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target molecule of the visual transduction cascade is a
cyclic GMP (cGMP)-gated cation channel that is per-
meable to calcium ions (Figure 1). Constitutive activa-
tion of the cascade in cones due to dissociation and
thermal isomerization of opsin results in depressed in-
tracellular levels of calcium. Calcium acts through two
myristoylated proteins to regulate steps in the visual
transduction cascade. The first is recoverin, which in-
hibits rhodopsin kinase in its calcium bound state
(Chen, 2002). Rhodopsin kinase phosphorylates MII,
which then binds arrestin to inactivate it. Thus, when
calcium is low, the activity of rhodopsin kinase is high,
and the life span of MII is short. Guanylate cyclase-
activating protein in its calcium bound state inhibits
guanylate cyclase and therefore lowers cGMP (Pal-
czewski et al., 2004). When calcium is low, guanylate
cyclase activity is high, and the photoreceptor recovers
rapidly from light stimulation. These two effects con-
tribute significantly to the faster photoresponse ob-
served in cones.

The work of Kefalov et al. has also raised some inter-
esting questions. For example, the high dissociation
rate of cone opsins combined with the irreversibility of
rhodopsin formation underscores the tendency of rods
to steal chromophore from cones. This is a potentially
serious problem for cones in bright light, since rods are
much more abundant than cones in most retinas, and
the rates of photon capture by rods and cones are sim-
ilar. Thus, saturated rods consume great quantities of
chromophore under daylight conditions while contrib-
uting nothing to useful vision. Evidence for an alternate
visual cycle, affording cones a private supply of chro-
mophore precursor and thus freeing them from compe-
tition with rods, was recently published (Mata et al.,
2002). However, the catalytic activities of this pathway
were only observed in cone-dominant chicken and
ground squirrel retinas. Given the new results from Kef-
alov and colleagues, it will be interesting to see if these
activities can be detected in retinas that contain a pre-
ponderance of rods.
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Building Better Models
of Visual Cortical Receptive Fields

Scientists usually study the receptive fields of visual
cortical neurons by measuring responses to “optimal
stimuli.” In this issue of Neuron, Rust and colleagues
have taken a promising alternative approach: build a
receptive field model based on the cell responses to
a stimulus subset and then use the model to predict
responses to other stimuli.

The response properties of visual cortical neurons use
to be studied with slide projectors and a creative col-
lection of light shapes. In those “good old days,” each
cortical neuron was often studied for hours until the
optimal stimulus was found. This was an extremely
successful approach that led to the discovery of orien-
tation selectivity—cortical cells respond to bars pre-
sented at certain orientations (Hubel and Wiesel, 2005).
But unlike retinal and thalamic neurons, cortical cells
were found to be very diverse in their response proper-
ties, and the combination of properties represented by
each cell was too large to be searched completely.

When overwhelmed by diversity, scientists usually
group things into categories. Hubel and Wiesel took
this approach by coining the terms “simple cell” and
“complex cell” early in the 60s. Simple cells were a
small population of cortical neurons with receptive
fields that resembled, in many ways, the receptive
fields of thalamic inputs. Complex cells were a much
larger population that included cells with very diverse
nonsimple receptive fields; out of 272 cells studied in
rhesus monkey, only 25 were classified as simple by
Hubel and Wiesel (Hubel and Wiesel, 2005). Simple and
complex cells were just two cell categories, a very
small number when compared with the multiple mor-
phological types described in primary visual cortex
(Cajal, 1899). The disparity between physiology and
morphology motivated an intensive search for new
physiological cell types and cell classifications in the
70s and 80s, sometimes aiming to replace the original
simple/complex cell terminology. The alternative cell
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categories confronted a great deal of skepticism: did
each category represent a cell type that correlates with
morphology, layer, and input/output, or was it a mere
arbitrary distinction? (See Mechler and Ringach, 2002;
Priebe et al., 2004 for a recent replay of this theme.)

Most research groups kept the classification scheme
of Hubel and Wiesel, but instead of using their four cri-
teria, which was time consuming and subjective, they
used a fast quantitative test based on response linear-
ity. When cortical cells are stimulated with a sinusoidal
drifting grating, the responses of most simple cells re-
semble a linear replica of the sinusoidal stimulus, while
the responses of complex cells do not. Measurements
of response linearity were fast, were bimodally distrib-
uted, and seemed to correlate well with the Hubel and
Wiesel classification (Movshon et al., 1978). But the fast
test was far from being perfect. Movshon et al. (1978)
found that one-third of simple cells were not linear, and
for some unknown reason, simple cells, as defined by
this test, suddenly became easier to record from; for
instance, compare the ratio of simple/complex cells in
recent papers with the 25/272 ratio reported by Hubel
and Wiesel (2005). Accurate or not, the test of response
linearity provided an important quantitative measure-
ment of receptive field type that could be reproduced
in computational models. But there was a caveat: re-
ceptive field diversity was largely ignored.

In this issue of Neuron, Rust and colleagues (Rust et
al., 2005) revived some of the ideas from the 70s and
80s by bringing together diversity and model. They did
that by creating an individualized linear-nonlinear-Pois-
son (LNP) model for each cortical cell that they re-
corded from primate V1. Their LNP model used spa-
tiotemporal linear filters obtained from responses to
randomized flashed bars with spike-triggered average
and spike-triggered covariance (de Ruyter van Ste-
veninck and Bialek, 1988; Touryan et al., 2002). By col-
lecting a large number of spikes, Rust et al. obtained a
surprisingly diverse set of excitatory and suppressive
spatiotemporal filters for each cortical neuron studied.
The authors did the proper controls to demonstrate that
these filters were significant and not artifacts generated
by eye movements and/or the binary stimuli. The LNP
model is reminiscent of the energy model (Adelson and
Bergen, 1985), but it is very different in that it incorpo-
rates a much more diverse number of filters, which can
be either excitatory or suppressive and are weighted in-
dependently.

Modelers love a “theory of everything” and dream of
a single algorithm that can explain what appears dis-
similar at first sight. Rust et al. are not different in that
respect and claim that the “same” LNP model can be
used to fit any type of cortical receptive field, simple or
complex. This claim is certainly provocative but could
be wrongly interpreted. By incorporating more spatio-
temporal filters, the LNP model does a better job than
previous models at predicting the responses of a corti-
cal cell to a diverse set of stimuli (Figure 1). However,
sharing a common LNP model does not mean sharing
similar inputs or similar mechanisms. As the authors
show in their Figure 8, their method does not allow
them to draw any strong conclusion about the inputs
that feed the cortical cells studied.
Figure 1. Stimulus and Model of a Cortical Receptive Field

(Top left and middle) Receptive field and stimulus sequence used
in Rust et al.’s experiment. (Top right) Spatiotemporal stimulus pre-
sented to a V1 neuron after analyzing the neuronal responses to
the flashed bars. (Bottom) Response of the V1 neuron to the spatio-
temporal stimulus shown at the top right and predictions from the
energy model and the new LNP model.
The results from Rust et al. are important because
they demonstrate a great diversity of computations in
cortical neurons and show us how much we miss when
we try to fit different cortical receptive fields within the
same box. The results are also important because they
show that cortical receptive fields are better modeled
when using both excitatory and suppressive filters, a
finding that resonates well with the anatomy—a cortical
cell that receives only excitatory input has yet to be
discovered. Unfortunately, the approach developed by
Rust et al. cannot be used to pull apart different cell
types and still leave us with important unanswered
questions. For example, what distinguishes the compu-
tations of cells from the different cortical layers? What
is different among the computations of complex cells
that receive direct geniculate input, those that receive
simple cell input, and those that receive complex cell
input only (Alonso and Martinez, 1998)? While studies
in the retina have revealed 20 different cell types as
defined by anatomy and physiology (Dacey et al.,
2003), studies in the visual cortex have not been able
to achieve this level of segregation yet. Perhaps the
future will give us the opportunity to identify different
cortical cell types by combining improved methods of
receptive field analysis (Rust et al., 2005) with a new
generation of tools to measure functional anatomy
(e.g., Ohki et al., 2005).
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