it is desirable to be able to perform either the analysis
or the synthesis computations with inexpensive hardware. In such cases, a non-
orthogonal system may be useful. For example, suppose we wish to reconstruct
the image with the bilinear interpolation filters go = 1,2,1| and ¢, = [~1,2, 1]
which could be implemented efficiently with arithmetic shifts and additions.
Note that the associated subspaces of these two filters are orthogonal, even
though the filters do not correspond to an orthogonal basis set. From the dis-
cussion of section 1, we can find suitable analysis filters by inverting the matrix
G formed from shifted versions of the filters g;[n]. The true inverse would re-
quire inverting an N x N matrix where N is the number of pixels in the image
— clearly an impractical solution. In keeping with the concept of designing the
filters by placing them in a reduced size image, we can find approximate analysis
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filters by inverting an N' x N' matrix formed from shifted versions of the filters
gi[n], where N' << N. As an example, the inverse filters f; have been computed
with matrix sizes N' = 16 and N' = 22. The resulting impulse response samples
are given in Appendix B. Use of these filters will be demonstrated in the next

section.
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Figure 11: Basis functions and DTFTs for a four-level pyramid constructed
from the 5-tap filter given in Appendix A. DTFTs are plotted on linear scale
axes.
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Figure 12: Basis functions and DTFTs for a four-level pyramid constructed
from the 9-tap filter given in Appendix B. DTFTs are plotted on linear acale
axes.
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Figure 13: Basis functions and DTFTs for a four-level pyramid constructed
from the 13-tap filter given in Appendix B. DTFTs are plotted on linear scale
axes.
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4 Applications

In this section, we will give examples of two image processing applications using

the filters designed in the previous section in a separable manner.

Data Compression

An optimal transform for data compression should mininiize the bit rate for a
given allowable error in the reconstructed image. If the basis functions of the
transform are orthonormal, and if expected mean square differences are used as
an error measure, this is equivalent to maximizing the following expression for

the gain in coding over PCM [20]:

where a}- is the variance of the jth transform coefficient. This measure was
computed for some of the filters given in Appendix B, and is displayed in table 2.
Values were computed assuming Markov second order signal statistics, where the

autocorrelation matrix R, is a symmetric Toeplitz matrix of the form

1 P p2 e pN
p 1 p pN -1
Rzz = pz p 1 p(N—2)
PN p(N—l) p(N—2) 1
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A value of p = 0.95 was used to compute the numbers given in table 2, Values are
given for circular convolution on an image of size N = 256 and for linear convo-
lution, where the image edges were handled by reflecting the filters in a manner
that preserves the orthogonality of the basis set. This reflection technique,
which is described in Appendix C, is preferable because in circular convolution,
the transform coefficients near the image edges will contain information from
opposite sides of the image which are highly uncorrelated. Comparable values
for a 16-point block DCT and a 32-point block DCT are also given. A 9-tap
sub-band filter gives slightly better value than the 16-point DCT, and the 13-
tap sub-band filter is substantially better. This does not necessarily correspond
to measurements of subjective quality. We have found that images compressed
with a 9-tap subband transform are perceptually superior to the 16-point DCT,

primarily because of the absence of block artifacts.

Several authors have used separable QMF filters for the purposes of im-
age coding. Vetterli (58] was the first to apply QMF filters separably to two-
dimensional images. Woods and O’Neill [59) used DPCM to code the sixteen
bands formed by a uniform cascade of separable filters. They used 32 and 80-tap
filters designed by Johnston [55]. Gharavi and Tabatabai (60| used a pyramid
of separable filters and iu [61], applied it to color images. Tran et. al. [62| used
an extension of Chen aﬁd Pratt’s [63] combined Huffman and run-length coding

scheme to code QMF pyramids.

The separable staggered two-band A/S system produces a partition of
the frequency domain as illustrated in the diagram in figure 14. Also shown are

the four (staggered) subsampling lattices. Several examples of data compression
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ﬁlter Gcircular Greﬂected

5-tap 5.83 5.93

7-tap 6.99 7.10

8-tap 7.98 8.17

9-tap 8.93 9.05

13-tap | 12.043 | 12.20

DCT-16 8.82

DCT-32 9.49

Table 2: Theoretical Coding gains over PCM for a four-level pyramid based on
several different one-dimensional symmetric orthogonal sub-band filters. Sec-
ond order signal statistics were assumed to be Markov with p = 0.95. Gain
factors are given for circular convolution and reflected convolution, as defined
in Appendix C.

Subssmpling
lattices

O101O0I
—X—=—X—X
O1010I
—-X=X-X
Ol1 0101
—X—=X-X

Figure 14: Illustration of the sampling grid and idealized frequency domain
partition for four-band separable system. An “o” indicates that a sample from
the lowpass-filtered irnage is retained at this location. A “--" indicates that a
highpass vertical sample is retained. A “-” indicates that a highpass horizontal
sample is retained. An “x” indicates that a highpass diagonal sample is retained.
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Figure 16: Idealized diagram of the partition of the frequency plane resulting
from a 4-level pyramid cascade of separable 2-band filters. The top plot repre-
sents the frequency spectrum of the original image, with axes ranging from —n
to . This is divided into four sub-bands at the next level. On each subsequent
level, the lowpass sub-band (outlined in bold) is sub-divided further.
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of the 256 x 256 “Lena” image were computed using this separable system and
are given in figures 16 through 21. A four-level separable pyramid transform
was applied to the original image. This transformation partitions the frequency
domain into octave-spaced oriented sub-bands, as illustrated in the idealized

frequency diagram of figure 15.

An overall bit rate (entropy) was fixed and the bit rates assigned to
the coefficients of the transform were determined using the standard optimal

allocation formula [20):
oi
N-1 . 1/N
I o
j=0

where, as before, o} is the variance of the kth coefficient in the transform.

1
R,,=R+,Elog2

Negative values of R, were set to zero and the other bit rates raised to maintain
the correct overall bit rate R. Note that if we assume stationary image statistics,
the of are the same for all coefficients belonging to the same sub-image of the
transform. It has been shown [20] that the optimal quantizer for entropy coding
is nearly uniform for bit rates which are high enough that the image probability
distribution is approximately constant over each bin. Even though the examples
shown were compressed to relatively low bit rates, uniform quantization was used
due to its simplicity. Each sub-image was quantized with the bin size chosen to
give a first order entropy equal to the optimal bit rate R, for that subimage.
An interesting comparison may be made between compression with the 9-tap
and 13-tap filters, as shown in figures 20 and 21, respectively. The 9-tap filter
produces more aliasing, but the Gibbs ringing is more noticeable in the case of

the 13-tap filter. Schreiber et al [64] noted that some amount of aliasing may
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be perceptually preferable to the Gibbs ringing that results from using sharp

filters.

Progressive Transmission

Another application of the pyramid sub-band representation is that of progres-
sive transmission. This involves sending an image through a low-capaéity chan-
nel in such a way that a low resolution version of the image becomes available
quickly, and higher resolution information is added in a gradual manner. In the
case of a sub-band pyramid, this is easily accomplished by sending the informa-
tion in order from lowest to highest resolution. Figure 22 shows a sequence of
intermediate progressive transmission images for a four-level pyramid transform

using 9-tap separable filters.

Since in progressive transmission, it is likely that one would desire a
simple inexpensive receiver, a non-orthogonal system may be preferable. A
sequence of progressive transmission images for a four-level pyramid using the
linear interpolation filter and its inverse (given in Appendix B) is shown in
figure 23. The initial images in this sequence exhibit more obvious aliasing
effects than those of figure 22, but the significant computational advantages

could outweigh the modest increase in distortion.
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Figure 18: Original 8-bit 256 x 256 “Lena” image.
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Figure 17: Data compression example using a four-level pyramid with 9-tap
separable filter. First order entropy is 1.0 bit/pixel. RMS error is 3.86.
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Figure 18: Data compression example using a four-level pyramid with 9-tap
separable filter. First order entropy is 0.35 bit/pixel. RMS error is 8.13,
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Figure 19: Data compression example using a four-level pyramid with 6-tap
separable filter. First order entropy is 0.5 bit/pix2l. RMS error is 7.05,
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Figure 20: Data compression example using a four-level pyramid with 9-tap
separable filter. First order entropy is 0.5 bit/pixel. RMS error is 6.02.
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Figure 21: Data compression example using a four-level pyramid with 13-tap
separable filter. First order entropy is 0.5 bit/pixel. RMS error is 5.86.
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Figure 22: Progressive transmission images for a four-level pyramid transform
using 9-tap separable filters. The first image is produced by reconstructing only
the lowpass signal at the fourth pyramid level. The next image results from
reconstructing the entire fourth level, or equivalently, the lowpass image on the
third level. Bit rates (entropies) are: 0.03, 0.09, 0.24, and 0.49 bits/pixel and
the im.-ge sise is 256 x 256. The final image at 0.65 bits/pixel is not shown.

Figure 28: Progressive transmission images for a four-level pyramid transform
using 15-tap separable analysis filters and 3-tap separable synthesis filters. Bit
rates are essentially the same as for the 9-tap example above.

65




5 Extensions to Two and Three Dimensions

The application of QMF concepts to two-dimensional images was first suggested
by Vetterli in [58], where he discussed a four-band separable and a two-band case.
Pei and Jaw [65] suggested a separable application of the perfect reconstruction
filters developed by Smith and Barnwell. In this section, we discuss a more

general extension of orthogonal sub-band filters to two and three dimensions.

Sampling of Multi-dimensional Signals

In order to understand the extension of orthogonal sub-band filter concepts to
multiple dimensions, we must first review the effects of sampling in multiple
dimensions. It will be shown that the subsampling scheme places constraints on
the filter spectra. Sampling a one-dimensional signal corresponds to a replication
of its frequency spectrum in the frequency domain. The sampling “lattice” is
parameterized by a single number—the sample spacing T—and replication of the
spectrum in the frequency domain occurs at intervals of 374 In d dimensions, a
sampling lattice may be parameterized by a set of d linearly independent vectors
{v; : 0 <1< d-1}. The locations of the lattice sampling points consist of all

integral linear combinations of the vectors v;:
d-1
Z nv;, n; € N for all ¢
—t

More compactly, we may incorporate the lattice vectors into a square non-
singular sampling matrix V[23]. This allows us to describe a lattice point lo-
cation as a matrix-vector product Vn, where n € N9, the space of all integer

d-tuples. An example will be given shortly, but first we will consider the issue
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of uniqueness.

Although there is a unique lattice associated with every sampling matrix
V, the converse statement is not true. We may alter the order of the columns
of V without affecting the lattice. We may also multiply any column by -1.
More generally, we may add an integer multiple of any column of V to any other

column, as we show in the foilowing proposition.

Proposition 5 The lattice corresponding to a matriz V s unaltered if an i:te-

ger multsple of one column of V 18 added to another column of V.

Proof: We first write the origina! sampling matrix as

where the v, are column vectors of height d (d is the dimensionality of the image

space being sampled). Let

" _
Vi= Vg U3 - gy U+ Uiy -0 U4

for some j and k such that 0 < 5 < k < d — 1. Next we choose some arbitrary

vector n € N, thus defining a particular point in the lattice associated with V:

d-1
Vn= Z n,v;

i=0

We need to show that this point is also contained in the lattice defined by the

matrix V'. We define vector n' € N4 by

!

¢
n = (n01nl’° .. ’nj—l,(nj_nk)anj-fh' v ’nd—l)
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Then
j-1 k-1 d-1

Vin! = Z n;v; + (nj — nk) v; + Z niv; + n; (0,' + v,,) + Z n,v;
i=0 t=5+1 i=k+1

d-1
= Tom
=0

= Vn

So the point Vn is contained in the lattice defined by V'. The converse result

may be demonstrated in the same manner, thus completing the proof. il

In one dimension, ideal sampling is equiva‘ent to multiplication by a field
of dirac delta functions. This is also true in multiple dimensions. We will denote
the lattice associated with the identity sampling matrix as the unit square or

discrete lattice:

L(r)= )_ é(r—n)

neN4

Using this notation, we can define the lattice associated with sampling matrix
V in terms of L(r):

Ly(r) = Z 6(r—Vn)
neNd

= ) 6WV'r-n)

neNd

= L(V~'r) (23)

where we have employed the useful fact that the argument of the delta function
may be multiplied by any square invertible matrix. This equation says that any
lattice may be viewed as resulting from the action of a matrix V on the points

of the discrete lattice. This is illustrated in figure 24 for the hexagonal sampling
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Figure 24: An illustration of the relationship between the unit square lattice
and a hexagonal lattice.

matrix

1

1
2
3
0 ¥

V =

As in one dimension, the Fourier transform of lattice Ly(r) is also a

lattice:
Ivim) = [ drLy(r)e T
v /reR‘ virje

- -iflr
= / dr ) 6(r—Vn)e™’
TR peNe

Z e-j!)‘-Vn
neNd

= 3 (Vi)' 'n
neNd

= @0 s - 2n(v-ryn)

|v| neNd

274
= (IV‘_)l Lh,(v-n)o(n)

69




where |V| indicates the determinant of the matrix V, and we have assumed
convergence in order to switch the order of the integral and the sum. if we

define a related matrix
vV = 27(V7Y)

then the Fourier transform of lattice Ly (r) may be writtea

(2m)?
V|

Lv(m = Ly(M) = V| Ly (M) (24)

Again, except for the scale factor, the lattice may be viewed as resulting from
the action of a matrix V on the unit square lattice. The relationship between the

lattices in the frequency domain and spatial domain is illustrated in figure 25.

To summarize, if z.(r) is a continuous image, we will use the notation
zv(r) = z(r) - Lv(r) (25)

to indicate the corresponding sampled image, where Ly(r) is defined in equa-
tion (23), and we will use

X.(N) * Ly (M)

XV(n) = |v|

(26)

to indicate its Fourier transform, where * indicates convolution and Lv(ﬂ) is

defined in equation (24).

Discrete Representation of Sampled Signals

The results of this section can be derived completely in the sampled notation
given abhove, but they may be more easily manipulated in the unit square lattice

sampling domain. As stated previously, any lattice is a transformed version of
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the unit lattice. Thus, it makes sense to work with the corresponding discrete

image representation, defined by:
z(n] = z.(Vn) (27)

It is important to recognize that the matrix V induces a somewhat arbitrary
mapping from the discrete domain to the continuous image domain. Although
integer column operations do not alter the sampling lattice Ly (r), they do alter
the mapping from the lattice points to the discrete sample locations n and thus
will affect the geometry of the mapping of a filter back into the continuous
image domain. In the frequency domain, the standard multi-dimensional DTFT

is defined as [22,23]

F(w) = Y fi[n]e79""

neN

and so we can relate the sampled and discrete representations by

Xv(n) = /relzd dr [zc(r) zl:wﬁ(r - Vn)]e"n"r

= ) zc(Vn)e"jn"v"
neN4
- X(w)lw=wﬂ

or

X(w) = XV(””[):(V*‘)‘O)

This relation is illustrated in figure 25. We will use this relation to understand

the results of this section in terms of the original frequency domain.
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Figure 25: Relationship between lattices in different domains. Upper left is
the discrete or unit lattice with points spaced one unit apart. Upper right is the
DTFT of the unit laitice, which has points spaced 27 apart. Lower left is the
lattice associated with sampling matrix V, which is defined in equation (23).
The vectors correspond to the columns of V. Lower right is the DTFT of this
lattice, defined in equation (24). The vectors correspond to the columns of V.
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Subsampling of Discrete Signals

Given a discrete image, we will be interested in the effects of subsampling and
upsampling in the frequency domain. As with sampling, subsampling is param-
eterized by a square invertible matrix K. The elements of the matrix, however,

are constrained to be integers. The subsampled image is defined as
y|n| = z[Kn| = z.,(VK - n) (28)

where we have made use of the definition in equation (27). The fraction of the
original samples retained, or subsampling density, is |K|, the determinant of the

matrix K.

As with the original sampling matrix V, the subsampling matrix K is
invariant to integral column operations. This fact, coupled with the requirement
that the elements of K are integers allows us to write any subsampling matrix
K in a reduced form as an upper-triangular matrix with the property that the
oft-diagonal elements are all less than the diagonal elements of the same row.
The proof of this statement is given in appendix D. As an example, consider the

following sequence of matrices which is generated by integer column operations:

r L r L

1 6 3 1 31 1 2 1 211

022(—]022|—l002|]|]020

2 4 4] 2 00 2 00 |0 0 2|

The final matrix is in reduced form.

As in one-dimensional signal processing, the effect of subsampling in the

frequency domain corresponds to a sum of scaled and modulated copies of the
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input spectrum. For a subsampled signal y(n| as in equation (28) above,

1

Yl = g

Yo x ((K")‘w + 27ru) (29)
ueU

where
U = {(K")'n€e(0,1)*:ne N}

and where [0,1)? indicates the half-open unit interval in d dimensions. The
equation indicates that every subsampling matrix K has associated with it a set

of |K| modulation vectors U = {u,}.

The effect of upsampling on the frequency domain is simpler to describe.

If we define

z{K 'm] m=Kn, somen€N
y(m| = (30)
0 otherwise
then the DTFT of y[n| will be

Y(w) = 3 z[nje @ Kn
neN

= X(K'w) (31)
The A/S system involves adjacent down and upsampling boxes, and so it is
useful to combine the results above to get a response for a single A/S branch,

as defined by the following diagram:

X[(n] x(n]
——{ F(w) [» K | K THF™ Glw) —»

Combining equations (29) and (31) gives

X(w) =Gw) Y F(w+2mu)X(w + 2mu) (32)
uelU
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Thus, the spectrum of the subsampled signal is a sum of the input spectrum
modulated by the ve:tors in the set U. The output of the entire A/S system
will be a sum of such terms, one for each of the M branches. Clearly, for d =1

this reduces to the one-dimensional equation given in (1).

In the sampied image domain, we may use equation (25) to write down
an expression fi'r a sampled iinage corresponding to the subsanipled discrete

image in equation (28):

z.(r) - Lvk(r) = zvk(r)

and using equation (26), we may write the Fourier transform:

X.(M) « Lyg (1)
VI K|

(33)

Thus, the discrete subsampled image corresponds to sampling the original image
using a lattice with a matrix which is the roncatenation of the original sampling

lattice and the subsampling lattice.

Two-Dimensional Systems

Having discussed the concepts of sampling and subsampling ir. multiple dimen-
sions, we will now limit our attention to two-dimensional systems. When consid-
ering two-dimensional sampling matrices, we will assume without loss of genera.-
ity that one of the vectors defining the matrix is the unit vector in the horizontal
direction. For the purposes of this paper, we will only be interested in lattices

which have reflection symmetry with respect to the z and y axes. Thus the form
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of the sampling matrix must be

v - l a

0 b
where a € {0, 1} and b is any real number. We will dencte the sampling patterns
associated with these two choices of a a. the rectangular and staggered sampling
patterns, respectively. Some special cases which have additional symmctries are
worth mentioning. The unit lattice is simply a rectangular lattice with b = 1.
A hezagonal lattice is a staggered lattice with b = ’?. This lattice corresponds
to the centers of disks which are packed with maximal density in the plane.
A quincunz lattice is a staggered lattice with b = % This lattice is actually a

rotated square lattice. Figure 25 illustrates the relationship between the discrete

and sampling domains for a hexagonal sampling system.

Two-Band Systems

We consider first a two-band A/S system. We can easily list all reduced-form
subsampling matrices with determinant two. Since they must be ir upper trian-
gular form, the determinant is the product of the two diagonal elements. Since
the elements are integers, there are only two choices: (1,2) and (2,1) (negating
either of these does not alter the lattice). Finally, if the upper left element is
2, the upper right element must be 0 or 1 according to proposition D. If the
upper left element is 1, then the upper right element must be 0. So there are

only three distinct reduced-form subsampling matrices with determinant two:

20 10 2 1
, , and .
01 0 2 01
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Figure 26: The three two-band subsampliug schemes, shown on a square
lattice. These are given in the same order as the matrices in the text.
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Figure 27: The three two-band subsampling schemes, shown on a quincunx

lattice.

These are illustrated in figure 26 on the rectangular sampling lattice and in

figure 27 on the staggered sampling lattice. The third sampling strategy has

the nicest symmetry properties on the rectangular lattice, and so we will use

this as an example. Note that when the initial sampling lattice is square, this

subsampling produces a quincanx-sampled image. Similarly, the second subsam-

pling strategy produces a unit-sampled image when the initial sampling lattice

is quincunx.

Assume that we start with an image sampled on a unit lattice. Then

using equation (33), the spectrum resulting from the subsampling given in the

third matrix above is composed of the original spectrum convolved with a lattice
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corresponding to the matrix

0

B

~ -

VK =27
1

|
B

Figure 28 illustrates the lattice in comparison to the origin.! sampling lattice.
It should be clear from the figure that the subsampled lattice may be written

as a sum of the original spectrum with a copy of itself modulated by the vector

. Thus, the set of modulation vectors defined in equation (29) is

T
0 1
U= | f
0 2
1
Letting u = : , and assuming that G;(w) = F;(—w), the overall A/S system

N o=

response is
R(w) = %[Fo(w)Fo(—w) + Fy(w)Fy(~w)] X (w)

+ -21-[Fo(w + 27u) Fy(~w) + Fy(w + 27u) F,(~—w)]X(w + 2mu)

As we did in the one-dimensional case, we may impose a rclationship
between the filters which eliminates aliasing and ensures that the basis functions

are orthogonal to each other:

foln] = hn]

fl[n] — (_1)2u'.n+1 . 1 —-n
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Figure 28: The frequency domain lattice for a two-band system. The loca-
tions of the original frequency domain lattice are indicated by a + sign. This
illustrates the assertion that the lattice for the subsampled image is a sum of
the original lattice and a shifted copy.

This choice cancels the aliasing term in equation and the remaining linear shift-

invariant system response is
N | 2 2
Xw) = S [[Fo(w) + |Fo(w + 2mu)

This is illustrated in figure 30, along with the diamond-shaped partition of the
frequency domain which is induced when h[n| chosen to be a lowpass filter.
Vetterli (58] derived a similar set of filters, but he assumed at the outset that
the filters were symmetric with respect to inversion through the origin. The
result above holds for symmetric or asymmetric filters. A small example filter
was designed using the matrix averaging method of the previous section. A
frequency surface plot of the lowpass filter is given in figure 29. The filter, and

a more detailed description of the design method, are given in Appendix E.

Despite the fact that the subsampled images are in quincunx format, it
is possible to use this A/S system in a cascade. We must spatially rotate the
filters by 7/4 in order to apply them to the quincunx image. Subsampling on

the quincunx image is done according to the second subsampling matrix given
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Figure 29: Frequency response for 2-band quincunx-subsampled system. The
graphs extend from —x to = in both x and y directions.

above, which will produce a square lattice as a result (see figure 27). A pyramid
cascade of this sort of A/S system will produce a frequency domain partition in

the form of nested diamonds and squares. This is illustrated in figure 31.

Four-band Systerns

There are seven reduced-form subsampling matrices with determinant four:

20 2 1 4 2
0 2 0 2 0 1
4 0 4 1 4 3 1 0
, , , and .
0 1 0 1 0 1 0 4

These are illustrated in figure 32 on the rectangular sampling lattice and in
figure 33 on the staggered sampling lattice. As an example, we will restrict our
attention to the first of these, since this one maintains the symmetries of the

original sampling scheme.

In the frequency domain, this subsampling lattice produces a sum of the
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Figure 30: Illustration of the staggered sampling lattice and frequency domain
partition for two-band system deacribed above, applied to a unit-sampled image.
The o’s indicate that a lowpass sample is retained and the x's indicate that a
highpass sample is retained.

Figure 381: Nesting pattern in the frequency domain for a pyramid built on a
two-band “quincunx” system,
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Figure 32: The seven four-band subsampling schemes, on a square lattice.
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Figure 383: The seven four-band subsampling schemes, on a hex lattice,

82




+ 0+ 0 4+ o +
0O 0 0 0 0 o o
+ o+ o + o +
0O 0 0 0 0 o o
+ o+ o + o +
0O 0 O 0 0o o o
+ 0 + o0 4+ o +

Figure 84: The frequency domain lattice for the first of the four-band systems.
The locations of the original frequency domain lattice are indicated by a + sign.
This illustrates the assertion that the lattice for the subsampled image is a sum
of the original lattice and shifted copies of itself.

original spectrum modulated by the vectors

1 1
U= 0 2 0 2 _
- ’ ] ) - {0, u), Uz, “3}
1 1
0 0 3 2

This is illustrated in figure 34.

It appears that simple modulated filter solutions do not exist for this case
unless we constrain Fy(w) to be symmetric. With this constraint we may make

the following filter choices:
Fo(w) = H(w)=H(-w)
Filw) = &Y'%H(-w+27my)
F(w) = &Y"YsH(—w+ 27mu,)
Fs(w) = %% H(w + 2mus) (34)

As before, this choice of filters eliminates the overall system aliasing and ensures

that the basis functions of the transformation will be orthogonal to each other.
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Figure 85: Illustration of the sampling grid for four-band system described in
equation (34), applied to a square-sampled image. This should be compared to
the separable e; ample given in figure 14.

The resulting linear shift-invariant system response is:

X(w) = %[Z |H(w + 27ru.~)|2]X(w)

=0

In the rectangular sampling domain, this does not correspond to the
separable solution because the vectors in the exponents of Fy(w) and Fs(w)
have been switched. This is illustrated in figure 35, which should be compared
to figure 14. This solution is not of practical interest for rectangular sampled
images, since the separable solution is so much more efficient computationally.
On a hexagonally sampled image, however, this solution has very nice symmetry
properties. If the filter H(w) is a lowpass filter, the other three filters will be
highpass filters, each oriented with in one of the three hexagonal directions.
This may be contrasted with the separable case, where one of the highpass
filters contains both diagonal orientations. The sampling lattices and frequency
domain partition for the hexagonal system is depicted in figure 36. An example

filter, and an elaboration of the design method are given in Appendix E.
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Figure 86: Illustration of the sampling grid and frequency domain partition for
four-band system described in equation (34), applied to a hexagonally sampled
image.

Three-dimensional Systems

Three dimensional systems are of interest for application to image sequences.
We give a brief introduction to the problem. The sampling matrix in three
dimensions may be written with the help of proposition D as

1 a ¢

V=105 d

i 0 0 e ]
If we again assert the constraint of z and y reflection symmetry, then the p;x-
rameter a must again satisfy a € {0,7}. Adding the constraint of z-reflection
symmetry makes things complicated, so for the purposes of this example, we
will assume that @ = 0. Then z reflection symmetry requires that ¢,d € {0, %}
The case (c,d) = (0,0) is three-dimensional unit lattice. The pattern formed in
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the case (¢,d) = (%, %) corresponds to the densest packing of spherical objects
(such as marbles) and will be referred to as the marble lattice. This is analo-
gous to the hexagonal case discussed above, which corresponds to the densest
packing of disks in the plane. It is composed of square-sampled planes which
are interleaved. Alternatively, this sampling structure may be rotated in space
to give a pattern composed of interleaved hexagenally sampled planes. In the
frequency domain, the spectrum of such a sampling scheme is replicated on an-
other marble lattice. If one wishes to lowpass filter a continuous image to avoid
the aliasing resulting from sampling with such a lattice, the frequency spectrum
of the filter should be unity in a region in the shape of a rhomnbic dodecahedron
[66], and zero elsewhere. In analogy with the four-band case described above,

an interesting 8-band example occurs with the “separable” subsampling matrix:

This subsampling matrix preserves the sampling scheme (ie, the subsampled
marble lattice image is again a marble lattice image). Preliminary studies indi-
cate that using such a subsampling scheme, it is possible to construct an eight-
band system with full aliasing cancellation. The resulting basis functions will
be spatio-temporally oriented and will thus extract information about motion.

Determination of the actual filter samples remains a topic for investigation.
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Conclusions

This paper has investigated the design and application of linear transformations
which are jointly localized in space and spatial frequency, and which explicitly
represent information at multiple scales. In doing so, the advantages of a spa-
tial domain matrix formulation have been emphasized, especially with regard
to transform inversion and filter design. The filter design method of ‘iterat.ive
inverse averaging was found to be a useful research tool for investigating the
class of orthogonal linear transformations. In one dimension, the examples of
orthogonal systems given in this paper are members of the class of QMF. We
also discussed non-orthogonal systems. It was shown that these concepts may
be extended to multi-dimensional systems with arbitrary regular sampling ge-
ometries. Of particular interest are the two-dimensional hexagonal and the
three-dimensional “spherical packing” systems, which have appealing symmetry

properties. For such systems, better filter designs are needed.
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A b5-tap Filter Design

According to the expression in (18), a symmetric filter of length 5 requires an
image size N' > 2.5 — 4 = 6. Thus we design a 5-tap filter within an image of

length 6. We write the filter samples as

hin]=[a b ¢ b al
Then the self-orthogonality equation (17) yields two constraint equations:

2¢° + 202 +¢* = 1

and
2ac +b*+a® = 0O

The first is a normalization equation, and the second is the “circular” inner
product of the filter with itself shifted by two samples. We have three parameters
and two equations, so we may we impose the additional constraint that the filter

response is zero at w = 7 (ie, the filter is lowpass):
c—2b+2a=0
Combining these equations gives two possible solutions:
a = (2v2 +V14)/12
b = *V2/4
c = 2b—-2a
Analysis of the DTFT of these two filters indicates that the lower choice of signs

leads produces a filter with very poor frequency localization. The filter described

in the next appendix is thus the first solution.
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B One-dimensional Filters

The filter impulse responses given in this appendix were designed using the
frequency sampling method described in section 3. The odd-length filters were
designed using an image size N' which was one larger than the desired filter
size, and the frequency response at the point w = [l;:ll was adjusted until the
appropriate filter tap was zero. The frequency response at the DFT locations
w € {0,1,..., l#] — 1} was fixed at H(w) = /2, and if N' was divisible by
4, then the response at w = NT' was fixed at H(w) = 1.0. The even-length filters
were designed using an image size which was equal to the desired filter size. The
frequency response was fixed in the same manner as for the odd-length filters.
The response at the point w = lﬂi‘:—’J was adjusted to produce the same measure
of aliasing error as one of the odd-length filters (labelled with the letter “A”")
or as one of Johnston's filters (labelled with the letter “B”). Two of Johnston's
filters are provided for reference and are labelled with a “J”. Also given are

a 15-tap and a 2l-tap inverse filter for the linear interpolation filter that was

described at the end of section 3.

89



5 7 9 11 13
-0.0761025 | -0.0074972 | 0.0282204 | 0.0005612 | -0.0145152
0.3535534 | -0.0731952 | -0.0603941 | 0.0244078 | 0.0211069
0.8593118 | 0.3610506 | -0.0738819 | -0.0558173 | 0.0406707

0.8534972 | 0.4139475 | -0.0732233 | -0.0990339
0.7984298 | 0.4088095 | -0.0587709

0.8047379 | 0.4314804

0 7723375

Table 8: Odd-length filter tap values. Half of the impulse response sample
values are shown for each of the normalised lowpass QMF filters (All filters
are symmetric about n = 0). The appropriate highpass filters are obtained by
delaying by one sample and multiplying with the sequence (—1)".

8A 8B 8J 12A 12B 12]
0.0042330 | 0.0138932 | 0.0132759 | -0.0024175 | -0.0056647 | -0.0053876
-0.0545462 | -0.0981376 | -0.0999205 | 0.0165117 | 0.0266007 | 0.0266667
0.0545462 | 0.0981376 | 0.0981901 | 0.0019685 | -0.0048733 | -0.0038329
0.7028738 | 0.6932135 | 0.6929634 | -0.1117252 | -0.1185671 | -0.1197755

0.1141427 | 0.1242317 | 0.1251126
0.6886266 | 0.68563794 | 0.6850152

Table 4: Even-length filter tap values. Half of the impulse response sample
values are shown for each of the normalised lowpass QMF filters (All filters are
symmetric about n = —0.5). The appropriate highpass filters are obtained by
multiplying with the sequence (-1)".
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3 15 21
0.40824829 | -0.00150183 | -0.00010665
0.81649658 | -0.00450547 | 0.00031996

0.01051268 | 0.07465681
0.02553208 | -0.00181309
-C.06158052 | -0.00437275
-0.14865021 | 0.01055859
0.35875590 | 0.02549003
0.86761963 | -0.06153892
-0.14856482
0.35865968
0.86598770

Table 6: 3-tap linear interpolation filter, and two approximate inverse filters.
Half of the impulse response sample values are shown for each of the normal-
ised lowpass filters (All filters are symmetric about n = 0). The appropriate
highpass filters are obtained by multiplying with the s quence (—1)".
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C Orthogonal Edge-handling

In this appendix, we describe several methods of applying a filter near the bound-
aries of the image. Circular convolution or “wraparound” is the simplest solutior.
to the problem. In this case, each edge of the image is associated with the oppc-
site edge. This is often undesirable because it produces artificial discontinuities
in image intensity at the “seams” between opposite edges. A method which
is often preferable is to reflect the image through each of its boundaries, thus
eliminating the discontinuity problem. The images presented in this paper were

all processed using reflection at the boundaries.

For the separable orthogonal 4-hand case, it is also possible to modify
the reflection method in such a way that the resulting basis set retains its or-
thogonality. Consider a pair of one-dimensional filters fo[n] and fi[n| obeying
the orthogonality equations given in (9) and (10). We then define the kth basis

function ug[n| as follows. If k is even, then

Jolk —n|+ folk +n], n#0
ﬁfO[kli n=20

ug[n| =

If k is odd, then

fl[k_nl+fl[k+n]1 n#o
\/ifl[kL n=20

ugln| =

Now consider the dot product of two of these basis functions. As an example,
let { # k both be even. Then the dot product is
N-1 N-1
Y- uelnfuln] = 2folk|folt] + 3= (folk—nl + folk+n])(foll~n| + foll+n])
n=1

n=0
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N-1 N-1
= Y folk-nlfolt —n]+ X folk +n|foll - n]
n=-N+1 n=-N+1

= 3 folk — 1+ mifolm] + 3 folk —  + m] fo[m]

= 040

by equation (9). The cases for k and/or | odd may be demonstrated in exactly
the same manner. Since equations (9) and (10) provide sufficient conditions
for the orthiogonality of the A/S system matrix, the basis set formed with this
sort of filter reflection at the image boundaries is orthogonal. Unfortunately,
the factor of /2 at the edge filter sample means that the highpass or lowpass
characteristics of the basis functions are not preserved. This reflection method
was used only to compute the coding gains over PCM (see section 4), where an

orthogonal basis set is required.
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D Reduced-form Subsampling Matrices

In this appendix, we prove a proposition which allows us to write any subsam-

pling matrix in a reduced form.

Proposition 8 Any subsampling matriz K may be rewritten sn upper-triangular

Jorm such that the elements in the ith row cbey

0<K;; <K, -1, Jor i > 3.

Proof: Given an upper triangular matrix, it is not difficult to see that we can
use column operations to make the expression above hold. For each row i from
the d — 1th to the first, we add multiples of that row to all rows to its right
until the ith row of each of those columns is between 0 and K,;. Now we must
show that the matrix may be reduced to upper triangular form. We prove this

statement by induction.

o Let d = 2. Then we write

If b divides d or vice versa, we are done, since we may then eliminate the
larger of the two by adding an integer multiple of the smaller. Otherwise,
assume without loss of generality that & < d. Then subtract the first
column multiplied by l%_' from the second column. This will create a new
subsampling matrix with the lower right element strictly less than . We
repeat this procedure, each time reducing the minimum of the bottom

two matrix elements, until one of them divides the other. The iteration
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is limited since the minimum is a strictly decreasing integer and so will

eventully reach zero.

Now assume the statement holds for a d x d subsampling matrix K. Let
K’ be any (d + 1) x (d + 1) subsampling matrix. Consider the d x (d + 1)
matrix, A, which contains all but the top row of K'. We will show that
one column of A may be reduced to the zero vector using integer column
operations. This will complete the proof, since the remaining d columns
of A form a d x d matrix which can be reduced to upper diagonal form by

the inductive assumption.

The d + 1 columns v; of A must be linearly dependent and so there exist
d + 1 integers n, such that
d
Z n,v; = 0 (35)
=0
If one of the n,, say n; divides all of the others, we are done. We may
assume that n; = 1 since the equation above will still hold when all of
the n, are divided by n;. Then we simply add —n; copies of each column
vector v; to column vector v,, thus eliminating it. If there is no n, dividing
all of the others, then write n, for the smallest of the n;, and n, for one
of the n; which is not divisible by n,. Now we add n, [ﬁlJ v, to vector v,.
Equation (35) now becomes
n, n,
Z n;v; + (nr - n, l_J> v, +n,0, +n, [”J Uy
. n. nl
i£r,8
The new coefficient of the vector v, isn, = n,—n, lx—fj < n,. Thus we have
reduced the smallest n;. We may repeat this process until the smallest n;

divides the others.
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This completes the inductive proof. Incidentally, this theorem also applies to

the original sampling matrix V. il
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Figure 87: The design “image” for the two-band quincunx system. See text
for explanation.

E Non-separable Two-dimensional Filters

The matrix averaging design method 's easily applied to the multi-dimensional
design problem. The center region indicated in each of the diagrams given below
indicates the “image” in which the quincunx and hexagonal filters described in
section 5 were designed. Each of these images is surrounded by neighboring

copies of itself to illustrate how the circular convolution is to be done.

Consider the quincunx case. The image region is chosen to produce a
diamond-shaped filter seven samples wide (from corner to corner). Such a filter
fits into the image leaving a border of samples analogous to the leftover sam-
ple in the one-dimensional odd-length design case. Since the desired filter is

smaller than the image, the initial filter choice must be adjusted to minimize
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Figure 38: The design “image” for the four-band hexagonal system.

the resulting values contained in the unwanted samples. The sixteen blackened
circles within the image indicate the samples which are retained after subsam-
pling. The the samples indicated by small circles are discarded. A column of
the analysis matrix F is obtained by placing the impulse response samples of an
initial lowpass filter into the the image, centered on one of the blackened circles.
All other samples of the image are set to zero. The image samples are then
read off in an arbitrarily fixed order to form a column vector of height 32 which
may be placed into the matrix F. This procedure is repeated for each of the
sixteen blackened disks, producing a 32 x 16 matrix. The complete A/S system
matrix also includes the highpass basis functions, but since the system has been
designed so that the initial high and lowpass basis functions span orthogonal
spaces, proposition 4 of section 3 allows us to use the iterative procedure on the

matrix containing only lowpass filters. The hexagonal system matrix is formed
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in the same manner.

®
1
®

f ¢ f -f ¢ -f
f d b df f d -b d -f
e ¢c b a b c e e ¢ -b a -b ¢ -e
f d b d £ d -b d -f
f ¢ f -f ¢ f
e -e

Table 6: An example of two-band quincunx filters.

The following are some example filter sample values for the quincunx

case:

a = 09271061
b = 0.1828738
¢ = -0.0182986
d = -0.0366835
e = -0.0016742
f = -0.0022018
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case:

f c
f d b
e c b
f d b
f c
e f
-e -f
f c
-f -d -b
e c b
-f -d -b
f c
-e -f

-f

-e

Table 7: An example of four-band hexagonal filters. Only the lowpass and
the horisontal highpass filters are shown. The other two bighpass filters are
identical to the horisontal, rotated by 2x/3 and 4x/3.

The following are some example filter sample values for the hexagonal

0.6935061
0.2905438
-0.0323747
-0.0027388
-0.0319443
-0.0028679
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