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We describe a form of nonlinear decomposition that is well-suited for efÞcient encoding of natural signals. Sig-
nals are initially decomposed using a bank of linear Þlters. Each Þlter response is then rectiÞed and divided by
a weighted sum of rectiÞed responses of neighboring Þlters. We show that this decomposition, with parameters
optimized for the statistics of a generic ensemble of natural images or sounds, provides a surprisingly good char-
acterization of the nonlinear response properties of typical neurons in primary visual cortex or auditory nerve,
respectively. These results suggest that nonlinear response properties of sensory neurons are not an accident of
biological implementation, but serve an important functional role.

Signals arising in the natural world are highly struc-
tured. To an observer with knowledge of these struc-
tures the signals are redundant, because one spatial or
temporal portion of a given signal may be predicted from
others. Indeed, this is whymodern communication tech-
nologies are able to efÞciently compress and transmit
signals. It is widely assumed that neurons in sensory ar-
eas of the brain are adapted, through processes of evolu-
tion and development, to the signals to which they are
exposed. This concept was made more precise by At-
tneave [1] who hypothesized that a guiding principle for
the design of sensory systems is the statistically efÞcient
representation of environmental information. Barlow
[2] formalized a neural statement of this efÞcient cod-
ing hypothesis, in which he argued that the role of early
sensory processing is to remove statistical redundancy
or increase independence between neuronal responses
to natural stimuli.

This hypothesis has led many researchers to �de-
rive� models of sensory processing directly from statis-
tical properties of natural signals (see [3] for review). In
many such approaches, a linear basis is optimized such
that the responses to natural signals are as statistically
independent as possible. The basis functions resulting
from such decomposition of natural images have been
shown to have properties similar to receptive Þelds in
primary visual cortex [e.g., 4, 5, 6]. Those resulting
from decomposition of natural sounds are temporally
localized bandpass Þlters, similar to those found in the
peripheral auditory system [e.g., 7].

These linear models provide intriguing evidence
for a link between statistics of natural signals and neu-
ronal processing. But the statistical properties of natural
signals are too complex to expect a linear transforma-
tion to produce an independent set of components. For
example, visual images are formed from light reßected
from different surfaces in the environment, but the light
from these surfaces is typically combined nonlinearly,
according to the rules of occlusion. Thus, it would seem
unlikely that one could achieve a description as a lin-
ear superposition of independent patterns. In addition,
it is well known that sensory neurons are highly non-
linear, even at relatively early stages of processing. Nu-
merous nonlinear behaviors have been documented in
physiological experiments in vision and audition over
the past decades. These range from rectiÞcation and
saturation of responses [e.g. 8, 9, 10], to suppression
by non-optimal masks [e.g. 11, 12, 13, 14, 10, 15, 8], to
changes in tuning curve shape as signal strength is var-
ied [e.g. 16, 17, 18].

Here we offer a functional explanation for these
sensory nonlinearities in terms of the efÞcient coding
of natural signals. We show empirically that responses
of a linear neural model to natural sounds and images
exhibit striking statistical dependencies that cannot be
eliminated with linear operations. We then describe a
nonlinearmodel of neural processingwhich signiÞcantly
reduces these statistical dependencies. We demonstrate
through simulation that this model accounts for a num-
ber of nonlinear physiological behaviors that have been
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Fig. 1. Linear Þlter responses to example image and sound stimuli. (a) A natural image convolved with two Þlters selective for
the same spatial frequency, but different orientation and spatial position; the lower Þlter is oriented 45 degrees away, and shifted
up by 4 pixels. At a given location, when the Þrst Þlter responds weakly (gray areas) the second Þlter will also tend to respond
weakly. But when the Þrst Þlter responds strongly (black or white), the second Þlter is more likely to respond strongly. Red
arrows indicate a location corresponding to a high contrast edge, in which both Þlters are responding strongly (the Þrst positive,
and the second negative). (b) A natural sound convolved with two Þlters tuned for different temporal frequencies (2000 and
2840 Hz center frequencies). Red arrows indicate a time at which both Þlters are responding strongly. Note also that when the
Þrst Þlter responds weakly, the second also tends to respond weakly.

observed in both visual and auditory neurons.

Statistics of natural signals

We begin by examining the statistical properties of nat-
ural signals processed with linear Þlters (see Methods).
Figure 1a shows responses of a pair of non-overlapping
oriented visual Þlters qualitatively similar to those used
to characterize receptive Þelds in primary visual cortex
(area V1). Note that both Þlters are likely to respond
to prominent features in the image, such as around the
eyes. These features are interspersed with regions in
which both Þlters respond with very low activity. Simi-
larly, Fig. 1b shows instantaneous responses of a pair of
bandpass Þlters typical of the peripheral auditory sys-
tem. As in the visual case, we observe the co-occurrence
of large amplitude features separated by low amplitude
intervals.

These examples suggest that responses of typical
sensory Þlters to natural signals are not statistically in-
dependent. In order to examine this dependency more
explicitly, consider a conditional histogram of the lin-
ear response of one visual Þlter (��) given the response
of another visual Þlter (��) at a Þxed relative orienta-
tion, size, and position (Fig. 2). Statistical independence
means that knowledge of �� should provide no infor-
mation about ��. Graphically, this is equivalent to say-
ing that all vertical cross sections of the conditional his-

togram should be identical. In the histogram of Fig. 2,
the mean of �� (i.e. the mean value of each vertical cross
section) is zero, independent of ��, indicating that the
two responses are uncorrelated. But the width of the
distribution of �� increases with the amplitude of ��.
That is, the variance of �� depends on ��.

This form of dependency appears to be ubiquitous
- it is evident in a wide variety of natural images and
sounds. It occurs even when the Þlters are chosen to be
orthogonal, non-overlapping, or from a set that is opti-
mized for statistical independence [e.g. 5]. The strength
of the dependency does, however, depend on the spe-
ciÞc pair of Þlters chosen, as illustrated in Fig. 3. Nev-
ertheless, we emphasize that this dependency is a prop-
erty of natural signals, and is not due purely to proper-
ties of this particular set of linear Þlters. For example, no
such dependency is observedwhen the input consists of
white noise.

We formalize the conditional relationship between
a given pair of linear Þlter responses ���� ��� with a
model in which the variance of �� is proportional to
the squared value of �� plus a constant (Methods, equa-
tion (1)). For a pair of Þlters with strongly dependent
responses, this proportion is larger; for a pair whose re-
sponses are independent, this proportion is zero. Since
�� also depends on the responses of a number of other
Þlters within a local neighborhood, we form a gener-
alization of this conditional variance model in which
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Fig. 3. Examples of variance dependency in natural signals. (a) Responses of two Þlters to several different signals (Þlters as in
Fig. 1). Dependency is strong for natural signals, but is negligible for white noise. (b) Responses of different pairs of Þlters to a
Þxed natural signal. The strength of the variance dependency depends on the Þlter pair. For the image, the red X represents a
Þxed spatial location on the retina. The ordinate response is always computed with a vertical Þlter, and the abscissa response is
computed with a vertical Þlter (shifted 4 pixels), vertical Þlter (shifted 12 pixels) and horizontal Þlter (shifted 12 pixels). For the
sound, the red X represents a Þxed time. Temporal frequency of ordinate Þlter is 2000 Hz. Temporal frequency of abscissa Þlter
are 2000 Hz (shifted 9 msec in time), 2840 Hz (shifted 9 msec) and 4019 Hz (shifted 9 msec).

�� is proportional to a weighted sum of the squared
responses over the neighborhood and an additive con-
stant. We compute a set of optimal weights and addi-
tive constant by maximizing the likelihood of the condi-
tional distribution over an ensemble of images or sounds
(Methods, equation (6)). Intuitively, these weights are
larger for pairs of Þlters that have stronger dependency.
The constant represents the residual variance that can-
not be predicted from neighboring Þlters.

If this model fully describes the dependency be-
tween Þlter responses, how can these responses bemade
independent? Given that the dependency governs only
the variance, the natural solution is to divide the squared
response of each Þlter by its variance, as predicted from

a linear combination of its neighbors (seeMethods). Fig-
ure 4 summarizes this model. A natural signal is passed
through a bank of linear Þlters (only two are depicted,
for readability). In the gain control stage, the squared
response of each Þlter is divided by a weighted combi-
nation of squared responses of other Þlters in the pop-
ulation plus an additive constant (Methods, equation
(4)). The resulting responses are signiÞcantly more in-
dependent. Related work examines models for variance
dependency, as well as the conditions under which di-
vision is optimal [19].

The model illustrated in Fig. 4 incorporates a form
of automatic gain control known as �divisive normaliza-
tion� that has been used to account for many nonlinear
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Fig. 2. Joint statistics of a typical natural image as seen through
two linear Þlters. Top: one-dimensional histograms of the lin-
ear response of a vertical Þlter (��), conditioned on two dif-
ferent values of the response of a diagonal spatially shifted
Þlter (��). Pairs of responses are gathered over all image po-
sitions, and a joint histogram is constructed by counting the
frequency of occurence of each pair of responses. The two
one-dimensional histograms are vertical slices of this joint his-
togram. Differing widths of these histograms clearly indicate
that the Þlter responses are not statistically independent. Bot-
tom: A grayscale image depicting the full two-dimensional
conditional histogram. Pixel intensity is proportional to the
bin counts, except that each column is independently re-scaled
to Þll the range of intensities. Responses of �� and �� are
roughly decorrelated (expected value of �� is approximately
0, independent of ��) but not statistically independent. Specif-
ically, the variance of distribution of �� increases with increas-
ing value (both positive and negative) of ��.

steady-state behaviors of neurons in primary visual cor-
tex [e.g. 20, 21, 10]. Normalization models have been
motivated by several basic properties. First, gain control
allows a system with limited response range to handle
a wider dynamic range of input. Divisive normaliza-
tion achieves this goal, producing sigmoidal contrast-
response functions similar to those seen in neurons. In
addition, it seems advantageous for tuning curves in
stimulus parameters such as orientation to retain their
shape at different contrasts, even in the presence of re-
sponse saturation [20]. Previous models have accom-
plished this by computing a normalization signal that is
independent of parameters such as orientation (achieved
with a uniformly weighted sum over the entire neural
population). A consequence of this design is that the
models can account for the response suppression that
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Fig. 4. Generic normalization model for vision and audi-
tion. Each Þlter response is divided by the weighted sum of
squared responses of neighboring Þlters and an additive con-
stant. Parameters are determined using Maximum Likelihood
on a generic ensemble of signals (see Methods). The condi-
tional histogram of normalized Þlter responses demonstrates
that the variance of�� is roughly constant, independent of��.
The diagram is a schematic representation of the computation
and is not meant to specify a particular mechanism or imple-
mentation (see Discussion).

occurs, for example, when a grating of non-optimal ori-
entation is superimposed on a stimulus.

Model simulations vs. physiology

We now compare our model with electrophysiological
measurements from single neurons. In order to sim-
ulate an experiment, we choose a primary Þlter and a
set of neighboring Þlters that will interact with this pri-
mary Þlter. We pre-compute the optimal normalization
weights for an ensemble of natural signals (see Meth-
ods). We then simulate each experiment, holding all pa-
rameters of the model Þxed, by computing the normal-
ized responses of the primary Þlter to the experimental
stimuli. We compare these responses to the physiolog-
ically measured average Þring rates of neurons. Our
extended normalizationmodel, with all parameters cho-
sen to optimize statistical independence of responses,
can account for those nonlinear behaviors in V1 neurons
previouslymodeledwith divisive normalization (see above).
Figure 5 shows data andmodel simulations demonstrat-
ing preservation of orientation tuning curves and cross-
orientation inhibition.

Our model also accounts for nonlinear behaviors
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Fig. 5. Classical nonlinear behaviors of V1 neurons. (a) Con-
trast independence of orientation tuning [22]. (b) Orientation
masking [23]. Dashed line indicates response to a single grat-
ing, as a function of orientation. Solid line indicates response
to an optimal grating additively superimposedon amask grat-
ing of variable orientation. All curves are normalized to have a
maximum value of one. (c) Cross-orientation suppression [23].
Responses to optimal stimulus are suppressed by an orthogo-
nal masking stimulus within the receptive Þeld. This results
in a rightward shift of the contrast response curve (on a log
axis). Curves on cell data plot are Þtted with a Naka-Rushton
function, ���� � ������� � ���.

not previously modeled using normalization. Figure 6a
shows data from an experiment in which an optimal si-
nusoidal grating stimulus is placed inside the classical
receptive Þeld of a neuron in primary visual cortex of a
Macaque monkey [24]. A mask grating is placed in an
annular region surrounding the classical receptive Þeld.
Each curve in the Þgure indicates the response as a func-
tion of the center contrast for a particular surround con-

trast. The sigmoidal shape of the curves results from
the squaring nonlinearity and the normalization. Pre-
sentation of the mask grating alone does not elicit a re-
sponse from the neuron, but its presence suppresses the
responses to the center grating. SpeciÞcally, the contrast
response curves are shifted to the right (on a log axis),
indicative of a divisive gain change. When the mask ori-
entation is parallel to the center, this shift is much larger
thanwhen themask orientation is orthogonal to the cen-
ter (Fig. 6b).

Our model exhibits similar behavior (Figs. 6a,b),
which is due to a suppressive weighting of neighbor-
ing model neurons with the same orientation preference
that is stronger than that of neurons with perpendicular
orientation preference (see also [25]). This weighting is
determined by the statistics of our image ensemble, and
is due to the fact that adjacent regions in natural images
are more likely to have similar orientations than orthog-
onal orientations. For example, oriented structures in
images (such as edges of objects) tend to extend along
smooth contours, yielding strong responses in linear Þl-
ters that are separated from each other spatially, but ly-
ing along the same contour (see also [26, 27]). Note that
this behavior would not be observed in previous nor-
malization models, because the parallel and orthogonal
surround stimuli would produce the same normaliza-
tion signal.

An analogous effect is seen in the auditory system.
Figure 6 shows example data recorded from a cat audi-
tory nerve Þber [11], in which an optimal sinusoidal tone
stimulus is combined with a masking tone. As in the
visual data, the rate-level curves of the auditory nerve
Þber shift to the right (on a log scale) in the presence of
the masking tone (Fig. 6c,d). This shift is larger when
the mask frequency is closer to the optimal frequency
for the cell. Again, the model behavior is due to varia-
tions in suppressive weighting across neurons tuned for
adjacent frequencies, which in turn arises from the sta-
tistical properties illustrated in Fig. 3b.

As mentioned above, a motivating characteristic of
normalization models has been the preservation of tun-
ing curve shape under changes in input level. However,
the shapes of physiologically measured tuning curves
for some parameters exhibit substantial dependence on
input level in both audition [16] and vision [17, 18]. Fig-
ure 7a shows an example of this behavior in a neuron
from primary visual cortex of a macquaue monkey [24].
The graph shows the response of the cell as a function
of the radius of a circular patch of sinusoidal grating,
at two different contrast levels. The high-contrast re-
sponses are generally larger than the low-contrast re-
sponses, but in addition, the shape of the curve changes.
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Fig. 6. Suppression of responses to optimal stimuli by masking stimuli. (a) Vision experiment [24]. Mean response rate of a V1
neuron as a function of contrast of an optimally oriented grating presented in the classical receptive Þeld, in the presence of a
surrounding parallel masking stimulus. Curves on cell data plots are Þts of a Naka-Rushton equation with two free parameters
[24]. (b) Mean response rate vs. center contrast, in the presence of an orthogonal surround mask. (c) Auditory experiment [11].
Mean response rate of an auditory nerve Þber a function of sound pressure level, in the presence of a non-optimal mask at ����
times the optimal frequency. (d) Mean response rate vs. sound pressure level, in the presence of a non-optimal mask at ���	
times the optimal frequency. For all plots, maximummodel response has been rescaled to match that of the cell.

SpeciÞcally, for higher contrast, the peak response oc-
curs at a smaller radius. The same behavior is seen in
our model neuron.

Figure 7b shows an analogous result for a typi-
cal cell in the auditory nerve Þber of a squirrel mon-
key [16]. Responses are plotted as a function of fre-
quency, for a number of different sound pressure lev-
els. As the sound pressure level increases, the frequency
tuning becomes broader, developing a �shoulder� and
a secondary mode (Fig. 7b). Both cell and model show
similar behavior, despite the fact that we have not ad-
justed the parameters to Þt these data: all weights in
the model are chosen by optimizing the independence
of the responses to the ensemble of natural sounds. The
model behavior arises because the weighted normaliza-
tion signal is frequency-dependent. At low input levels,
this frequency dependence is inconsequential because
the additive constant dominates the signal. But at high
input levels, this frequency dependence modulates the
shape of the frequency tuning curve that is primarily
established by the numerator kernel of the model. In
Fig. 7b, the high contrast secondary mode corresponds
to frequency bandswith minimal normalization weight-
ing.

Discussion

We have described a generic nonlinear model for early
sensory processing, in which linear responses are squared
and then divided by a gain control signal computed as a
weighted sum of the squared linear responses of neigh-
boring neurons and a constant. The form of this model
is chosen to eliminate the type of dependencies that we
have observed between responses of pairs of linear re-
ceptive Þelds to natural signals (Fig. 2). The parameters
of the model (in particular, the weights used to compute
the gain control signal) are chosen tomaximize the inde-
pendence of responses to a particular set of signals. We
have demonstrated that the resulting model accounts
for a range of sensory nonlinearities in �typical� cells.
Although there are quantitative differences amongst in-
dividual cells, the qualitative behaviors we have mod-
eled have been observed in a number of laboratories.
A remarkable aspect of our model is its ability to ac-
count for physiologically observed nonlinearities in two
different modalities. This suggests a canonical neural
mechanism for eliminating the statistical dependencies
prevalent in typical natural signals.

The concept of gain control has been used previ-
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Fig. 7. Nonlinear changes in tuning curves at different input levels. (a) Mean response rate of a V1 neuron as a function of
stimulus radius for two different contrasts [24]. The peak response radius for both cell and model is smaller for the higher
contrast. (b) Mean response rate of an auditory nerve Þber as a function of stimulus frequency for a range of sound pressure
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ously to explain nonlinear behaviors of neurons. For
example, a number of auditory models have incorpo-
rated explicit gain control mechanisms [28, 29, 8]. Visual
models based on divisive normalization have been de-
veloped to explain nonlinear effects in cortical area V1
within the classical receptive Þeld [20, 10]. The standard
model assumes the response of each neuron is divided
by an equally weighted sum of all other neurons and an
additive constant. Our model utilizes a weighted sum
for the normalization signal, and is thus able to account
for a wider range of nonlinear behaviors. In addition,
our model provides an ecological justiÞcation, through
the efÞcient coding hypothesis [2], for such gain control
models.

The ability of our model to account for nonlinear
changes in tuning curve shape at different levels of in-
put is particularly interesting. Such behaviors have been
generally interpreted to mean that the fundamental tun-
ing properties of cells depend on the strength of the
input signal. But in our model, the fundamental tun-
ing properties are determined by a Þxed linear receptive
Þeld, and aremodulated by a gain control signal with its
own tuning properties. Although such behaviors may
appear to be artifacts, our model suggests that they oc-
cur naturally in a system that is optimized for statistical
independence over natural signals.

Our current model provides a functional descrip-
tion, and does not specify the circuitry or biophysics by
which these functions are implemented. Our normal-
ization computation is performed instantaneously and
we have only modeled mean Þring rates. Normaliza-
tion behavior could potentially arise through a number
of mechanisms. For example, feedforward synaptic de-

pression mechanisms have been documented and have
been shown to exhibit gain control properties [e.g. 30].
Although such mechanisms may account for suppres-
sive behaviors within the classical receptive Þeld, they
seem unlikely to account for such behaviors like those
shown in Fig. 6. It has also been proposed that nor-
malization could result from shunting inhibition driven
by other neurons [e.g. 31, 32, 33]. This type of imple-
mentation necessarily involves recursive lateral or feed-
back connections and thus introduce temporal dynam-
ics. SOme researchers have described recurrent models
that can produce steady-state responses consistent with
divisive normalization in primary visual cortex [20, 10].

Some of the gain control behaviors we describemay
be attributed to earlier stages of neural processing. Gain
control is known to occur at the level of the retina [e.g. 9,
34], although selectivity for orientation does not arise
before cortical areaV1. In fact, Ruderman and Bialek [35]
have suggested division by local contrast as a means of
maximizing marginal entropy, thus providing a func-
tional explanation for gain control in the retina. Our
work differs conceptually in the choice of statistical cri-
teria (independence betweenÞlters, as opposed tomarginal
statistics of one Þlter). In audition, outer hair cells have
been implicated in providing gain control [8, 36], and
some of the behaviors we describe at the level of the au-
ditory nerve have also been documented in recordings
from basilar membrane.

Our model is based on a mechanism that is fun-
damentally suppressive, but a number of authors have
reported facilitative inßuences in both vision and audi-
tion [e.g. 37, 38, 39, 14]. Some of these facilitative ef-
fects might be explained by the use of masking stimuli
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that inadvertently excite the receptive Þeld of the neu-
ron [e.g., 13, 40] thus causing suppression to overcome
facilitation only at high contrasts or sound pressure lev-
els of the mask. Facilitative effects might also be ex-
plained by dis-inhibition, in which a third cell inhibits a
second cell, thus releasing its inhibition of the recorded
cell. As mentioned above, our current model does not
utilize a recurrent implementation and thus cannot pre-
dict such effects.

The relationship between the model and percep-
tion should also be explored. For example, psychophys-
ical experiments suggest that visual detectability is en-
hanced along contours [41]. At Þrst glance, this might
appear to be inconsistent with our model, in which neu-
rons that lie along contours will suppress each other. But
the apparent contradiction is based on the unsubstanti-
ated intuition that a reduction in the neural responses
implies reduced detectability. Presumably, any differ-
ence in relative activity of neurons along the contour, as
compared with the activity of neurons in other regions,
could be used for contour detection. More generally, ex-
amination of the implications of our model for percep-
tion requires a method of extracting a percept from a
population of neural responses. While this has not been
done for contour detection, we Þnd it encouraging that
other basic percepts have been explained in the context
of a population of neurons performing gain control (e.g.
detectability of a grating in the presence of a mask [42];
perceptual segregation of visual textures [43]).

There are a number of important directions for fur-
ther reÞnement of the connection between natural sig-
nal statistics and neuronal processing. We have opti-
mized our model for a generic signal ensemble; it could
be the case that neurons are specialized for particu-
lar subclasses of signals [e.g. 44]. Moreover, it would
be interesting to model the mechanisms and associated
timescales (i.e., evolution, development, learning, and
adaptation) by which the optimization occurs. For ex-
ample, some visual adaptation effects have been explained
by adjusting model parameters according to the statisti-
cal properties of recent visual input [45, 46]. A more
complete theory also requires an understanding of which
groups of neurons are optimized for independence. A
sensible assumption might be that each stage of pro-
cessing in the system takes the responses of the previ-
ous stage and attempts to eliminate as much statistical
redundancy as possible, within the limits of its compu-
tational capabilities. It remains to be seen how much of
sensory processing can be explained using such a bottom-
up criterion.

Future work should also be directed towards test-
ing the efÞcient coding hypothesis experimentally. Some

support for the hypothesis has been obtained through
recordings from groups of neurons [47, 48] under nat-
uralistic stimulation conditions. We believe that im-
provements in both experimental techniques and statis-
tical models of natural signals will continue to provide
new opportunities to test and extend the efÞcient coding
hypothesis proposed by Barlow forty years ago.

Methods

For the auditory simulations we use a set of Gamma-
tone Þlters as the linear front end [49]. We choose a pri-
mary Þlter with center frequency 2000 Hz, and a neigh-
borhood of Þlters for the normalization signal: 16 Þlters
with center frequencies 205 to 4768 Hz, and replicas of
all Þlters temporally shifted by 100, 200, and 300 sam-
ples. For the visual simulations, linear receptive Þelds
are derived using a multi-scale oriented decomposition
known as the steerable pyramid [50]. The primary Þlter
is vertically oriented with peak spatial frequency of ���
cycles/pixel. The Þlter neighborhood includes all com-
binations of two spatial frequencies, four orientations,
two phases, and a spatial extent of three times the diam-
eter of the primary Þlter. Responses are horizontally and
vertically subsampled at 4-pixel intervals. To reduce the
dimensionality of the weight vector that needs to be op-
timized, we assume that weights for two Þlters with dif-
fering phase are the same, thus guaranteeing a phase-
invariant normalization signal. We also assume vertical
and horizontal symmetry. We have veriÞed that these
simpliÞcation do not substantially alter the simulation
results.

Our ensemble of natural sounds consists of � ani-
mal and speech sounds, each approximately � seconds
long. The sounds are obtained from commercial com-
pact disks and converted to sampling frequency of �����
Hz. The natural image ensemble consists of �� images
obtained from a database of standard images used in
image compression benchmarks (known as: boats, gold-
hill, Einstein, Feynman, baboon, etc). We have obtained
similar results using an intensity calibrated image set
[6].

For a pair of Þlters, we model the variance of re-
sponse of the Þrst Þlter given the response of the second
Þlter to a visual/auditory stimulus as follows:

���������	 
 ���

�
� �� (1)

where �� and �� are the linear responses of the two
Þlters. This conditional variance dependency is elimi-
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nated by dividing:

	� 

��

�

���

�
� ��

(2)

We assume a generalization of this dependency to
a population of Þlters. We model the variance depen-
dency of the response of Þlter �� given the responses of
a population of Þlters �� in a neighborhood 
�:

���������� � � � 
��	 

�
�

����
�

� � �� (3)

Again, the conditional variance dependency is eliminated
by dividing:

	� 

��

��
� �����

� � ��
(4)

Wewould like to choose the parameters of themodel
(the weights ���, and the constant �) to maximize the
independence of the normalized response to an ensem-
ble of natural images and sounds. Such an optimization
is computationally prohibitive. In order to reduce the
complexity of the problem, we assume a Gaussian form
for the underlying conditional distribution:

�
�
��

��� ��� � � � 
��
�

 (5)

��
��
��

� �����

� � ��
� ��

�
� ���

�

�
��

� �����

� � ��
�
	



We thenmaximize the product of such distributions over
the image/sound data at all positions/times .

����� �� 
 ��� ��
�����

�
�

�
�
���	

�������	� � � 
��
�

(6)

We solve for the optimal parameters numerically,
using conjugate gradient descent. The weights are con-
strained to be positive, to avoid instability in optimiza-
tion convergence and in simulations. Note that the value
of �� depends on the somewhat arbitrary scaling of the
input signal (i.e., doubling the input strengthwould lead
to a doubling of ��). Neurons also exhibit a range of dif-
ferent sensitivities. As such, we have chosen different
values of � in our simulations to match the sensitivity of
the cell being modeled.
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