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1 Introduction 

Within each sensory modality, processing begins by decomposing the physical 

world into the most fundamental components (e.g. light intensity or sound 

frequency) by sensory receptors.  All the information available to an organism is 

determined at this early stage; the data processing inequality maintains that from 

this point on information can not increase.  However, the form in which the 

information is stored and organized can change.  In all sensory systems, the 

representation of sensory information becomes increasingly complex as one 

ascends the processing hierarchy.  Consequently, early sensory processing can 

be examined from two perspectives.  First, to what degree is information 

preserved as it is propagated through the brain?  The problem of signal 

transmission can be viewed as a problem of “how much” information is present 

at each stage of processing independent of “what” is being encoded.  

Alternatively, one can ask: what features of the world are represented in the 

firing patterns of neurons in a particular subcortical structure or cortical area?  

Questions related to the representation of information are closely related to 

questions regarding the computations neurons perform to achieve those 

representations.  This chapter focuses on a review of signal transmission, feature 

representation and computation at the early stages of visual processing.   
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1.1  Signal transmission 

The nervous system is noisy.  When presented with the same stimulus on 

repeated trials, neurons respond with a variable number of spikes.  In the cortex, 

response variance increases linearly with mean firing rate; the ratio between the 

variance and mean rate, referred to as the Fano factor, is often used to quantify 

the variability of these neurons.  On average, cortical neurons respond to stimuli 

with a response variance 1-2 times the mean response rate (Bradley et al 1987, 

Britten et al 1993, Scobey & Gabor 1989, Snowden et al 1992, Softky & Koch 

1993, 1983, Vogels et al 1989).   

 The source of noise in these neurons is unclear.  Intrinsic noise (e.g. 

spike generation) was once thought to be a significant source of unreliability.  

Intracellular current injections have since determined that the transformation of 

the intracellular potential into a spike train occurs with a higher fidelity than 

previously appreciated, suggesting that noise also arises from alternate sources 

such as synaptic transmission or alternate intracellular processes (Mainen & 

Sejnowski 1995).  Noise appears to increase as signals propagate through 

subcortical structures (Kara et al 2000) but remains approximately constant 

across cortical areas (Softky & Koch 1993).  Within the highly interconnected 

networks found in the cortex, balanced excitation and inhibition may play a key 

role in maintaining constant ratios of signal and noise (Shadlen & Newsome 

1998).   
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 Noise limits how well neurons can report information about a stimulus  

and consequently the amount of information available to an organism for 

perception and action. Signal detection theory has been used as a method to 

compare the ability of an observer to discriminate different stimuli with the 

ability of single neurons to perform the same task (Britten et al 1996, Britten et 

al 1992, Prince et al 2000, Prince et al 2002, Shadlen et al 1996).  A similar 

measure of discriminability is taken from Shannon’s information theory 

(Shannon 1948).  Information theory has advantages over signal detection 

theory when working with large stimulus sets or stimuli that are difficult to 

parameterize (e.g. stochastic or naturalistic stimuli) and when one suspects that 

the response probability distributions are non-Gaussian (Buracas & Albright 

1999). 

1.1.1 Shannon’s information theory 

Shannon’s information theory was introduced as a general technique for 

evaluating the transmission of a signal in the presence of noise, thus making it 

applicable to neural systems.  Mutual information quantifies how much one can 

discern about a message after it has been passed down a noisy channel and 

received at the other end; this metric has been applied to various sensory 

systems to quantify how much can be determined from the responses of a 

particular neuron or neuronal population (Bialek et al 1991, Buracas et al 1998, 

Rieke et al 1995, Rolls et al 1997, Theunissen et al 1996, Warland et al 1997).   
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 Consider the responses of a neuron to repeated presentations of a 

stimulus at seven contrasts (figure 1-1).  A typical visual neuron’s firing rate 

will increase with increasing contrast up to a point at which the response 

saturates.  Likewise, the variability will increase in proportion to the mean.  To 

quantify the information this neuron reports about contrast, one begins by 

constructing probability distribution histograms for the number of spikes elicited 

on each trial at each contrast level, the probability of a response (spike count) 

given a stimulus, P(r|s) (fig 1-1 right, black and gray).  Calculation of the 

probability distribution across all stimuli, P(r) is also required (figure 1-1, red).   

 The task of the neuron is to report the contrast of a stimulus with the 

magnitude of its firing rate.  If the seven contrasts are presented with equal 

probability, the probability of making a correct guess in the absence of firing 

rate information is 1/7.  Mutual information about the stimuli given the 

responses, I(S;R), quantifies the reduction in uncertainty when the firing rate of 

the neuron is taken into account.  Information is typically measured in quantities 

of bits where a bit is the amount of information required to distinguish two 

binary alternatives (0 or 1). If the response distributions corresponding to 

different contrast levels were completely nonoverlapping, the neuron would be a 

perfect discriminator and the information reported by the neuron would be 

log2(7)= 2.8 bits.  If the response distributions were completely overlapping, the 

contrast corresponding to a given response would be ambiguous and the 
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information would be zero bits.  Partially overlapping distributions result in 

intermediate values.  

   The entropy of a distribution P(x) measures the amount of information 

required to specify the variability in that distribution and is computed by:  

 

Computation of the information the example neuron reports about contrast 

requires computation of two entropies.  First, one needs to compute the amount 

of noise present in the responses at each contrast, the noise entropy (Hnoise) of 

P(r|s) (figure 1-1, black and gray distributions).  Similarly, one needs to 

compute the entropy across all responses (Htotal) from P(r) (figure 1-1, red 

curve).  The mutual information is the difference between the total entropy and 

the mean noise entropy (Cover & Thomas 1991):  

 

Mutual information computed in this way quantifies the average discriminability 

between contrasts.   

 Although information has an advantage over signal detection theory in 

that the shape of the probability distributions are not assumed but rather 

calculated directly, the process of estimating probability distributions is known 

to lead to systematic biases in information measurements (Carlton 1969).  If the 

number of samples is small and the number of bins used for the histogram is 

large, the bins will be sparsely sampled and systematic overestimations in  
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Figure 1-1.  Computation of the mutual information about the contrast of a 
stimulus from the distribution of responses.  Left: the contrast versus response 
function for a toy neuron.  Error bars indicate the mean and standard deviation 
of firing rate across multiple presentations of stimuli at seven different contrasts.  
Note that the variance of the response increases in proportion to the mean rate.  
Right: the number of spikes elicited across trials for each contrast plotted as a 
normalized histogram (a probability distribution) for each of the seven contrasts 
(gray, black), referred to in the text as the probability of a response given a 
stimulus, P(r|s).  The information the neuron reports about contrast decreases 
with the amount of overlap of these distributions. Also shown is a histogram of 
the responses across all contrasts, P(r) (red).  Mutual information is calculated 
as the difference in entropy between P(r), labeled Htotal, and the mean entropy of 
P(r|s), labeled Hnoise.   
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 information will result.  A number of methods have been developed to correct 

for this bias, including analytical estimation and correction of the bias (Panzeri 

& Treves 1996), neural network techniques (Hertz et al 1995) and Monte Carlo 

methods (Abbott et al 1996). 

 Chapter 2 is devoted to a characterization of response variability in 

visual area V1 during different stages of development.  Both classical and 

information theoretic techniques are presented to characterize variability and 

discriminability in infant and adult neurons.   

1.2  Representation and computation in early visual processing 

How is the external world represented in the firing patterns of neurons?  Visual 

processing begins by decomposing the world into a set of spatially localized 

light intensities.  However, we perceive the visual world not in terms of light 

intensity but rather in terms of objects and their relative positions in space.  One 

approach toward understanding the implementation of this sophisticated internal 

representation is to trace visual signals as they are transformed from the 

rudimentary description found in the retina through each stage of the processing 

hierarchy. 

 When pursuing a system from the “bottom-up”, the question of 

representation in the brain is inextricably linked to the computations performed 

by neurons to achieve that representation.  To determine the computations that 

occur at each stage of sensory processing, it is useful to build functional models 
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of neurons that describe the transformation of a stimulus into a neuron’s firing 

pattern in terms of mathematical operations performed upon the stimulus.  Such 

models describe not only processing performed by the neuron in question, but 

also include operations executed by neurons preceding it.  As such, these models 

are not strictly biophysical, but rather serve to provide a compact description of 

sensory computation up to a particular stage of the processing hierarchy.  In this 

section, I begin by reviewing the rich history of functional models in early 

vision and the linear and nonlinear systems analysis techniques used in their 

characterization.  I then focus on one computation performed in early vision: the 

computation of motion direction  within visual areas V1 and MT.     

1.2.1 Functional models in early vision 

Linear characterization of retinal ganglion cells: 

 The first efforts to describe visual receptive fields quantitatively through 

linear systems analysis were made by Rodieck and Stone (1965a, 1965b).  They 

introduced the concept of considering the responses of visual neurons in terms 

of a linear sum of the light intensities falling on their receptive fields.  Rodieck 

and Stone demonstrated that the linear weighting function of a retinal ganglion 

cell could be constructed by presenting small flashes of light to different 

locations of the receptive field and calculating a histogram of the responses at 

each position.  The responses of the neuron to different stimuli (e.g. a moving 

bar) could then be predicted from this linear receptive field map.   Description of 
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a neuron’s response to a stimulus in terms of spatiotemporal linear filtering has 

proven to be a powerful predictor of a neuron’s response at many stages of 

visual processing.    

 Rodieck (1965) also introduced the ideal of describing these receptive 

field maps with parametric mathematical models whose parameters could be 

adjusted to fit different neurons.  These models, he proposed, should include the 

simplest possible mathematical description of the neurons in question.  In the 

retina, Rodieck demonstrated that the center-surround organization of the retinal 

ganglion cell was efficiently and accurately described by a model containing a 

difference of two Gaussians (figure 1-2a).     

 Following the theme of analyzing retinal ganglion cell receptive fields as 

linear filters, Enroth-Cugell and Robson (1966) introduced the powerful 

technique of Fourier analysis to visual physiology.  The power of Fourier theory 

rests on the fact that any visual stimulus can be decomposed into a linear 

combination of sinusoidal gratings.  Thus the response of a linear system to a 

stimulus can be predicted by its responses to the individual grating components 

of that stimulus.  Conversely, deviations from linearity can be identified through 

discrepancies between the linear prediction and the actual response. In their 

report, Enroth-Cugell and Robson identified two classes of retinal ganglion cells 

in the cat retina based upon the responses of these cells to stationary sinusoidal 

gratings presented at different phases. The responses of X-cells were in accord 

with the linear mapping of their line weighting functions; their responses 
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depended predicatively on the alignment of the phase of the stimulus and the 

center-surround organization of the receptive field. In contrast, the responses of 

Y-cells could not be predicted in the same manner; Y-cells responded to a 

stationary grating regardless of phase.   

 In the same paper, Enroth-Cugell and Robson illustrated the relationship 

between the linear weighting function of a cell and its Fourier spectra.  The 

minimal contrast required to evoke a criterion response from a retinal ganglion 

cell (its contrast sensitivity) depends on the spatial frequency of a sinusoidal 

grating.  These authors demonstrated that this relationship was in fact predicted 

by a Fourier transform of the difference-of-Gaussians model.  The direct 

relationship between the linear weighting function of a neuron and its response 

to drifting sinusoidal gratings has been used to characterize visual neurons at 

many different levels of processing. 

 

Characterization of retinal nonlinearities: 

 The linear description of a cell is only effective to the degree that the 

neuron behaves linearly.  Characterization of the linear properties of a neuron’s 

response can be constructed with small impulses and sinusoidal gratings, as 

described above.  Characterization of the nonlinear properties of a neuron’s 

response can be much more difficult.  Wiener kernel analysis is a generalized 

technique for characterizing a system, regardless of the nature of the 

nonlinearities contained therein (Wiener 1958).  This analysis effectively 
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provides a series expansion of a neuron’s response properties by describing the 

dependence of a neuron’s response on increasingly higher order correlations 

between stimulus dimensions with each successive term. Wiener kernels are 

characterized by presenting Gaussian white noise to a neuron.  Gaussian white 

noise has the property of producing every possible stimulus combination (to a 

given resolution) given an infinite duration, hence infinite order correlations 

between stimulus dimensions can theoretically be computed.  To compute a 

Wiener model for a neuron, the responses to a Gaussian white noise stimulus are 

recorded and the spike-triggered stimulus distribution, the stimulus history 

before each spike, is collected.  Increasingly higher order statistical descriptions 

of this distribution are then calculated for inclusion in the model.  A Wiener 

model of a cell would include terms that can approximately be described as: a 

baseline response (zeroth order term), the mean stimulus before a spike (first 

order term), the dependency of spiking on the covariance between pairs of 

dimensions (the second order term) and so on.  In practice, each successive term 

requires an exponential amount of data to compute and terms beyond the second 

or third require more data than are accessible by current experimental 

techniques. 

 Marmarelis and Naka (1972) were the first to apply Wiener kernel 

analysis to neurons in the visual system.  They recovered Wiener models of the 

temporal tuning properties of catfish retinal ganglion cells by injecting a 

Gaussian white noise current into their horizontal cell inputs.  In addition to 
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recovering the first order temporal responses for these neurons, they identified 

significant second-order dependencies, indicative of nonlinearities in these 

neurons.   

 The temporal nonlinearity in Y-cells first described by Enroth-Cugell 

and Robson (1966) was further characterized by Hochestein and Shapley (1976) 

using stationary, sine-reversing (counterphase) gratings.  In response to a 

counterphase grating stimulus, Y-cells produce a large nonlinear response at 

double the temporal frequency of the grating (the 2nd harmonic).  Hochstein and 

Shapley demonstrated that the ratio of the 2nd and 1st harmonic could reliably 

characterize neurons as X or Y-cells (cells with a 2nd/1st harmonic > 1 were 

classified as Y; cells with a 2nd/1st harmonic<1 were classified as X).  Victor and 

Shapley (1979) further characterized this nonlinearity using a technique 

analogous to Wiener kernel analysis but applied in the frequency domain.  

Stimuli used in the characterization were comprised of sums of 6-8 temporally 

modulated (spatially stationary) sinusoids and the actual responses of retinal 

ganglion cells were compared with the linear prediction to identify nonlinearities 

in these neurons.  While X-cells response’s were primarily linear, in Y-cells they 

found large second-order dependencies between gratings at different temporal 

frequencies, indicative of nonlinear processing in these cells.  Because these 

nonlinearities were present when the gratings were presented at spatial 

frequencies too high for the Y-cell center to resolve, they concluded that the 

nonlinearity must act before spatial pooling in the Y-cell.  A second nonlinearity 
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was identified by Shapley and Victor (1978) in retinal ganglion cells.  Using the 

same sum-of-sinusoids technique, they demonstrated a contrast gain control 

mechanism in these neurons: with increasing contrast the first-order behavior 

shifted toward higher temporal frequencies and was more sharply tuned.   

 

Primary visual cortex (V1): 

 Retinal ganglion cells project to the lateral geniculate nucleus of the 

thalamus (LGN); receptive field properties in the LGN are nearly 

indistinguishable from those of retinal ganglion cells.  Cells in the LGN provide 

the inputs to neurons in primary visual cortex (V1).  Hubel and Wiesel 

demonstrated in the cat (1962) and later in the monkey (1968) that most V1 

neurons are tuned for the orientation of bars passed across their receptive field 

and a subset are tuned for the direction of bar motion along this axis.  In 

addition, they identified two classes of cells: simple and complex.  Simple cells 

respond in a sign-dependant fashion to the polarity of a bar and its position on 

the receptive field whereas complex cells respond in a polarity or position 

insensitive manner. The functional models describing each of these 

computations in V1 are explained below. 

 

Linear characterization of simple cells:  

  Hubel and Wiesel (1962) suggested that orientation tuning in V1 cells 

could be conferred by appropriately arranging LGN inputs (with different spatial  
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Figure 1-2: Linear filters used to describe receptive fields of neurons in early 
vision.  a)  The difference-of-gaussians model used to describe the center-
surround organization of retinal ganglion cells shown in x-y spatial coordinates 
(left).  Right: a slice taken across the x spatial dimension (black).  Also shown 
are the two Gaussian components of the model (dashed lines).  b) The Gabor 
model used to describe the receptive field of V1 simple cells shown in x-y 
spatial coordinates (left).  Tilt in this model confers tuning for orientation.  Also 
shown is a slice across the x spatial dimension (black) as well as the Gaussian 
and sinusoidal grating components of the Gabor (dashed).  c)  The space-time 
tilted receptive fields used to describe directionally tuned V1 simple cells.  The 
two filters are 90 degrees out of phase (quadrature pairs) and together form the 
subunits of an energy model complex cell.   
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displacements) to produce a receptive field elongated along one axis. Tests of 

whether simple cells could be described by their line weighting functions were 

first performed by Movshon et al (1978b).  They constructed histograms of these 

neuron’s responses to light and dark bars and demonstrated that Fourier 

transforms of these line weighting functions predicted the spatial frequency 

tuning of these cells to drifting sinusoidal gratings.   

 The functional model used to describe the spatial profile of simple cell 

receptive fields was first proposed by Gabor for general optimization of spatio-

temporal localized signal transmission (Gabor 1946). This function, now 

referred to as a “Gabor” was first suggested for the description of simple cells by 

Marcelja (1980) and its parameters further specified by Daugman (1985).   A 

Gabor consists of a sinusoid multiplied by a gaussian window (figure 1-2b).  It’s  

preferred orientation is determined by the tilt of the sinusoid and its aligned  

elongated 2-D gaussian window; the phase of the grating determines the location 

of its “on” and “off” subregions.  To test the applicability of the Gabor to simple 

cell 2-D spatial profiles, Jones and Palmer (Jones & Palmer 1987a, Jones & 

Palmer 1987b, Jones et al 1987) mapped simple cell receptive fields using 

automated techniques similar to those used by Movshon et al (1976): receptive 

field maps were constructed by computing the mean response to small light and 

dark bars and taking the difference between the light and dark maps.  They 

arrived at a nine parameter model for a Gabor, including terms to adjust the 

orientation, phase, and spatial frequency of the grating, and the aspect ratio of 
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the 2-D Gaussian window.  The linear maps for simple cells were in fact well 

described by these functions and the spatial and temporal frequency preferences 

of simple cells were well predicted by a Fourier transform of their best fitting 

Gabor function.   

 The tilt of the grating in XY spatial coordinates determines the 

orientation tuning of this function; direction tuning can be included in the model 

by extending the model to include a time axis  (Adelson & Bergen 1985, van 

Santen & Sperling 1985, Watson & Ahumada 1985). The receptive field can be 

envisioned as a three-dimensional volume; direction tuning in the model is 

conferred by shifting the phase of the grating rightward or leftward at different 

points in time (corresponding to rightward or leftward motion). This concept is 

most easily visualized by examining slices through the Gabor perpendicular to 

the long axis plotted against time (figure 1-2c). A neuron with an un-tilted 

spatiotemporal receptive field  will respond equally well to opposite directions 

of motion whereas receptive fields that are tilted in space-time produce 

directionally tuned responses. Tests of directionally tuned simple cells using 

bars or counterphase gratings reveal that most directionally tuned simple cells in 

V1 produce space-time tilted maps (DeAngelis et al 1993, McLean & Palmer 

1989, Movshon et al 1978, Reid et al 1987, but see Murthy et al 1998). 

Although these linear maps correctly predict the preferred direction of these 

neurons, they systematically underestimate direction selectivity by 

overestimating the responses in the non-preferred direction, suggesting that a 
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nonlinearity plays a role in shaping the direction selectivity of these neuron’s 

responses.   

 

Simple cell nonlinearities: 

 The linear map of a simple cell predicts response increments and 

decrements to stimuli, yet these cells have low baseline firing rates and spiking 

responses cannot be negative. This discrepancy is remedied by simply setting 

the negative responses of a filter to zero (half-wave rectification).  Evidence 

exists to suggest that this half-rectification stage should include either an 

exponent (e.g. squaring) or equivalently an over-rectified process coupled with a 

gain parameter (Heeger 1992a).  As described above, the linear estimate of 

directional neurons has systematically underestimated the direction bias for a 

neuron due to an overestimation of the response to stimuli moving in the 

direction opposite the preferred (Albrecht & Geisler 1991, Reid et al 1987, 

Tolhurst & Dean 1991).  However, intracellular measurements of the receptive 

field are well aligned with linear estimates (Jagadeesh et al 1997).  The 

discrepancy between the actual versus predicted direction tuning of a cell are 

reconciled by the addition of an expansive nonlinearity (e.g. squaring or over-

rectification) which reduces the responses to the null direction relative to the 

preferred. (Albrecht & Geisler 1991, Heeger 1993).  Similarly, conversion of a 

simple cell’s spatial frequency tuning curve into a spatial profile (via an inverse 

Fourier transform) has predicted maps with more side lobes than observed in the 
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actual responses of many V1 neurons (Dean & Tolhurst 1983, DeAngelis et al 

1993, Tadmor & Tolhurst 1989).  For these cells, an expansive nonlinearity 

applied to the filter output has been shown to align the predicted and actual 

responses.  Biophysically, the expansive nonlinearity is believed to arise in 

simple cells via intracellular noise.  When the membrane voltage of a neuron is 

near threshold, random events can raise the intracellular potential above 

threshold to produce a spike.  As a result, the relationship between filter output 

(membrane potential) and firing rate takes on the form of a power law  when 

averaged over trials (Anderson et al 2000, Miller & Troyer 2002) 

 In addition to squaring, a number of apparent nonlinear phenomena in 

simple cells have been tied to a single nonlinear mechanism, contrast gain 

control.  At high contrasts, simple cell responses saturate.  The responses of 

simple cells to an excitatory stimulus are also reduced by simultaneous 

presentation of an ineffective stimulus, a phenomenon known as masking.  Both 

nonlinear phenomena can be mathematically described by divisive 

normalization (Carandini & Heeger 1994, Heeger 1992b).  Under this 

formulation, a simple cell’s excitatory response is described by its 

spatiotemporal linear weighting function.  The neuron is simultaneously 

suppressed by a signal that is proportional to the total contrast of the stimulus 

via a divisive process.  In the case of a contrast response function, excitation 

exists in the numerator and contrast in the denominator and the normalization 

produces sigmoidal responses.  In the case of a masking stimulus, the mask 
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suppresses the excitatory response in proportion to its total contrast.  

Biophysically, the source of the suppressive signal is debated. Contrast 

dependant suppression has been proposed to arise from inhibitory inputs from 

neighboring neurons (Heeger 1992b), synaptic depression (Carandini et al 2002, 

Chance et al 1998, Kayser et al 2001), variations in the levels of balanced 

excitatory and inhibitory activity (Chance et al 2002), and other sources (Kayser 

et al 2001). 

 

Nonlinear processing in complex cells: 

 Movshon et al (1978a) introduced a two-bar interaction paradigm to 

characterize the responses of complex cells.  They found that a bar of a given 

polarity (bright or dark) would evoke responses at all positions across the 

receptive field, indicative of phase-insensitivity.  To obtain a second-order 

estimate of the neuron’s response, they presented a bar of one polarity at a fixed 

position within the receptive field while varying the spatial position of a second 

bar of the same polarity.  A two-line interaction profile was computed as the 

difference in the histograms with and without the stationary bar present and was 

shown to be in agreement with the spatial frequency tuning of the cell.  

 Adelson and Bergen (1985) proposed an energy model for the 

construction of phase-invariant responses based upon linear filter subunits.  This 

model summed the squared outputs of two Gabor filters whose sinusoidal 

components were 90 degrees out of phase (figure 1-2c).  Stimulus selectivity is 
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conferred in the model by passing the stimulus through the two linear filters at 

the first stage.  Phase-insensitivity is conferred in two ways.  First, the squaring 

operation applied to the output of each filter results in large responses from a 

filter when presented with stimuli that resemble the filter or its inverse.  Second, 

signals from the two filters are combined to produce perfect phase invariance.  

Automated extensions of the techniques used by Movshon et al (1978a) have 

been used to further characterize the spatiotemporal fields of V1 complex cells; 

the results derived by those techniques are consistent with energy model 

predictions (Emerson et al 1992, Emerson et al 1987, Gaska et al 1994, 

Livingstone & Conway 2003, Szulborski & Palmer 1990). 

 

Historical overview: 

 Early work in the retina introduced an elegant philosophical concept to 

sensory neuroscience.  Researchers, including Rodieck, Enroth-Cugell, Robson, 

and others, derived methods for determining the linear weighting functions to 

describe the transformation of light intensity into the spiking responses of retinal 

ganglion cells.  Furthermore, they demonstrated the utility of deriving 

parametric models whose parameters can be adjusted to describe large classes of 

neurons at a given stage of processing. In other words, these researchers set the 

criteria for “understanding” a class of neurons as a derivation of a functional 

model that is a good descriptor of a neuron’s response to any arbitrary stimulus 
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(albeit improvements to functional models of retinal ganglion cells are still 

being made  e.g. Keat et al 2001).   

 In primary visual cortex, numerous researchers have applied similar 

mapping techniques to simple cells and demonstrated that these maps are well 

described by Gabor functions.  However, simple cells display multiple 

nonlinearities which are not included in the Gabor model. Furthermore, 

functional models exist for complex cells but fitting the parameters of these 

models has proven difficult, due to the strong nonlinearities in these neurons.  

Despite decades of work in V1, we still have not constructed and tested 

complete functional descriptions of these neurons.  Recent advances in nonlinear 

systems analysis make this problem more tractable, as described below.  

Application of modern analysis techniques to arrive at complete functional 

models for V1 neurons (both simple and complex) is the focus of chapter 3.   

 

Advances in linear and nonlinear systems analysis: 

Computation of higher order Wiener kernels to account for the nonlinear 

behaviors of half-rectified neurons (like simple cells) has proven unsuccessful. 

Proper description of threshold nonlinearities requires many higher order 

Wiener terms but terms beyond the second-order require more data than are 

accessible by current experimental techniques.  More recently, recovery of the 

functional model in two stages has been proposed as a means of determining a 

full model for quasilinear receptive fields like the simple cell (Anzai et al 1999, 
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Brenner et al 2000, Chichilnisky 2001, Chichilnisky & Baylor 1999, Emerson et 

al 1992, Sakai 1992).  In such a characterization, a cell is stimulated with a 

dense, random, Gaussian noise stimulus and the linear component of its 

receptive field is estimated by computing the mean stimulus before the response, 

the spike-triggered average (equivalent to the first order Wiener kernel).  Given 

a model of a simple cell as a single linear filter followed by an instantaneous 

rectifying nonlinear function and Poisson spike generation, the spike-triggered 

average is an unbiased estimate of the linear filter (Chichilnisky 2001, Paninski 

2003).  The nonlinear function that relates the output of this filter and firing rate 

can then be reconstructed as the ratio between histograms of the raw (all stimuli) 

and spiking stimulus distributions projected onto the filter, thus completing a 

full functional model for the neuron.   

 To fully account for a complex cell’s behavior using the two-bar 

interaction technique, one must calculate all possible second-order correlations 

between spatiotemporal dimensions (equivalent to the second-order Wiener 

kernel or the spike-triggered covariance matrix).  This unwieldy data structure is 

difficult to interpret.  Furthermore, this technique only classifies spatiotemporal 

interactions up to the second order and thus provides an incomplete model for a 

neuron.  A clever solution to these problems was introduced to create functional 

models of the fly visual system, spike-triggered covariance (Brenner et al 2000, 

de Ruyter van Steveninck & Bialek 1988).  In this analysis, a matrix similar to 

the second order Wiener kernel is calculated and resolved into a set of filters by 
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applying a principal components analysis (PCA).  Statistical methods are then 

used to identify filters that have a significant impact upon a neuron’s spiking.  

STC recovers filters for which the response variance changes relative to chance 

occurrences between stimuli and spikes (e.g. filters whose outputs are squared), 

and is capable of identifying filters that have an excitatory and/or a suppressive 

impact on spiking.  Once a set of excitatory and suppressive linear filters are 

recovered, the nonlinear function that describes the combination of the signals 

arising from each filter can be reconstructed to complete the model.  In this 

procedure the nonlinear function is estimated empirically, thus bypassing the 

problems associated with classical Wiener kernel approaches.  STC has proven 

successful at recovering the subunits of complex cells in cat visual cortex 

(Touryan et al 2002).  Characterization of full models of both simple and 

complex cells using STC is the focus of chapter 3. 

1.2.2 Computation of motion direction in V1 and MT 

We know from psychophysics that a suppressive signal must be involved in our 

computation of the direction of moving stimuli.  After prolonged presentation of 

a moving stimulus in one direction, a static stimulus will appear to move in the 

opposite direction – a phenomena known as the motion after-effect.  The 

perception of movement of the static stimulus is believed to arise from 

adaptation of neurons that normally suppress neurons tuned for the opposite 

direction. Most computational models of motion processing include an opponent 
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(subtractive) computation between signals with opposite direction preferences 

(Adelson & Bergen 1985, Simoncelli & Heeger 1998, van Santen & Sperling 

1984). Details regarding the neural mechanisms that confer the source of this 

suppressive signal remain unresolved.     

 While a subpopulation of neurons in V1 are tuned for the direction of 

moving stimuli, neurons in the LGN are not, suggesting that the computation for 

motion direction occurs at the first stage of visual cortical processing.  Neurons 

in V1 can have a array of direction selectivities, ranging from neurons that 

respond similarly to motion in both directions to neurons that respond 

vigorously to motion in one direction but have little or no response to motion in 

the direction opposite (Hubel & Wiesel 1962).  In area MT, most cells produce a 

response to a stimulus moving in the direction opposite its preferred  that is 

suppressed below baseline firing rate (Felleman & Kaas 1984, Maunsell & Van 

Essen 1983, Rodman & Albright 1987).   

 As described in section 1.2.1, most directionally tuned simple cells in V1 

produce space-time tilted maps (DeAngelis et al 1993, McLean & Palmer 1989, 

Movshon et al 1978b, Murthy et al 1998, Reid et al 1987), indicative of a role 

for a linear process in shaping direction tuning. Space-time tilt is likely 

conferred by appropriately arranged non-directional inputs that are time lagged 

relative to one another (Adelson & Bergen 1985).  The required time lags could 

be produced by the convergence of magnocellular and parvocellular inputs from 

the LGN (De Valois et al 2000, Saul & Humphrey 1990).  Alternatively, time 
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lags could be conferred through cortical networks (Maex & Orban 1996, Suarez 

et al 1995), synaptic depression (Chance et al 1998), or through delays due to 

dendritic propagation (Livingstone 1998, but see Anderson et al 1999).    

 Whether an additional directionally tuned signal exists to suppress 

responses to stimuli moving in the direction opposite the preferred in V1 is 

unclear.  Most comparisons of direction tuning before and after the 

administration of the GABA antagonist bicuculline have found a decrease in 

direction selectivity upon blocking of inhibition  (Murthy & Humphrey 1999, 

Sato et al 1995, Sillito 1975, Sillito et al 1980, Sillito et al 1985, Sillito & 

Versiani 1977).   However, cooling of the cortex to eliminate cortical processing 

is reported to have no effect on direction selectivity, even though projections 

from the LGN to V1 are exclusively excitatory (Ferster et al 1996). 

 In addition to a putative directionally tuned subtractive signal in V1, an 

untuned divisive suppressive signal exists in visual cortical neurons (Carandini 

& Heeger 1994, Heeger 1992b).  As described in section 1.2.1, divisive 

normalization has been studied most thoroughly in orientation tuned simple cells 

where it has been introduced to simultaneously describe response saturation to 

signals at high contrasts and cross-orientation inhibition or masking (Carandini 

et al 1997).  The question of whether a divisive signal can account for direction 

tuning in V1 has not systematically been explored. 

 Projections from V1 to MT arise primarily from layer 4B spiny stellate 

neurons (Shipp & Zeki 1989).  Layer 4B spiny stellate cells receive their inputs 
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primarily from layer 4Cα neurons which in turn receive projections from 

magnocellular layers of the LGN (Yabuta et al 2001).  A second direct 

projection from V1 to MT arises from the large Meynert V1 neurons located at 

the layer 5/6 border (Lund et al 1976, Spatz 1977, Tigges et al 1981).  Although 

a range of direction selectivities are found across V1 neurons, directionally 

tuned V1 signals appear to form the majority of the direct input from V1 to MT 

(Movshon & Newsome 1996).  V1 signals can also reach MT indirectly through 

projections that first pass through areas V2 and V3.   

 Within MT, most neurons are strongly directionally selective and are 

suppressed below baseline firing rate by a non-preferred moving stimulus 

(Felleman & Kaas 1984, Maunsell & Van Essen 1983, Rodman & Albright 

1987).  Potentially, a suppressive computation could occur in MT to sharpen 

directional responses.  Alternatively, direction selectivity could be inherited 

exclusively form the responses of V1 neurons.  An examination of the role of 

suppression in shaping directional responses in V1 and MT is the subject of 

chapter 4. 
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2 Reliability of developing visual cortical neurons 

The spatial vision of infant primates is poor; in particular, infant monkeys and 

humans are 5-10 times less sensitive to contrast than adults (Banks and 

Salapatek, 1981; Boothe et al., 1988). The visually evoked responses of cortical 

neurons in infant monkeys are relatively weak, and during development firing 

rates increase, receptive fields become smaller, and temporal resolution 

improves (Blakemore, 1990; Boothe et al., 1988; Chino et al., 1997; Wiesel and 

Hubel, 1974). It is commonly believed that the postnatal increase in visual 

sensitivity reflects postnatal maturation of visual cortical response properties. 

However, it is not only the absolute firing rate that determines how 

accurately a neuron can signal the presence or character of a particular stimulus. 

Information in a neuronal response is limited not only by firing rate but also by 

variability. Presented with the same stimulus on repeated trials, a neuron 

responds with a variable number of spikes. If there were a constant relationship 

between variability and firing rate throughout development, the low firing rates 

of infant neurons would imply that the information they can transmit increases 

with age.  However, if the variability of responses in infant neurons were lower, 

this might compensate for their lower spike rates and permit them to transmit 

more information than their sluggish responses might suggest.  
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We wanted to determine whether changes in firing rate and tuning 

properties observed during development are associated with an increase in the 

information content of the visual signals carried by cortical neurons.  To 

quantify the efficiency with which neurons signaled information during different 

stages of development, we calculated two measures:  a ratio of the variance to 

mean spike count, and an information theory-based measure that relates the 

amount of information in a response to the number of spikes used to convey that 

information.  Both measures suggested that the responses of infant neurons were 

more reliable than those of adult neurons, and that the increase in responsiveness 

during development is paralleled by a decrease in reliability. Therefore, the 

information that infant cortical neurons transmit need not, by itself, limit the 

contrast sensitivity of infant vision.  

2.1  Methods 

We made single unit recordings from the primary visual cortex of 11 

anaesthetized, paralyzed pigtail macaques (M. nemestrina) between 1 and 99 

weeks of age, using conventional methods that are detailed in the Appendix.   

After isolating each recorded neuron, we tested the more effective eye, 

and optimized the orientation, spatial frequency, temporal frequency, and area of 

drifting achromatic sinusoidal gratings of 0.5 contrast presented on a gray 

background. The time- and space-average luminance of the display was 33 
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cd/m2. We then measured each neuron's response to gratings at six contrasts 

ranging from 0 to 0.5. Stimuli drifted across the screen at a rate chosen so that 

an integer (1-8) number of cycles occurred in a 640 msec period (1.6 to 12.5 

Hz).  For the neurons reported here, 10 or more 640 msec trials were collected 

for each contrast; stimuli were interleaved and presented in pseudorandom 

order.  The f1/f0 ratio of the response to drifting gratings was used to classify 

cells as simple or complex (Skottun et al., 1991).  A few simple cells with a high 

spontaneous rate were excluded from the analysis because spike-count based 

techniques do not correctly capture the information these neurons transmit. 

A direct method was used to calculate the information about contrast 

(see e.g. Cover and Thomas, 1991 for a review on Information Theory), as the 

difference between the total entropy across all contrasts and the mean noise 

entropy at each contrast: 

 

where r is the number of spikes in a 640 msec trial and s is the contrast level of 

the grating.  This equation was used to calculate both the full mutual information 

(about six contrast levels) and pairwise information (about two contrast levels).  

To compensate for overestimation of information caused by the limited number 

of available trials (mean N = 28.5 cycles), we applied an analytical correction.  

When the number of trials was less than four times the peak spike count, the 

responses were quantized into R bins (Panzeri and Treves, 1996) with R chosen 
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such that convergence to the large-N asymptote was observed over the entire 

data set (this resulted in R=0.4N in the case of contrast pairs). The effect of this 

strategy is to trade some small degree of under-estimation due to quantization 

loss against over-estimation due to sampling bias in order to obtain the most 

accurate results over the entire data set. The analysis was also performed with 

fixed bin size, and qualitatively identical results obtained.  

We devised a novel metric to compute reliability by relating the pairwise 

information available in stimulus-evoked responses to differences in spike rates; 

we will refer to this metric as information density.  To calculate information 

density, mutual information was calculated about all possible pairs of contrasts 

(6 contrasts; 15 pairs) from spike counts in 640 msec bins.  Because information 

was calculated about pairs of contrasts, information could be plotted against the 

difference in firing rates, which should be related to information, rather than a 

potentially less correlated measure such as the mean rate.  The relation between 

mutual information and the difference in spike count was fit with the curve: 

 

where I is the mutual information, ∆n is the difference in spike count, S is the 

number of stimuli (2), and α and β are free parameters.  This curve asymptotes 

at the theoretical limit of I=1 bit for large values of ∆n.  For β=1, the curve 

corresponds to an exponential saturation model in which the information 

provided by each spike has a random overlap with that provided by any other; in 
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this case, α measures the extent of that overlap (Gawne and Richmond, 1993; 

Rolls et al., 1997a). For β=2, the curve corresponds to the rate at which 

information grows as the firing rate distributions for two stimuli are separated, if 

those distributions were Gaussian. Allowing β to vary allows the function to 

account for a variety of firing rate distributions; the value of β for our sample 

varied between 1 and 4. The maximum slope of this function represents the peak 

rate of information growth with difference in spike count; we term this quantity 

information density to distinguish it from other measures of information.  The 

values of information density obtained by fitting other empirically-chosen 

functions were very similar to those obtained using Equation 2. Neurons were 

excluded from this and other analyses if the correlation between pairwise mutual 

information and spike count did not achieve significance on an F-test (P < 0.05). 

The number of neurons so excluded was small (1 week, 1 of 48 neurons; 4 

week, 7 of 60 neurons; 16 week,  2 of 68 neurons; adult, 6 of 72 neurons). 

 We wanted to know whether the choice of test contrasts had an effect on 

the full (all stimuli) mutual information values we computed. In particular, if 

contrast values were placed too high or too low, most responses would be either 

small or large, skewing the distribution of responses and reducing the amount of 

information transmitted.  We calculated full mutual information for a Poisson 

neuron with a conventional contrast-response function and deliberately skewing 

the chosen contrast values. The full mutual information measure proved quite 

insensitive to this skewing within the range of skews in our data set, and we 
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used the simulations to estimate the amount by which our full mutual 

information calculations would have been in error for real neurons. The effect of 

skewing was modest (<10% underestimate of information for almost all cases), 

and there was no difference in our estimated errors across the four age groups. 

We also measured responses to high contrast gratings of optimal orientation and 

spatial frequency drifting at frequencies between 0.4 and 25 Hz, and fit the data 

with a suitable descriptive function; we took temporal resolution as the 

frequency at which the response fell to one-tenth of maximum (Foster et al., 

1985; Saul and Humphrey, 1992).  Response latency also provides a measure of 

integration time (Gonzalez et al., 2001; Maunsell and Gibson, 1992). We 

measured response latency by plotting response histograms (in 5 msec bins) 

over multiple data sets and estimating latency as the first bin in which the 

response was greater than the mean spontaneous rate measured in response to a 

gray screen.  For simple cells, a latency was recorded only if cycle triggered 

averages indicated that at least one stimulus started in the cell’s excitatory 

phase.  For a few cells (19 of 232), we could not determine latency reliably and 

those cells were omitted from the latency analysis. 

2.2    Results   

Consider the two cells whose data are shown in figure 2-1. Figure 2-1, a and b, 

shows the mean responses of an infant and an adult neuron, respectively, to an 
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Figure 2-1.  Calculation of information density and variance to mean ratio for 
two cells.  a, b Mean and standard deviation of the responses of a neuron from a 
4-week old infant (a) and from an adult (b) to an optimized, drifting sinusoidal 
grating stimulus at six different contrasts evenly spaced between 0 and 0.5.  The 
mutual information about selected contrast pairs is indicated. c, d Mutual 
information about every possible pair of the six contrasts (15 pairs) in a and b is 
plotted against the difference in the mean firing rate between each pair of 
contrasts.  These data are fit with a function whose maximal slope is a measure 
of information density (see Methods).  Information density has units of bits per 
spike, and the computed information densities for each cell are indicated.  This 
measure, unlike total mutual information, does not depend on the specific 
contrasts tested, which differed somewhat from cell to cell. e, f  Spike count 
variance at each contrast is plotted against mean spike count for the example 
cells in a and b.  The variance to mean ratio (VMR) is taken from the best fitting 
line with slope = 1; horizontal ticks mark the ratios for each cell. The counting 
window was 640 msec and contained an integer number of temporal cycles of 
the drifting stimulus. 
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 otherwise optimal grating stimulus at six different contrasts; error bars indicate 

the standard deviation of the firing rate distributions.  As is typical of visual 

cortical neurons, firing rate grew with contrast and saturated at high contrasts for 

both cells.  To discriminate two stimuli perfectly, a neuron with high trial-to-

trial variability like the adult cell must signal two different stimuli with very 

different mean firing rates.  Conversely, a neuron with low variability like the 

infant cell can convey the same amount of information with a smaller dynamic 

range.   

 We used Shannon’s mutual information to measure how accurately 

different stimuli can be distinguished, based upon the number of spikes elicited 

from a neuron during repeated stimulus presentations (Rolls et al., 1997b; 

Tolhurst, 1989; Werner and Mountcastle, 1965).  The information is related to 

the distance between the two firing rate distributions, and is similar to the d’ 

measure used in signal detection theory (Parker and Newsome, 1998). To 

illustrate the relationship between the firing rate and information, figure 2-1, a 

and b, also shows the information transmitted by each neuron about selected 

pairs of contrasts.  Note that both the infant and adult neuron were capable of 

perfectly discriminating a zero contrast stimulus (mean gray background) from 

the highest stimulus contrast, yielding 1 bit of information.  However, the infant 

neuron signaled this information with fewer spikes. 

 To quantify the relationship between information and the number of 

spikes needed to convey that information, we plotted the information conveyed 
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by a neuron about each of the 15 different contrast pairs against the mean firing 

rate difference between the members of each pair (Figure 2-1c, d).  Information 

about a contrast pair cannot exceed one bit, representing perfect discrimination, 

and we therefore fit these points with a curve whose form accounts for this 

saturation. The maximum slope of this function captures the shape of the 

relation between information and spikes; we term the maximum slope of this 

curve the information density (see Methods), with units of bits per spike.  This 

measure differs from the more usual full mutual information in that it depends 

only on pair comparisons and not on the total number of stimuli used (Rolls et 

al., 1997b; Tolhurst, 1989).  Neurons with larger values of information density 

use fewer spikes to convey information (Figure 2-1c).  Neurons with smaller 

values require a larger dynamic range to discriminate contrast pairs (Figure 2-

1d).  

Another way to capture the change in firing patterns is to analyze the 

relationship between response mean and variance for the example cells. The 

variance of cortical neuron spike counts increases in proportion to their mean 

(Tolhurst et al., 1983; Tolhurst et al., 1981) and the ratio of the two is inversely 

related to the amount of information transmitted by cortical cells (de Ruyter van 

Steveninck et al., 1997). Figure 2-1, e and f, shows the relation between 

response variance and mean for the two example cells. As indicated by the 

reference lines at a spike count of 1, the infant cell had a lower variance to mean 
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ratio than the adult cell, as would be expected from its higher information 

density.  

We calculated information density for populations of V1 cells recorded 

from macaques in four age groups: 1, 4, and 16 weeks, and adult (31-99 weeks).  

Surprisingly, we found that V1 neurons in the youngest animals had the highest 

information density: mean information density decreased two-fold during 

development (Figure 2-2a).  We also calculated the variance to mean ratio for 

the same populations; as expected from the information density calculation, the 

variance to mean ratio of cortical cells increased during development (Figure 2-

2b).   Adult cells tended to have higher variance to mean ratios than infant cells 

even when cells with similar dynamic range were selected, implying that this 

developmental difference cannot be attributed to the subpopulation of adult cells 

with high firing rates (data not shown).  It is also interesting to note that simple 

cells had higher information densities for each age group (mean information 

densities for simple cells from the 1-week, 4-week, 16-week, and adult animals 

were 0.33, 0.25, 0.20, and 0.12; for complex cells the values were 0.19, 0.15, 

0.11, and 0.09, respectively); simple cells had correspondingly lower variance-

to-mean ratios than complex cells. A multiple linear regression analysis suggests 

that these differences cannot be accounted for by differences in spontaneous rate 

or dynamic range. 

Together, these two measures suggest that the coding properties of 

neurons change during development.  How are they related?  Figure 2-2c shows 
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that information density and the variance to mean ratio were inversely but 

imperfectly correlated.  This is because the variance to mean ratio measures the 

average variability of the response to a single stimulus, while the mutual 

information quantifies the fraction of the total variability that is attributable to 

the difference between responses.  These two measures are comparable in that  

each indicates the reliability of neuronal firing, and the regular relationship 

shown in Figure 2-2c suggests that during development there was a decrease in 

the reliability of visual signaling by cortical neurons. 

Despite the decrease in reliability during development, total information 

transmission could be maintained if the range between the lowest and highest 

firing rates (the dynamic range) also increased.  The mean dynamic range did 

indeed increase two-fold during development, and a plot of the mean 

information density versus the geometric mean evoked firing rate for each age 

reveals the reciprocal relationship between these two measures (Figure 2-3a).  In 

the youngest infants, information density was high and firing rate was low, 

whereas in the adults information density was low and firing rate was high. 

The mutual information about all of the 6 contrasts presented in an 

experiment (which we term “full” mutual information to avoid confusion with 

the pairwise measure) quantifies the ability of these neurons to distinguish 

stimuli, and depends on both information density and dynamic range.  However, 

unlike information density, full mutual information depends on both the number 

and distribution of the contrasts tested. We did not always use the same test 
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Figure 2-2.  Changes in information density and the variance to mean ratio 
during development.  a  Distributions of information density for neurons from 
monkeys in the four age groups (see Methods for calculation). Arrows indicate 
the means.  b  Distributions of the variance to mean ratio for each age group (see 
Methods for calculation).  Arrows indicate the geometric means. c  Scatter plot 
of the data displayed in a and b, for 232 neurons from animals in the four age 
groups: 1 week (47), 4 week (53), 16 week (66), adult (66). 
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 contrasts because we tried to place the contrasts so that they spanned the 

response range of each cell, but we verified that the chosen contrasts did not 

have an important effect on the full mutual information measure for our 

population (see Methods). Mean full information values for the four age groups  

are given next to each point in Figure 2-3a.  The modest and inconsistent change 

in the full mutual information values is due to the opposing effects of increasing 

firing rate and decreasing information density as development progresses.  In 

other words, infant neurons may fire few spikes, but each infant spike carries 

more information.  As a result, 1week infant neurons can transmit 80% of the 

total information adult neurons transmit. 

2.3  Discussion 

Our results suggest that lower firing rates in infant neurons are partially 

compensated for by lower variability and that infant neurons, therefore, are more 

efficient at transmitting information about contrast than adult neurons.  This 

leads to an interesting quandary.  If infant neurons are capable of signaling 80% 

of the information that adult neurons signal, why is it that contrast sensitivity in 

infant primates is 5-10 fold lower than in adults (Boothe et al., 1988)?  One 

possibility is that infant neurons have higher contrast thresholds than adult 

neurons (compare responses in Figure 2-1a,b).  Our results might have been 

different had we tested infant neurons with very low contrast targets, but we did 

not explore systematically the contrast range below 0.1. A second possibility is  
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Figure 2-3.  The relationship between information density, dynamic range, and 
temporal parameters during development.  a,  Mean information density and 
geometric mean dynamic range are plotted for each age group.  Dynamic range 
is taken as the largest mean response to a grating target minus the mean baseline 
response. The mean transmitted full mutual information for all 6 contrasts is 
indicated beside each point. b,  Mean information density, geometric mean 
temporal resolution (solid squares), and geometric mean latency (open circles) 
are plotted for each age group.  For each cell, temporal resolution was taken as 
the drift rate at which the cell’s response fell to one-tenth of its peak. Latency 
was taken as the time after stimulus onset at which the firing rate first deviated 
from baseline. Standard errors are plotted for all axes.  
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that the limits to infant contrast sensitivity are not set by V1 neurons and, 

instead, lie in downstream structures (Kiorpes and Movshon, 2003).  The low 

spike rates of infant neurons might contribute to this by driving downstream 

neurons less effectively, even if their responses are reliable.   

How might the reciprocal relationship between information density and 

firing rate arise?  Many aspects of the visual system change during development, 

including improvements in the optics of the eye (Jacobs and Blakemore, 1988; 

Williams and Boothe, 1981) migration of cones in the fovea (Packer et al., 

1990), increases in spatial resolution and decreases in receptive field size 

(Blakemore, 1990; Chino et al., 1997; Movshon and Kiorpes, 1993; Movshon et 

al., 2000).  Our first thought was that developmental decreases in receptive field 

size might underlie our observations, but we have shown that these changes are 

almost entirely attributable to changes in retinal optical magnification and cone 

distribution (Movshon et al., 2000; Wilson, 1993), and do not reflect neural 

changes in receptive field organization. However, there are marked changes in 

the temporal fidelity of responses during development that may drive the change 

in information density. Figure 2-3b plots mean information densities for the 

neurons from each of the four age groups against two temporal measures: the 

latency of response after stimulus onset and the highest temporal frequency of 

drift that elicited a response (temporal resolution). A relationship between 

information density and each of these temporal parameters is clear.  The 

decrease in latency and increase in temporal resolution with age suggest that 
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infant neurons integrate their inputs over longer times than adult neurons. A 

neuron with a longer integration time would average over more synaptic input 

events and thus reduce variability associated with rapid fluctuations in those 

inputs; such a neuron would carry more information with each spike by 

sacrificing temporal bandwidth. To improve their resolution of fine temporal 

structure, developing V1 neurons decrease their integration times, which would 

increase the variability of spiking. Such an increase would increase variance-to-

mean ratios and have a deleterious effect on information transmission, but these 

effects could be overcome by increasing dynamic range (Figure 2-3a). 

Developmental changes in temporal integration might arise from changes 

in either neuronal properties or synaptic properties. Interestingly, in the gerbil 

lateral superior olive and rat cortex, EPSPs are of longer duration in infant than 

adult neurons (Burgard and Hablitz, 1993; Sanes, 1993); this change may be due 

to changes in patterns of glutamate receptor expression (Krukowski and Miller, 

2001). Whatever the biological basis, a shift in coding strategy from high 

information density, low bandwidth, and low firing rate to low information 

density, high bandwidth, and high firing rate would ensure that information 

transmission is not sacrificed as temporal resolution grows to adult levels. 
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3 Spike-triggered covariance reveals unexpected 
 substructure in V1 simple and complex cells 

To understand the processing that occurs at each stage of a sensory system, it is 

useful to develop models that describe the transformation of stimuli into neu-

ronal firing patterns. The primary purpose of this type of “functional” model is 

not to provide a biophysical description, but rather to provide a compact yet pre-

cise description of the computation that transforms a stimulus into neuronal re-

sponse.   Although the neurons in primary visual cortex  (area V1) have been 

studied extensively, functional descriptions of these neurons remain incomplete.   

V1 neurons are commonly classified in two categories, based on their re-

sponses to light and dark bars (Hubel & Wiesel 1962).  Simple cells have dis-

tinct 'on' and 'off' regions which are excited by bars of the same polarity and 

suppressed by bars of the opposite polarity.  This behavior is captured in the 

typical model of a simple cell, which is based on a single linear filter with alter-

nating positive and negative lobes (Hubel & Wiesel 1962, Movshon et al 

1978b). Complex cells respond to light and dark bars in a manner that is inde-

pendent of the polarity of the stimulus, suggestive of overlapping 'on' and 'off' 

regions (Hubel & Wiesel 1962, Movshon et al 1978a).  These cells are com-

monly described using an “energy model”, in which the outputs of two phase-

shifted linear filters are squared and summed (Adelson & Bergen 1985).  Al-

though these models capture the main characteristics of V1 neuronal response 
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properties, they fail to capture other behaviors observed in these neurons.  For 

instance, it is common to encounter neurons whose phase sensitivity lies in be-

tween the two extremes predicted by the standard models of simple and complex 

cells. Furthermore, suppressive influences such as those suggested by cross-

orientation suppression, contrast gain control and other forms of adaptation are 

not included in these models.   

In order to better account for the full range of behaviors found in these 

cells, we have developed a generalization of the standard V1 models (figure 3-

1).  In this model, the stimulus is analyzed using a small set of linear filters 

whose outputs are combined nonlinearly in order to determine the firing rate.  

The number of filters is allowed to vary, and the nonlinear combination is un-

constrained, which allows (for example) the influence of  individual filters to be 

either excitatory or suppressive.   

This type of model can be fit and validated with experimental data 

through a spike-triggered analysis (Simoncelli et al 2004).  In a spike-triggered 

characterization, neural responses to  a sequence of random stimuli are recorded, 

and the ensemble of stimulus blocks that precede spikes analyzed to determine 

both the linear filters and the nonlinear rule by which their outputs are com-

bined.  The most well known method of this kind, known as reverse correlation, 

has been widely used to characterize simple cells (DeAngelis et al 1993, Jones 

& Palmer 1987).  Assuming a model based on a single linear filter followed by a 

rectifying nonlinearity, an unbiased estimate of the linear filter can be recovered  
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Figure 3-1.  LNP functional models for V1 neurons, and their characterization 
using spike-triggered analyses.  A) A standard simple cell model, based on a 
single space-time oriented filter.  The stimulus is convolved with the filter and 
the output is passed through a halfwave-rectifying and squaring nonlinearity.  
This signal determines the instantaneous rate of a Poisson spike generator.  B) 
The “energy model” of a complex cell, based on a pair of space-time oriented 
filters with a quadrature (90 degree) phase relationship (Adelson & Bergen 
1985). Each filter is convolved with the stimulus, and the responses are squared 
and summed.  The resulting signal is used to drive a Poisson spike generator.  C) 
The generalized linear-nonlinear-Poisson (LNP) response model used in this pa-
per.  The cell is described by a set of n linear filters (L), which can be excitatory 
(E) or suppressive (S).  The model response is computed by first convolving 
each of the filters with the stimulus.  An instantaneous nonlinearity (N) governs 
the combination of excitatory and suppressive signals.  Finally, spikes are pro-
duced via a Poisson spike generator (P). D)  Spike-triggered analysis. Left panel: 
a random binary bar stimulus used to drive V1 neurons.  The bars were aligned 
with the neuron’s preferred orientation axis and the stimulus array spanned the 
classical receptive field.  Middle panel: An X-T slice of the stimulus sequence – 
each pixel represents the intensity of a bar at a particular location in one frame. 
The collection of stimulus blocks during the 16 frames (160 msec) before each 
spike (example in gray box) form the spike-triggered stimulus distribution.  
Right panel: The STA is a  block of pixels, each corresponding to the average of 
the corresponding pixel values over the distribution.  The STC is a matrix whose 
entries contain the average product of pair of pixel values (after the mean has 
been subtracted).  See methods for details.   
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by taking the average of the stimuli preceding spikes (Chichilnisky 2001, Panin-

ski 2003) The nonlinear function that describes the transformation of the filter 

output into a firing rate can also be reconstructed, thus completing a quantitative 

model that predicts the neuron’s firing rate in response to any time-varying 

stimulus.   

The nonlinear behavior of complex cells precludes their characterization 

by spike-triggered averaging.  Specifically, consider the energy model (figure 3-

1B).  Due to the squaring operation applied to each filter’s output, every stimu-

lus that excites the cell a will be matched with a stimulus of opposite polarity 

that equally excites the cell, and the resulting STA will be flat.  An extension to 

the spike-triggered averaging concept, known as spike-triggered covariance 

(Brenner et al 2000, de Ruyter van Steveninck & Bialek 1988),  has been intro-

duced as a means of resolving filters that have this type of symmetric nonlinear 

influence on a neuron’s response. Once a set of excitatory and suppressive linear 

filters are recovered, the model is completed by estimating the nonlinear func-

tion that describes how the signals arising from each filter are combined to de-

termine the firing rate. STC has proven successful in revealing the excitatory 

subunits of cat V1 complex cells (Touryan et al 2002) as well suppressive influ-

ences in the retina (Schwartz et al 2002). 
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3.1 Methods  

We recorded from isolated single units in primary visual cortex (V1) of adult 

macaque male monkeys (Macaca fascicularis and Macaca Nemestrina) using 

methods that are described in the Appendix.   

Stimuli were generated with a Silicon Graphics XX workstation and pre-

sented on a gamma-corrected monitor with a refresh rate of 100 Hz and a mean 

luminance of 33 cd/m2.  The monitor was directed toward the monkey via a 

front surface mirror; total length between the eye and the monitor was 165-180 

cm. 

Stimuli were presented monocularly.  Upon encountering a cell, the ini-

tial characterization involved a determination of the best direction, spatial fre-

quency, and temporal frequency of drifting grating stimuli. The size of the clas-

sical receptive field was defined as the size at which an optimized full contrast 

sinusoidal grating saturated the response without impinging upon the suppres-

sive surround. Stimuli used in the spike-triggered characterization were ex-

tended temporal sequences in which each frame contained a set of parallel non-

overlapping black and white bars with randomly assigned intensity.  The orien-

tation of the bars was aligned with the cell's preferred orientation and the stimu-

lus array was confined to the classical receptive field. The number of bars (8-32) 

was chosen to match cell’s preferred spatial frequency such that 4-16 bars fell 

within each spatial period.  A new frame was displayed every 10 msec.   
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Spike-triggered analysis (recovery of the linear filters): 

We give a brief description of our spike-triggered analysis (Simoncelli et al 

2004).  We define a spike-triggered stimulus block, Sn(x,t), as the set of bar in-

tensities in the 16 frames preceding the nth spike (figure 3-1D, middle panel).  

Each of these spike-triggered stimuli can be envisioned as a point in a D-

dimensional space (D is 16 times the number of  bars presented in each frame, 

and ranges from 64 to 512 in our experiments,  with the component along each 

axis representing the intensity of the corresponding bar, relative to the mean 

stimulus intensity, at position x and time t before the spike).  

In the conventional procedure of reverse correlation, one averages the 

spike-triggered stimulus blocks to obtain the spike-triggered average (STA):   

 

where N indicates the number of spikes.   More specifically, if one assumes that 

the neural response is generated by convolution with a single linear filter fol-

lowed by an instantaneous asymmetric (e.g. half-squaring) nonlinearity and 

Poisson spike generation, the STA provides an unbiased estimate of the linear 

filter (Chichilnisky 2001, Paninski 2003).   

Despite its widespread use in estimating linear receptive fields, the STA 

is known to fail under several commonly occurring circumstances.  For exam-

ple, if the neural response is symmetric, as is commonly assumed in models of 

,),(1),( ∑=
n

n txS
N

txSTA



 51

complex cells, the STA will be zero.  If the neuron depends upon more than a 

single axis within the stimulus space, the STA will be some weighted average of 

these axes, but will not provide any indication of the full set.  In either case, the 

STA produces a misleading description of the receptive field properties of the 

neuron.  In order to handle these situations, one must examine higher-order sta-

tistical properties of the spike-triggered stimulus distribution.  A number of au-

thors have examined the second-order statistics of spike-triggered stimuli by 

computing the spike-triggered covariance (Brenner et al 2000, de Ruyter van 

Steveninck & Bialek 1988, Paninski 2003, Schwartz et al 2002, Simoncelli et al 

2004).  This procedure amounts to examining the variance of the cloud of spike-

triggered stimuli and identifying those axes in the stimulus space along which 

the variance differs significantly from that expected due to chance correlations 

between the stimulus and spikes.  These axes correspond to a set of linear filters 

underlying the neuron’s response. 

In our analysis, we first compute the STA and remove this component 

from the stimulus distribution.  Specifically, we compute the normalized (unit 

vector) STA, the nSTA, and define: 

 

This differs from a traditional covariance calculation (in which the STA would 

be subtracted from each Sn(x,t) ), but ensures that the axes obtained in the STC 
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analysis will be orthogonal to the STA and helps to avoid unwanted interactions 

between the STA and STC analyses.  

We then compute the DxD spike-triggered covariance: 

 

This matrix, with the parameter pairs {x1,t1} and {x2,t2} specifying the row and 

column indices, fully represents the variance of the spike-triggered stimulus en-

semble in all possible directions within the stimulus space.  Geometrically, the 

surface swept out by a vector whose length is equal to the variance along its di-

rection is a hyper-ellipse, and the principal axes of this hyper-ellipse, along with 

the variance along each axis, may be recovered using principal components 

analysis (PCA).  More concretely, principal axes of this ellipse correspond to the 

eigenvectors of the covariance matrix,  and the variance along each of these axes 

is equal to the corresponding eigenvalue.   

In the absence of any relationship between the stimulus and the spikes 

(and in the limit of infinite data),  the spike-triggered ensemble would just be a 

randomly selected subset of all stimuli, and the variance of this subset in any 

direction would be identical to that of the full stimulus set.  In an experimental 

setting, the finiteness of the spike-triggered ensemble produces random fluctua-

tions in the variances in different directions.  We are interested in recovering 

those axes of the stimulus space along which the neuron’s response leads to an 
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increase or decrease in the variance of the spike-triggered ensemble that is 

greater than what is expected from this random fluctuation due to finite sam-

pling.  

We tested a nested sequence of hypotheses to determine the number and 

identity of axes corresponding to significant increases or decreases in variance.  

We began by assuming that there were no such axes (i.e., that the neuron’s re-

sponse was independent of the stimulus).  We used Monte Carlo simulation to 

compute the distribution of minimal and maximal variances under this hypothe-

sis.  Specifically, we randomly time-shifted the spike train relative to the stimu-

lus  sequence, performed our STA/STC analysis on the resulting spike-triggered 

stimulus ensemble, and extracted the minimum and maximum eigenvalues.  

Based on 500 such calculations, we estimated the 99% confidence interval for 

both the largest and smallest eigenvalues.  We then asked whether the eigenval-

ues obtained from the true spike-triggered ensemble lay within this interval.   If 

so, we concluded that the hypothesis was correct.  Otherwise, we assumed the 

largest outlier (either the smallest or largest eigenvalue) had a corresponding 

axis (eigenvector) with a significant influence on neural response.  We added 

this axis to a list of significant axes, and proceeded to test the hypothesis that all 

remaining axes were insignificant.  

 STC approaches are intended for use with Gaussian-distributed stimuli 

due to the circular symmetric properties of such distributions (Paninski 2003). 

Unfortunately, the low contrast of Gaussian stimuli leads to low firing rates in 
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V1 neurons and the STC characterization requires a large number of spikes.  We 

were thus forced to use higher contrast binary stimuli. We noticed that in neu-

rons with many excitatory subunits, we occasionally found suppressive filters 

that differed from the others in that they contained only a small number of 

highly correlated bars.  Simulations confirm that these filters are artifactual, and 

are due to the use of binary distributed stimuli (figure 3-2).  To provide a con-

servative estimate of the number of significant filters for V1 neurons, we applied 

an additional criteria to the filters deemed significant by the hypothesis test de-

scribed above.  For each filter, we computed a histogram of the values obtained 

from its Fourier amplitude spectra.  Filters with diffuse frequency  spectra pro-

duced compact distributions, whereas filters with regions of highly correlated 

energy produce distributions with long tails (figure 3-2).  We differentiated these 

filters by comparing the fourth moment of these distributions with a threshold 

value.  The threshold was determined by  generating  artifactual filters from re-

peated simulations of model LNP neurons and estimating the 95% confidence 

interval of the distribution of fourth moments expected due to artifacts produced 

by random stimuli.  
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Figure 3-2:  Artifactual suppressive filters produced by binary (non-gaussian) 
stimuli.  Shown are two real and four artifactual filters revealed in a simulated 
complex cell along with their amplitude spectra.  The artifactual filters can be 
identified by the absence of clear spatiotemporal structure and small number of 
correlated pixels, or equivalently their diffuse amplitude spectra.  Histograms of 
the values taken from the amplitude spectra are shown; diffuse spectra have 
compact distributions whereas spectra with clear spatiotemporal tuning have dis-
tributions with long tails.  Artifactual filters were identified by computing the 
fourth moment of these distributions, labeled for each filter.  A large number of 
artifactual filters were collected from simulations of model neurons and the 
fourth moment of their spectra computed.  In our data, we only considered filters 
with values greater than the 95% confidence interval of this distribution (2.49) 
to be significant.   
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Estimating the nonlinearity:  

The firing rate of the neuron is a nonlinear function of the outputs of the set of 

linear filters recovered from the spike-triggered analysis.   It is possible to esti-

mate this function directly by binning the filter outputs and estimating firing rate 

for each bin (Brenner et al 2000, Chichilnisky 2001).  For example, we can ex-

amine the structure of the nonlinearity as a function of the output of any single 

filter by taking the quotient of the number of spikes and the number of stimuli 

for each (binned) filter output value (figure 3-7A-C, marginals).  Similarly, fir-

ing rate as a function of the responses of two filters may be examined by taking 

the quotient of the joint (two-dimensional) counts of the number of spikes and 

the number of stimuli (figure 3-7A-C).  Unfortunately, the data required for such 

a direct estimate grows exponentially with the number of filters.  For example, 

to estimate this function for a neuron with 10 significant filters over a set of 15 

bins along each axis would require collecting multiple samples in 15^10 bins.  

Thus, for the neurons in our study, we needed to somehow reduce the dimen-

sionality of the problem in order to estimate the nonlinearity.  

We found that contours of constant firing rate associated with the 

nonlinearity for any pair of excitatory or suppressive filters were well fit by el-

lipses, with vertical/horizontal principal axes.  Based on this observation, we 

decided to define the firing rate nonlinearity in two stages (figure 3-7D).  In the 

first stage, the excitatory and suppressive filter outputs were combined in two 
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separate pools via weighted sums of squares (with the STA half-squared).  The 

weights for each pool were obtained by maximizing the mutual information be-

tween the weighted sum-squared output of the joint excitatory and suppressive 

pools and the spikes.  This approach makes no assumptions regarding the 

mathematical form of the interaction between excitation and suppression.   

The second stage of the nonlinearity computed firing rate as a function of 

the joint output of the pooled excitatory and suppressive responses, and was es-

timated by taking the quotient of the two-dimensional binned counts of the 

number of spikes and the total number of stimuli.  Because the data were not 

uniformly distributed across this two-dimensional space, individual bin widths 

were adjusted to maintain a uniform distribution of data points across the mar-

ginals.  For neurons with no suppressive axes, the second stage nonlinearity de-

scribed firing rate as a function of the output of the pooled excitatory response 

alone. 

Parametric models for the interaction of excitatory and suppressive: 

We fit several simple parametric models to the binned second-stage nonlinear 

firing rate function.  The variable bin sizes used to evenly distribute the data 

across these surfaces resulted in an unequal distribution of data within each bin.  

For fitting purposes, we assumed a value of excitation (E) and suppression (S) 

for each bin equal to the center of mass of the data in that bin.  We determined 
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the best fitting model to be one with a sigmoidal excitatory function containing a 

scalar (a), a baseline (β), an exponent (p), and weight (c) for the normalization 

term.  The suppression was allowed to have both a subtractive (b) and divisive 

(d) influence on the response:  

 

The model was fit using the STEPIT algorithm (Chandler 1969) to minimize the 

mean-squared error between the actual responses and model predictions. 

Classification of V1 neuronal types: 

Cells were classified as simple or complex based upon their response to full con-

trast drifting sinusoidal gratings optimized for direction, spatial frequency, tem-

poral frequency, position and size.  Gratings were presented for an integer num-

ber of cycles with the first cycle removed to eliminate effects from the onset 

transient.  The relative modulation index (F1/DC) was quantified as the ratio of 

the vector average response at the grating temporal frequency and the baseline 

subtracted mean response.  Baseline was defined as the response to a blank 

(mean gray) screen.  Post-stimulus time histograms to one cycle of a drifting 

grating (cycle-triggered averages) were constructed by binning time (relative to 

the stimulus cycle) with a resolution of 10 msec, the duration of one frame. 
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Cells were classified as directional or non-directional based upon a com-

parison of their responses to grating stimuli drifting in the direction that pro-

duced the largest response versus the direction opposite.  Specifically, a direc-

tional index was calculated as: 1 – (nonpreferred response / preferred response) 

where both responses were baseline subtracted.  Cells with an index greater than 

0.8 were considered directional and those with an index less than 0.8 non-

directional.   

Predicting the responses to arbitrary stimuli:  

Determination of the predicted response of the STA-based model began by con-

volving the stimulus with the STA.  The nonlinear function that relates the out-

put of the STA to firing rate was reconstructed as described above and fit with 

the exponentiated, threshold-rectified function: 

 

to correct for discretization by binning and to better estimate poorly sampled 

bins.  The predicted F1, DC, and blank responses were calculated directly from 

the firing rate functions produced by the model.     

 Determination of the predicted response of the energy model containing 

the first two filters revealed by STC began by convolving the grating stimulus 

with the two filters and combining  the signals via a weighted sum of squares.  
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The relationship between firing rate and the output of these filters were was fit 

with an appropriate function to correct for discretization and the resulting func-

tion was used to transform the pooled excitatory signal into a firing rate predic-

tion.  The predicted response modulation was calculated in the same manner as 

for STA-based model prediction.  

 Determination of the predicted response of the full model containing the 

STA and filters revealed from the STC began by convolving the grating stimulus 

with each of excitatory and suppressive filters recovered for a neuron.  The exci-

tatory and suppressive signals were combined separately, each via a weighted 

sum of squares.  Firing rate was computed from the pooled E and S signals by 

using the combination model fit to the data (see above). Upon obtaining firing 

rate predictions, the predicted response modulation was calculated as described 

for the STA.  

 While sinusoidal gratings were of a similar contrast to the bar stimulus 

used to characterize the neuron, stimuli presented at lower contrasts (e.g. figure 

3-10D) required a gain parameter to adjust the contrast sensitivity of the cell.  

To determine the gain adjustment for a neuron, we fit a single scalar to the 

pooled excitatory and suppressive signals before these signals were converted 

into firing rates.   
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3.2 Results 

Recovery of the linear filters: 

We stimulated each neuron with a dense, random binary bar stimulus aligned 

with its preferred orientation axis (figure 3-1D, left).   As described above, we 

assume a functional model consisting of a set of linear filters (L), followed by an 

instantaneous nonlinear function (N) that combines their outputs to obtain a rate 

and a Poisson spike generator (P; figure 3-1C).  The model posits that the gen-

eration of spikes is based on the stimulus contained in an interval preceding each 

spike. We chose a duration of 16 stimulus frames (160 msec) for this interval 

(figure 3-1D, middle). The ensemble of stimulus blocks preceding each spike 

define the spike-triggered stimulus distribution (figure 3-1D, right).  The linear 

filters for each neuron were recovered from the statistics of this distribution.  For 

every cell, we began by calculating the first-order statistic (the mean) of this dis-

tribution, the spike-triggered average (STA).  We then recovered additional fil-

ters by calculating the second-order statistics of the STSD, the spike-triggered 

covariance matrix, and resolving this matrix into a small set of filters through 

the application of principal components analysis (STC).  Specifically, compo-

nents associated with significant increases or decreases in the variance of the 

spike-triggered stimulus ensemble (relative to the variance of the raw stimuli) 

provide estimates of the filters in the LNP model (see methods for details).   
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This procedure recovers a set of linear filters that form the front end of  the 

LNP model, and thus define the fundamental stimulus selectivity of the cell 

(more formally, they determine the linear subspace of the stimulus space in 

which the cell’s response is generated). Note that signals that are combined in a 

purely linear fashion, such as the excitatory and inhibitory signals arising from 

positive and negative subregions of a receptive field, will be resolved into a sin-

gle filter by this analysis. Signals that are combined after a nonlinear operation, 

such as rectification or squaring, will be revealed as different filters. Each re-

covered filter can have an excitatory or a suppressive impact on spiking, de-

pending on the way in which its output is incorporated into the nonlinear stage.  

The individual filters are unique only up to a linear transformation (i.e., one can 

form an equivalent model based on an alternative set of filters that are related by 

an invertible linear transformation), and thus cannot be taken too literally as an 

indication of underlying mechanisms.  Nevertheless, the overall subspace they 

cover is uniquely determined, as is the full LNP response model.   

The spatiotemporal filters for a representative simple cell, along with 

their Fourier spectra, are shown in figure 3-3A.  This cell produced an STA with 

clear spatiotemporal structure.  The space-time tilt of this filter, or equivalently 

the localization of spatiotemporal energy in opposite quadrants of the Fourier 

domain, indicates a preference for the direction of a moving stimulus.  If this 

simple cell were adequately described by a single linear filter (as suggested by 

the standard model of figure 3-1A), no additional filters would be revealed by  
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Figure 3-3.  Model filters recovered for an example cell classified as simple by 
its response modulation to an optimized drifting sinusoidal grating (F1/DC = 
1.51).  A) The STA, three excitatory, and three suppressive filters recovered 
from the STC analysis shown in X-T coordinates.  Each filter is scaled by the 
square root of its recovered weight (value indicated next to each filter.  Weights 
were independently normalized for the excitatory and suppressive pools, with 
the largest in each case set to a value of 1.  Also shown are the Fourier ampli-
tude spectra in spatial and temporal frequency coordinates, similarly scaled by 
the square root of their weights.  B) Pooled excitatory (green) and suppressive 
(red) filter spatiotemporal envelopes computed as the L2-norm (square root of 
the weighted sum of squares) of the filter values for each X-T pixel.  Regions of 
overlap are indicated by yellow.  C) Pooled excitatory (green) and suppressive 
(red) frequency spectra as a weighted-sum of the amplitude spectra for each fil-
ter.  As in B, regions of overlap are displayed in yellow. 
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STC.  However, the STC analysis produced three additional excitatory filters, all 

with the same direction preference.  In addition, three suppressive filters were 

recovered, all tuned for the direction opposite that of the excitatory filters.   

It is also of interest to examine the net spatiotemporal and spectral extent 

of the excitatory and suppressive portions of the model.  We computed separate 

spatiotemporal and spectral envelopes for the pooled excitatory and suppressive 

filters by summing the squared filters of their spectra.  These results for are 

shown in figure 3-3B and 3-3C. For the example simple cell, the pooled excita-

tory and suppressive signals are almost completely overlapping in space and 

time.  In the frequency domain, the excitatory and suppressive spectra are non-

overlapping and tuned for opposite directions of motion. 

 Next consider a typical complex cell.  The energy model (figure 3-1B) 

predicts a zero-valued STA and two STC filters with clear spatiotemporal struc-

ture.  Data for an example complex cell (figure 3-4A) do show an essentially flat 

STA, but in addition to the two strongest excitatory filters, five additional exci-

tatory and seven suppressive filters were revealed.  As in the case of the simple 

cell, all of the excitatory filters had the same direction preference and most of 

the suppressive filters had the opposite direction preference.  Note the weakest 

suppressive filter had the same direction preference as the excitation and was 

time-delayed relative to the excitatory filters.  Unlike the simple cell, the excita-

tory and suppressive filters for the complex cell appeared in pairs, with each 

member of a pair appearing as phase-shifted copy of the other.   The pooled  
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Figure 3-4:  Model filters recovered for an example cell classified as complex 
by its lack of response modulation to an optimized drifting sinusoidal grating 
(F1/DC = 0.10).  A) The STA, seven excitatory, and seven suppressive filters 
recovered from the STC shown with the same conventions as figure 3-3.  The 
recovered weights for each filter are labeled.  B)  Pooled excitatory (green) and 
suppressive (red) filters, similar to figure 3-3B.  Plotted along the y-axis is the 
time course of the pooled excitatory and suppressive signals for bar 12 to illus-
trate the delay of suppression relative to excitation. C)  Pooled excitatory (green) 
and suppressive (red) frequency spectra (see figure 3-3C).  
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Figure 3-5.  Characteristics of the population of V1 neurons.  A) Filters recov-
ered for a non-directionally tuned simple cell (F1/DC = 2.28).  Excitatory and 
suppressive filters are shown along with their frequency spectra.  Also shown 
are the pooled spatiotemporal and frequency spectra, computed for excitatory 
(green) and suppressive (red) filters with the same convention as panel 2C. (B-
C) Number of filters revealed by STC (not including the STA) for simple (B, 
n=17) and complex (C, n=34) neurons.  Numbers expected by standard models 
(figure 1A-B) are shown in blue.  Only cells for which we gathered at least 50 
spikes per spatiotemporal dimension were included in this analysis. 
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Figure 3-6: Dependency of the number of filters revealed by STC on the num-
ber of spikes included in the analysis.  Shown are the number of excitatory and 
suppressive filters revealed as a function of the number of spikes collected per 
spatiotemporal dimension for three neurons.  Dotted line: 512 dimensions; 143K 
spikes total.  Dashed line: 384 dimensions, 212K spikes total.  Solid line: 256 
dimensions, 230K spikes total. 
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spatiotemporal excitatory and suppressive envelopes indicate that the suppres-

sion was time delayed  relative to the excitation for this neuron.  As seen from a 

time slice at a fixed spatial position  (figure 3-4B, y-axis), this delay is approxi-

mately 10 msec.  The excitatory and suppressive frequency spectra were almost 

completely non-overlapping (figure 3-4C), as in the case of the simple cell. 

 The two example cells shown thus far are representative of directionally-

tuned simple and complex cells.  The spatiotemporal relationship between the 

excitation and suppression for non-directional neurons had different characteris-

tics.  Figure 3-5A shows the strongest excitatory and suppressive filters for a 

non-directional simple cell that was tuned for the orientation of drifting gratings. 

The response of this cell was dominated by a sign-sensitive space-time non-

oriented filter but also influenced by a weaker, directionally tuned filter, result-

ing in a pooled excitatory signal tuned broadly tuned for in spatial frequency.   

On the other hand, the suppressive axes for this cell were more narrowly tuned 

in spatial frequency but broadly tuned in temporal frequency. 

 Although the standard model of a simple cell (figure 3-1C) predicts a 

single linear filter for these neurons, across the population of simple cells we 

always recovered at least one (and as many as four) additional excitatory filters 

(figure 3-5B).  The energy model of a complex cell predicts two excitatory fil-

ters, but in all complex cells but one, we recovered more than two excitatory fil-

ters (figure 3-5C).  Suppressive filters were found for most simple and complex 

cells (figure 3-54B, C).  While similar numbers of suppressive filters were re-
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covered from directional and non-directional simple cells (means: 1.7 versus 

1.3, respectively), directionally selective complex cells produced more suppres-

sive filters than non-directional complex neurons (means: 5.9 and 1.8, respec-

tively).   

 In general, the number of filters recovered depends on both the strength 

of their influence on the response, as well as on the number of spikes in the col-

lected data (Chichilnisky 2001, Paninski 2003).  We found this to be true ex-

perimentally (figure 3-6), and only included cells for which we collected at least 

50 spikes per dimension in our population analysis (on average 255 spikes per 

dimension or 58,000 spikes total).  Even so, we cannot guarantee that we have 

recovered all the excitatory filters for a cell and our results should thus be re-

garded as lower bounds on the true number of filters required to model these 

neurons.    

Recovery of the nonlinearity: 

After recovering a set of linear filters, the model is completed by recovering the 

nonlinear function (N) that combines the filter outputs to produce a firing rate.  

When the number of filters is very small (e.g., one or two), this can be done by 

computing the filter responses to the stimulus sequence, binning them, and con-

structing a table of the average number of spikes observed for each combination 

of filter responses.  Unfortunately, we simply cannot collect enough data to fill  
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Figure 3-7.  The nonlinearity.  (A-C) Firing rate as a function of the output of 
single filters and as the joint output of two filters.  Firing rate is indicated by 
pixel intensity and red curves outline contours of constant firing rate.  Black 
pixels indicate bins that were not estimated due to insufficient data.  Also shown 
along the marginals are the 1-D firing rate functions for each filter individually.  
Dotted lines indicate the mean response to all stimuli.  One and two dimensional 
firing rate functions are plotted for  (A) The STA and strongest excitatory filter 
revealed by STC for the simple cell in figure 3-3,  (B) The two strongest excita-
tory filters revealed by STC for the complex cell in figure 3-4, and (C) The two 
strongest suppressive filters revealed by STC for the complex cell in figure 3-4.  
D)  The separability of the 2-D firing rate functions allows for a two-stage 
nonlinearity.  In the first stage, the output of the excitatory and suppressive sig-
nals are pooled separately, each via a weighted sum of squares.  In the second 
stage, a two-dimensional function governs the combination of the excitatory and 
suppressive signals to produce a firing rate. 
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in such a table to operate on the full set of filters we typically recover (4-15).   

However, we can examine the marginal responses for individual filters or pairs 

of filters.  Figure 3-7A-C show firing rate as a function of the output of pairs of 

filters selected from the example simple and complex cells in figures 3-3 and 3-

4. Also shown are firing rates as a function of the output of individual filters 

(along the vertical and horizontal axes).   

 Across our population of neurons, we found firing rate functions associ-

ated with the STA that were consistently  halfwave-rectified (figure 3-7A, x-

axis) whereas the firing rate functions associated with the STC filters were 

symmetric (figure 3-7A, y-axis; figure 3-7B-C, x- and y-axes). Excitatory STC 

filters (i.e., those recovered from the STC analysis corresponding to increased 

variance) had firing rate functions that increased monotonically with the abso-

lute value of their outputs (figure 3-7B).  Suppressive filters (those recovered 

from the STC analysis with decreased response variance) always produced fir-

ing rate functions that decreased monotonically with the absolute value of their 

outputs (figure 3-7C).   

We examined the joint 2-D firing rate functions along different pairs of 

excitatory or suppressive axes and found that they took on a characteristic form: 

contours of constant firing rate along these pairs were well fit by ellipses and 

circles, suggesting that the firing rate can be expressed as a function of  a 

weighted sum-of-squares of the filter responses (figure 3-7B-C).  In the case of 

the STA and another excitatory dimension, the contours outlined a crescent 
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shape, consistent with a halfwave rectification followed by squaring (figure 3-

7A).  This regularity suggests that the dimensionality of the nonlinearity may be 

reduced by resolving it into two stages (figure 3-7D).  In the first stage, the 

excitation and suppression are pooled separately, each by a weighted sum of 

squares. The STA is included in the excitatory pool, but is half-squared. In the 

second stage, the firing rate is computed as a function of the joint output of the 

excitatory and suppressive pools (labeled E and S in figures 3-7 and 3-8).  

To recover the first stage of the nonlinearity, we obtained the weights for 

each filter by maximizing the mutual information between the weighted sum of 

squares of the joint excitatory and suppressive pools and the spikes; the recov-

ered weights associated with each filter for the example cells are given in figures 

3-3 and 3-4.  The use of mutual information as an optimization criterion is ad-

vantageous, as it makes no assumptions regarding the form of interaction be-

tween the excitatory and suppressive signals.  The second-stage of the nonlinear-

ity is then recovered by binning the excitatory and suppressive signals and con-

structing a table of estimated firing rates for each pair of binned values.  The ta-

ble recovered for the example complex cell shown in figure 3-4 is shown in fig-

ure 3-8A.     

 

Properties of the suppressive signal:   

For those cells in which suppressive filters were revealed, we quantified the 

strength of the suppression as the decrement in the response of a strong excita-  
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Figure 3-8.  Characteristics of the suppressive signal.  (A) Firing rate as a func-
tion of the joint output of the excitatory and suppressive pooled signals N(E,S) 
for the complex cell in figure 3-4.  (B) Fractional suppression calculated as 1 - 
(maximal excitation with maximal suppression / maximal excitation with mini-
mal suppression) where 0 indicates no suppression and 1 indicates complete 
suppression; the inset illustrates the two relevant data points taken from panel C.  
Shown are histograms of the fractional suppression computed for the 24 direc-
tional and 27 nondirectional cells with suppressive filters (means 0.73 and 0.42, 
respectively).  (C)  Slices through the same surface shown in A, taken through 
increasing excitation at constant suppression with minimal suppression at the top 
of the figure and maximal suppression at the bottom.  Data points are shown.  
Also shown are fits for a model containing both divisive and subtractive influ-
ences (see Results).   (D) Comparison of the variance accounted for by the 
model fits calculated as one minus the ratio of the mean-squared error of the fits 
and the variance in the data.   
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tory stimulus with and without suppression (figure 3-8B).  Suppression in most 

cases was strong – for the example complex cell shown in figure 3-4, a suppres-

sive stimulus was capable of reducing the response by 49%.  On average, the 

fractional suppression was 58%.  Suppression was stronger in directional (mean 

73%) as compared to non-directional (mean 42%) neurons. 

 To determine the nature of the combination of excitation and suppres-

sion, we compared parametric models fit to the two-dimensional nonlinearity 

that describes firing rate as a combination the excitatory and suppressive pools 

(figure 8C).  The data (289 points) were fit with a sigmoidal excitatory function 

in which suppression could enter through a subtractive and/or a divisive term.   

The model also contained weights for the excitation in the numerator and de-

nominator, an exponent and a baseline offset parameter, resulting in 6 parame-

ters.  Figure 3-8C shows the data points and model fits plotted as slices of in-

creasing excitation through different levels of suppression.  Changes in the slope 

of the points at different levels of suppression are captured in the model by the 

divisive term whereas downward shifts are captured by the subtraction.  As was 

typical of most cells, the divisive suppressive component described most of the 

suppression in the example cell but an additional subtractive component was 

also required to adequately describe the small downward shift of the neuron’s 

response with increasing suppression.  Figure 3-8C compares the variance of the 

data accounted for by the model for population of cells that produced significant 

suppressive axes.  Across the population, the model provided an excellent 
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Figure 3-9.  Predictions of response modulation to optimized drifting sinusoidal 
gratings.  (A-C)  The PSTH of the response to one cycle of a drifting sinusoidal 
grating for the actual response of the cell (black) the standard model prediction 
(for simple cells, the STA model, blue; for complex cells, the energy model, 
green) and the full STC model (red) for three V1 neurons.  Dashed lines indicate 
actual and predicted baseline responses (responses to a mean gray screen).  The 
actual and predicted response modulation indices (vector average of the first 
harmonic of the response / baseline subtracted mean response, F1/DC) are la-
beled.  Weights of the excitatory filters for each cell: (A) STA: 1 STC: 0.04 (B) 
STA: 1 STC: 0.40, 0.18 (C) STA: 0.40, STC: 1.0, 0.99, 0.69, 0.61, 0.49, 0.44, 
0.35  (D) STA model (blue), Energy model (green) and full STA+STC model 
predictions (red) of response modulation versus actual response modulation for a 
population of 35 V1 neurons.  The Energy model predictions of response modu-
lation were less than 0.001 and are shown at the edge of the plot (green). 
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account of the data.   

Model predictions of responses to drifting sinusoidal gratings: 

Given a complete mathematical description of a neuron’s responses, we were 

interested in determining how well the model predicted the responses to another 

stimulus.  Drifting sinusoidal gratings are commonly used to characterize these 

neurons and thus serve as a good test case.  V1 neurons are often labeled as 

“simple” or “complex” based upon the modulation of their response to opti-

mized drifting sinusoidal gratings (Skottun et al 1991),  quantified as the ratio of  

the first harmonic of the response to the mean response (F1/DC).  Cells with a 

modulation index greater than one are classified as simple while cells with a  

modulation index less than one are classified as complex.  Figure 3-9A-C show 

an average response histograms for one cycle of a drifting grating for three V1 

neurons.  The top panel (figure 3-9A) shows data from a prototypical simple cell 

that responded to half of the cycle of grating drift.  The bottom panel (figure 3-

9C) shows data from a prototypical complex cell that responded in a phase in-

sensitive manner to the entire cycle.  The middle panel (figure 3-9B) corre-

sponds to a cell with an intermediate behavior.  This cell was classified as sim-

ple by the F1/DC criterion but its response lasted more than half a cycle. Col-

ored traces indicate the predictions for two models: the standard model of these 

neurons and a full model including both the STA and filters recovered from STC 
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(green).  For the simple cells (figures 3-9A and B), the standard model included 

the STA (blue).  For the complex cell (figure 3-10), the standard model included 

the first two STC filters (the Energy model; green).   In the case of the proto-

typical simple cell, the STA predicted the neuron’s response well; adding the 

additional filters obtained by STC had little effect on the prediction due to the 

low weights recovered for these filters (figure 3-9A).  For the “intermediate” 

cell, the STA was a fair predictor of the neuron’s response; adding the filters 

obtained from STC improved the prediction (figure 3-9B).   For the complex 

cell, both the energy model and full STC model were good predictors of re-

sponse modulation (figure 3-9C).   

A plot of the actual modulation index versus the predicted index for the three 

models illustrates that these three cells are representative of the population (fig-

ure 3-9D).  The model including the STA alone predicted highly modulated re-

sponses from simple cells, and erred on the side over over-estimating the re-

sponse modulation (blue points).  Addition of the STC filters to the model re-

duced the response modulation prediction.  Of note are the population of simple 

cells that live on the simple/complex cell border (like the cell in figure 3-9B).  

These cells had a strong STA that predicted a robust response to a drifting grat-

ing.  However, the sign-insensitive filters revealed by STC were required to ac-

curately predict the phase sensitivity of these cells, thus validating the existence 

of the additional excitatory filters in these neurons.  For complex cells, the en-

ergy model predicted zero response modulation (green), despite the modulation  
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Figure 3-10.  Complex cell subunits.  A) Top: the six excitatory filters revealed 
for an example complex cell (weights: 1, 0.98, 0.73, 0.49, 0.68, 0.47).  Note the 
similarity with the cell in figure 3-4.  Bottom: a cross section of the spatial pro-
file of the receptive field, computed by taking the square root of the weighted 
summed squared combination of the pixel values for each of the filters.  The 
cross section was taken at the peak temporal offset, t = 65 msec before a spike.  
The spatial profile is shown for all the filters (gray), the two strongest filters 
(red) and the remaining four filters (green).  B)  A set of filters and spatial enve-
lope structure similar to the results to A, obtained by performing an STC analy-
sis on the data produced by a simulation of the 10 subunits shown in C.  C) The 
five spatially shifted quadrature pairs used in the simulation.  Simulated data 
were generated by convolving each of the subunits with the random binary bar 
stimulus used in the experiment and combining the signals via a weighted sum 
of squares with weights of 0.33, 0.66, 1, 0.66, and 0.33 applied to the filter pairs 
as shown top to bottom.  Bottom: the spatiotemporal profile of the pooled filters 
and individual filter pairs.  D) Experimental validation of the unexpected filters 
for the cell shown in figure 3-4.  Shown are the stimuli presented to the cell, the 
response of the cell (black), the predicted response of the energy model (the 
STA and first two filters, and nonlinearity reconstructed based on the pooled 
output of these three filters, red) and the full model including all excitatory and 
suppressive filters (green).  Top: The stimulus presented was a movie of the 
strongest excitatory filter preceded and followed by periods of gray screen.  
Both models predict a similar response to this stimulus and as a result it can be 
used to determine the multiplicative factor required to predict the gain adjust-
ment to low contrast stimuli.  The gain adjustment was simulated as the best fit-
ting scalar applied to the pooled excitatory and suppressive signals before they 
were converted into firing rates.  For this stimulus, the scalar was determined to 
be 5. Bottom: Presentation of the sixth excitatory filter as a stimulus predicts a 
different response from the standard energy model and the STC model.  The 
STC model better predicts the actual response of the cell. 
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observed in some of these neurons.  Due to the inclusion of an asymmetric STA, 

the full model better predicts modulation in those complex cells with intermedi-

ate modulation values (red).  For neurons at all points along the simple to com-

plex continuum the recovered functional models produced respectable predic-

tions of response modulation (red points, figure 3-9D).    

Complex cell subunits: 

In complex cells, the STC analysis consistently recovered more than just the fil-

ter pair predicted from the standard energy model.  Figure 3-10A shows the 

filters recovered from STC for an example complex cell with similar character-

istics to the cell in figure 3-4 to demonstrate the consistency with which we ob-

served these results.  In complex cells of this type we observed a specific struc-

tural relationship between the filter pairs: the temporal envelopes for all the fil-

ters revealed by STC were similar, but the spatial envelopes differed across filter 

pairs.  Figure 3-10A compares the spatiotemporal envelope for the first two ex-

citatory filters with the spatiotemporal envelope of the last four. Shown is a slice 

across the spatial envelope at the peak temporal offset.  While the spatial struc-

ture of the two strongest STC filters was confined to the center of the receptive 

field, the spatial structure of the additional filters flattened in the middle but was 

robust at the receptive field edge.  Mindful that the actual subunits of a cell can 

be linear combinations of the filters revealed by STC, we wondered what types 
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of subunits could produce such results.  Simulations confirmed that a model of a 

complex cell that included multiple (6-8) spatially shifted subunits produces re-

sponses that are strikingly similar to filters we revealed from many complex 

cells (figure 3-10B). 

To validate the existence of the unexpected filters in these cells, for a 

subpopulation of neurons we presented stimuli designed to discriminate between 

the standard (energy) model and the full model revealed by STC.  For many 

cells, presentation of the unexpected filters as movies could be used as discrimi-

nating stimuli due to a combination of the orthogonality between the filters and 

the concentration of stimulus energy at the receptive field fringe.  Figure 3-10D 

(top) illustrates the responses of the neuron shown in figure 3-4 to a stimulus 

that is predicted to produce a similar response from the standard and full STC 

model.  Shown below is the response of the neuron to a stimulus that produces a 

drastically different prediction in the two models.  While the standard model 

predicts only a small response to this discriminating stimulus, a robust response 

was evoked from the neuron as predicted by the full STC model.   

3.3 Discussion 

Conventional reconstructions of spatiotemporal receptive fields for V1 cells 

have been specific with regard to cell type; e.g. simple (DeAngelis et al 1993, 

Jones & Palmer 1987, McLean & Palmer 1989, Movshon et al 1978b) or com-
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plex  (Emerson et al 1987, Lau et al 2002, Livingstone & Conway 2003, 

Movshon et al 1978a, Touryan et al 2002) and focused primarily on linear or 

quasi-linear descriptions of neural response.  In this paper we have presented a 

generalized model for V1 neurons that can be applied to any neuron regardless 

of cell type.  This  model includes a linear processing stage based on responses 

of a small set of filters (adjustable in number), followed by a nonlinear function 

that combines the filter outputs in order to generate a firing rate.  The resulting 

quantitative model can be fit to data using spike-triggered techniques, and used 

to predict responses to arbitrary stimuli.  

In the process of fitting these models to extracellular data, we found that 

most cells required substantially more filters than predicted by standard models 

of V1 neurons.  For every simple cell we tested, we recovered more than the 

single linear filter predicted by the standard model of these cells (figure 3-1A).  

For nearly every complex cell tested, we recovered more than the two filters 

predicted by the energy model.  In addition to mapping the excitatory influences 

in these cells, we also uncovered the spatiotemporal tuning of strong suppressive 

influences in V1.     

Initially, we were concerned that the unexpected filters could be an artifact 

resulting from the small involuntary eye movements that are known to exist in 

the anesthetized, paralyzed macaque preparation (Forte et al 2002).  Although 

we cannot rule out this possibility completely, several pieces of evidence indi-

cate that eye movements alone cannot explain the discrepancies between our  
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Figure 3-11:  Eye movement analysis.  A) Estimation of eye position during 
data collection for the example simple cell shown in figure 3-3 and the example 
complex cell shown in figure 3-4 (located in different animals).   For both cells, 
eye position was estimated from the data collected in 2.5 minute windows; suc-
cessive eye position estimates were obtained by shifting the window forward in 
10 second increments.  For the simple cell (red), eye position was estimated 
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from the STA computed for each window.  A Gabor (sine multiplied by a Gaus-
sian) was fit to the time slice at the peak offset (t = 65 msec before a spike) and 
a position parameter (the center of the Gaussian) was used as an estimate of eye 
position.  The estimated eye position deviated over 0.09 degrees, approximately 
half the width of one bar (0.2 degrees).  For the complex cell (blue), a STC 
analysis was computed from the windowed data and the spatial envelope was 
calculated by taking the L2-norm (square root of the sum of squares) of the two 
strongest excitatory filters.  A position parameter was extracted by fitting a 
Gaussian to the data at the peak offset (t = 55 msec before a spike).  The eyes 
moved over an absolute deviation of 0.17 degrees, approximately 2 bar widths 
(bar width, 0.09 degrees).  The magnitude of the estimated eye movements are 
within the range reported by direct tracking of the eyes under similar experimen-
tal conditions as are the oscillations shown in both traces with a periodicity of 3-
8 minutes (Forte et al 2002).  To examine the effects of eye movements of this 
magnitude on the STC analysis, we simulated a standard model simple (figure 3-
1A) and complex (figure 3-1B) cell.  The top filter was included in model sim-
ple cell; both filters were included in the complex cell model.  Eye movements 
were simulated by shifting the filters by the magnitude suggested by the traces 
in A and taking the dot product of the resulting filters and a binary bar stimulus 
every 10 msec.  For both simulations, the size of the receptive field, number of 
bars used in the experiment, firing rate, and experiment duration (total number 
of spikes collected) were matched to the experiment.  B) Actual firing rates over 
the course of data collection for the simple (red) and complex cell (blue).  Also 
shown are the firing rates over the course of the two simulations (green).  C) In 
simulation, the eye movements shown in A fail to produce artifactual filters not 
included in the models. For the model simple cell, only an STA was recovered.  
Also shown is the strongest (nonsignificant) excitatory filter revealed by STC, 
which had no spatio-temporal structure.  For the model complex cell, only the 
two expected excitatory filters were revealed by STC.  Also shown is the third 
strongest (nonsignificant) filter, which had no spatio-temporal structure.  Addi-
tional simulations reveal that larger movements of the eyes can produce unex-
pected filters.  Simple cells appear to be particularly prone to artifactual filters, 
due to the residual variance remaining after the STA is projected out of the 
spike-triggered stimulus distribution in preparation for STC (e.g. the red eye 
movement trace in A magnified four-fold produced an artifactual filter in simu-
lation).  In both simple and complex cells, large deviations of the eyes result in 
shifts of the receptive field away from the stimulus array and consequently de-
creases in firing rate during these episodes.  We have explored the parameter 
space and failed to find suitable conditions under which the firing rate remains 
constant throughout the simulated experiment (as shown in B) and a large num-
ber (>4) filters are revealed. 
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results and standard models.  First, the predictions of response modulation to a 

drifting sinusoid grating are based on the F1/DC ratio, which is relatively unaf-

fected by eye movements.   For all but the most highly modulated simple cells, 

the additional filters revealed by STC are required to properly predict phase sen-

sitivity.  Second, we have estimated the extent and timecourse of the eye move-

ments that occurred during data acquisition by analyzing short segments of the 

data.  These eye movement traces fail to produce artifactual filters in simulation 

(Figure 3-11).  Furthermore, we have systematically explored the effects of the 

eye movements described by Forte et al (2002) on STC results in simulation and 

found that the number of artifactual filters produced by those eye movements are 

inconsistent with our data (not shown).  

We also wondered whether the unexpected excitatory and suppressive filters 

were produced by deviations from the Poisson spiking assumed by the model 

(figure 3-1C).  For example, the intracellular mechanisms associated with spike  

generation, such as the refractory period, can produce suppressive filters in an 

STC analysis that do not reflect true subunits (Aguera y Arcas & Fairhall 2003, 

Pillow et al 2004).  Similarly, correlated excitatory events such as bursting could 

suggest artifactual excitatory subunits.  Simulations confirm that the characteris-

tics of the filters we are observing are inconsistent with the filters expected to 

arise from non-Poisson spiking.  In the case of spatiotemporally inseparable (di-

rectionally tuned) excitation, the suppressive filters resulting from models con-

taining a refractory period or integrate-and-fire dynamics appear as filters with 
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the same direction preference but time-delayed relative to the strongest excita-

tory filters (not shown).  Such filters are not consistent with the suppressive fil-

ters that we are observing, which commonly have a direction preference oppo-

site the excitation.  Similarly, the artifactual filters produced by a model of a 

bursting neuron are time-delayed relative to the strongest excitatory filters 

whereas the excitatory filters we observed varied in the spatial as opposed to 

their temporal profiles.   

The results presented here suggest that V1 neurons are constructed of more 

subunits than predicted by the standard models of these cells.  These extra sub-

units, in turn, provide an explanation of  the phase-sensitivity of the cells,  which 

varied inversely with the number of excitatory filters.  Simple cells with the 

highest degree of phase sensitivity were well described by a single half-rectified 

excitatory filter (an STA), although evidence for a weak additional excitatory 

subunit was consistent in these neurons.  Cells with intermediate phase sensitiv-

ity had weaker STAs and stronger excitatory filters revealed by STC, indicative 

of a combination of a number of half-rectified (and potentially full-rectified) 

subunits.  Complex cells with the highest degree of phase-invariance appeared to 

be comprised of 5-6 smaller full-rectified subunits that converged to form their 

spatial profiles. 

What biophysical mechanisms produce the filters that we are uncovering?  

Our model attempts to describe the responses of cells as a function of the input 

stimulus, and thus includes all processing preceding the V1 neuron in question 



 90

as well as any time-delayed inputs (e.g. feedback or lateral connections) that 

these neurons receive.  Even at the earliest stages of visual processing, multiple 

linear filters are resolved from retinal ganglion cells using this technique (J.W. 

Pillow, E. P. Simoncelli, and E. J. Chichilnisky (2003).  Soc. for Neurosci. ab-

stracts). The filters we are recovering in V1 may reflect nonlinear processing 

(e.g. rectification) of signals in the retina and the LGN. A second possible 

source of multiple filters is the convergence of rectified signals within V1. 

Complex cells had on average twice as many subunits as simple cells, sugges-

tive of convergence within this area.  Alternatively, nonlinear intracellular 

mechanisms could be the source of multiple subunits.  We rarely observed evi-

dence for time-delayed excitatory influences (e.g. feedback), which would have 

been revealed as excitatory filters with different temporal profiles (although see 

figure 3-4A).   

 Parametric model fits to the data revealed that the suppressive signal had 

a combination of divisive and subtractive influences on the excitation. Note that 

this analysis resolves signals into different filters only following a nonlinear op-

eration.  In the push-pull model of a simple cell, the excitation and inhibition 

are combined linearly and together would produce a single linear filter (corre-

sponding to the STA).  Similarly, in the STC analysis the labeling of a filter as 

“excitatory” or “suppressive” is dependent upon changes in the second-order 

statistics of spiking stimuli.  If excitation and suppression coincide along a sin-

gle axis (where an axis is defined by a filter and its inverse), STC will resolve 
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the signals as a single axis or multiple axes, depending on the form of the com-

bination.  Hence our results may underestimate the subtractive influences in 

these neurons. 

In a related STC characterization of cat V1 neurons, fewer excitatory filters 

(on average 2) were recovered from complex cells, although as many as five fil-

ters were recovered from some neurons (Touryan et al 2002).  Suppressive fil-

ters weren’t reported in this study, but an examination of the non-significant 

stimulus dimensions resulting from the PCA suggested that they were better de-

scribed as having divisive than subtractive influence on V1 neuron’s responses. 

The additional excitatory and suppressive  filters we are recovering from mon-

key V1 neurons as compared to the cat may be explained by the large number of 

spikes (on average 58,000 per cell) we collected.  Alternatively, a difference in 

processing between the two species may exist. 

Here we have presented the most profound deviations from standard models 

of V1 neurons observed when constructing functional models of neurons in V1 

using spike-triggered techniques.  Many other interesting properties of these 

neurons could be revealed by extending the analysis to cover the second spatial 

dimension as well as other stimulus attributes like color, binocularity, and sur-

round suppression.  These extensions would be required to build a model of a 

neuron that could predict the response to any arbitrary stimulus.  Even when 

confined to examining a limited number of stimulus attributes, spike-triggered 
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techniques have proven themselves to be sensitive tools that can be used to un-

cover the subtleties of neuronal computation. 
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4 The role of suppression in shaping direction 
         selectivity in visual areas V1 and MT  

The computation of motion direction begins in primary visual cortex (V1).  Neu-

rons in the lateral geniculate nucleus (LGN) are untuned for the orientation and 

direction of stimuli.  These input signals are transformed in V1 into responses 

that live on a continuum from oriented (equally responsive to both directions of 

motion along one axis) to directionally selective (responsive to motion in one 

direction with little or no response to motion in the opposite direction).  A sub-

population of V1 neurons tuned for direction project to the next stage of motion 

processing, visual area MT (Movshon & Newsome 1996). 

 The majority of neurons within MT are strongly tuned for motion direc-

tion.  Most neurons in MT respond vigorously to stimuli moving in a preferred 

direction and are suppressed  below spontaneous firing by motion in the oppo-

site (null) direction (often referred to as “motion opponency”).  Models of direc-

tion computation typically include a multi-stage process in which directional 

bias is formed, and these directional signals are then further sharpened by a sup-

pressive signal tuned to motion in the opposite direction (Adelson & Bergen 

1985, Simoncelli & Heeger 1998).  A number of contradictions exist in the lit-

erature with regard to the source of this suppressive signal. 

 If neurons in MT receive inhibitory input from other MT neurons with 

opposite direction preferences, the null suppressive signal would be expected to 
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act globally across the large MT receptive field.  Experimental evidence sug-

gests that this is not the case (Qian & Andersen 1994).  The local nature of the 

suppressive signal suggests that it must act before spatial pooling within MT 

neurons. 

 Where does the null direction suppressive signal act?  The local nature of 

this computation suggests that its locus is unlikely to be MT.  Long-range feed-

forward intracortical connections (from V1, V2, and V3) are believed to be 

exclusively excitatory (White 1989). Thus local inhibition in MT would require 

the existence of a population of MT inhibitory interneurons with small receptive 

fields that receive excitatory projections from V1 and in turn produce inhibitory 

projections that combine locally with excitatory signals.  These hypothetical 

neurons are unlikely;  MT receptive fields are all 6-10 times the diameter (30-

100 times the area) of V1 receptive fields at any given eccentricity (Van Essen 

et al 1981).  However, investigations of V1 have suggested that the null suppres-

sive signal is unlikely to act there (Qian & Andersen 1994, Qian & Andersen 

1995).  We were interested in revisiting questions related to the nature and 

source of the null suppressive signal in MT through stimuli specifically designed 

to isolate components of this signal.   

4.1 Methods 

See the Appendix for details regarding experimental preparation. Stimuli were 

presented on a gamma-corrected monitor with a refresh rate of 100 Hz and a 
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mean luminance of 33 cd/m2 and generated with a Silicon Graphics XX work-

station.  The monitor was directed toward the monkey via a front surface mirror; 

total length between the eye and the monitor was 80 - 180 cm. 

We recorded from isolated single units stimulated monocularly.  Upon 

encountering a cell, the initial characterization involved an optimization for the 

best direction, spatial frequency, temporal frequency, and size of drifting grating 

stimuli.  Beyond this stimulus optimization, stimuli were presented at optimal 

spatial and temporal frequency and confined to the classical receptive field.  

Only strongly directional MT (n=32) and V1 (n=18) cells were recorded. 

Counterphase family stimuli 

The first set of experiments are described in the Results (figure 4-1); the stimu-

lus used for the remaining experiments are described here.  The basic stimulus 

set is diagramed in figure 4-2a.  Individual stimuli were weighted combinations 

of a preferred (P) and null (N; direction opposite preferred) drifting grating pre-

sented in blocks of constant total contrast (T) such that: 

     wpP + wnN = T 

where wp and wn correspond to the contrast of the preferred and null drifting 

grating, respectively.  Stimuli were constructed from 11 combinations of pre-

ferred and null weights including all preferred energy (wp=1, wn=0), all null en-

ergy (wp=0, wn=1), and nine points in between.  In the case of equal contribu-
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tions of preferred and null grating (wp=wn=0.5) the stimulus is a stationary con-

trast inverting (counterphase) grating.   

Curves were collected at 5 different total contrasts (T).  For most cells, T 

= 6.25%, 12.5%, 25%, 50%, 100%.  The total contrast range was adjusted for 

some cells to account for the neuron’s sensitivity. Stimuli at the five contrast 

levels were presented concurrently for 320 msec in 1.5 min blocks of constant 

total contrast.  An additional block contained preferred stimuli at different con-

trast levels to obtain a traditional contrast response function for each cell.  The 

final stimulus block contained a 15 second blank (mean gray) stimulus to meas-

ure the steady-state baseline response. Within each block, stimuli were randomly 

interleaved and blocks were interleaved across trials.  Stimulus variations in-

cluded: 

1. As a control, responses to the basic stimulus set with blocks of constant 

contrast were compared to response to all stimuli interleaved (figure 4-

3c). 

2. For a subpopulation of cells, contrast energy rather than total contrast 

was held constant according to: 

 (wpP)2 + (wnN) 2 = T 

In these experiments, a limited range of preferred contrasts were ex-

plored due to physical limitations imposed by the upper limit of 100% 

contrast (figure 4-3d). 
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3. To explore the degree to which the influence of the null drifting grating 

depended upon direction, the null drifting grating was replaced with a 

grating drifting in another non-excitatory direction (e.g. 90 degrees from 

preferred; figure 4-3b, figure 4-11). 

4. To assess changes in baseline response during different levels of total 

contrast presentation, in a subpopulation of cells, 320 msec blanks were 

randomly inserted into each total contrast block (figure 4-5, figure 4-10 

a,b).   

Post-stimulus time histograms (PSTHs) were constructed with 10 msec bins and 

the latency for each cell was determined by eye as the first time bin after stimu-

lus onset that exceeded background firing rate for the 100% contrast stimuli.  

Mean firing rates were determined by aligning stimuli and latency adjusted 

spike trains and determining mean firing rates in 270 msec of the 320 msec 

stimulus presentation.  PSTHs were examined for uniformity across the 270 

msec to ensure that the spikes and stimuli were properly aligned. 

 Models were fit using the STEPIT algorithm (Chandler 1969) to mini-

mize the chi-squared error between the actual responses and model predictions.  

We assessed goodness of fit by calculating the variance accounted for by the 

model as the ratio between the mean squared error of the fits and the variance in 

the data.  The models accounted for a minimum of 92% of the variance (97% on 

average).   
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4.2 Results 

4.2.1 Spatial extent of null suppression in MT 

To explore the location specificity of null suppressive interactions between MT 

receptive field subregions, we stimulated the receptive field with small grating 

patches.  In one patch, we collected a contrast response curve (the test patch).  

We presented this stimulus alone and in the presence of a second patch contain-

ing a 50% contrast sinusoidal grating stimulus drifting in the non-preferred di-

rection (the null pedestal); the null pedestal was located either at the same loca-

tion as the test or at a spatially distinct but approximately equally responsive lo-

cation of the receptive field (figure 4-1a).  In the separated configuration, the 

patches were presented symmetrically about the center of the classical receptive 

field and perpendicular to the cell’s direction axis.  In all cells, a preferred drift-

ing grating presented at the separated location evoked a vigorous response from 

the neuron.  We set a criterion that the preferred pedestal patch evoke at least 

60% the response of the test patch at 50% contrast (mean 90%, mode 80%).   

 Figure 4-1a shows the responses of a typical cell.  Shown are the fits to 

the contrast response functions when collected alone and in the presence of a 

null pedestal at the same location (figure 4-1a, top).  This neuron had a consid-

erable baseline firing rate (~31 spikes/sec) and a response that increased with 

contrast (dark grey).  Presentation of the null pedestal alone decreased the re-

sponse of the neuron relative to its spontaneous rate (to ~18 spikes/sec).  Presen-
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Figure 4-1:  Spatial extent of the null suppressive signal in MT.  Stimuli pre-
sented in these experiments were small patches of sinusoidal gratings drifting in 
the preferred or null direction.  On each trial, two gratings were presented.  The 
“test” grating always moved in the excitatory direction, was always presented at 
the same location (left patch), and was used to measure the contrast response of 
the neuron.  The “pedestal” contained a 50% contrast grating drifting in the null 
direction and was either presented at the same (top panel) or a separate (bottom 
panel) location.  The data collected for each condition were fit with an appropri-
ate function and the area under each curve calculated (labeled).  The contrast 
response function collected alone is indicated by dark-gray; the contrast re-
sponse function collected in the presence of a null pedestal is indicated by light-
gray.  Dashed lines indicate the response to a gray screen (dark gray) and the 
response to the null pedestal alone (light gray). b) The decrement in the response 
from baseline when the null grating was presented in the same location as the 
test patch or at a separate location.  Population means are indicated by the star.  
c)  The fractional suppression of the test patch by the null pedestal, calculated as 
the ratio of the area under the contrast response function in the presence and ab-
sence of the null pedestal, subtracted from 1.  A fractional suppression of 1 indi-
cates complete suppression, 0 indicates no suppression, and values less than zero 
indicate an excitatory response that was stronger in the presence of the null ped-
estal than in its absence.  Population means for the overlapping and separated 
conditions are indicated by the star.   
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tation of the null pedestal simultaneously with excitatory stimuli greatly reduced 

the responses to all excitatory contrasts (light grey).  The null pedestal placed at 

a spatially distinct  location within the receptive field produced a similar decre-

ment to the baseline firing rate (figure 4-1a, bottom).  When the contrast re-

sponse function was collected in the presence of this non-localized null pedestal, 

it appeared similar to the contrast response in the absence of a pedestal but 

shifted downward.   

 This cell was representative of most neurons we recorded: in the over-

lapping configuration, a null drifting pedestal had a dramatic impact upon the 

neuron’s response whereas in the separated configuration the null drifting pedes-

tal primarily shifted the contrast response downward.  To summarize this behav-

ior for a population of cells, we considered two components of these responses.  

Figure 4-1b plots the decrement in baseline in the overlapping versus separated 

configuration for 15 cells.  On average, the baseline decrement was similar un-

der the two conditions.  To assess the effect the null pedestal had on the test 

patch after this baseline decrement was considered, we calculated the fractional 

suppression as the ratio of area under the contrast response function with and 

without the null pedestal subtracted from 1 (labeled FS).  A fractional suppres-

sion of 1 corresponds to complete suppression, 0 to no suppression, and negative 

values correspond to an excitatory response that was larger in the presence of 

the null pedestal than when presented alone.  For the example cell, the effect of 

an overlapping null pedestal on the contrast response was strong, reducing the 
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response by 66%.    In the separated configuration, the null drifting pedestal 

slightly facilitated the response (FS = -11%; figure 4-1a).  Across the population 

of MT neurons we recorded, the effect of a null pedestal upon an excitatory re-

sponse was dramatic when the two stimuli were co-localized but weak when the 

stimuli were presented in separate locations (means 70% and 8%, respectively).  

For most cells, a null drifting patch presented at a spatially distinct location had 

minimal effect beyond a reduction in the baseline firing rate.      

 These results suggest two components to the null suppressive signal in 

MT.  First, null suppression has a dramatic effect upon co-localized excitation 

beyond that expected in an additive model by the decrement of a null stimulus to 

its baseline firing rate.  This behavior is indicative of a strong suppressive signal 

that is masked by rectification at low firing rates.  The combination of excitation 

and suppression followed by rectification appears to occur locally before spatial 

pooling in MT neurons, as evidenced by the inability of a null stimulus to affect 

spatially distinct excitation beyond its effect upon baseline (see also Qian and 

Andersen, 1994).   However, if the suppression were rectified before reaching 

MT, a null stimulus would fail to suppress the response below baseline.  Thus a 

second component of null suppression must exist to account for the downward 

shift of the contrast response when the test and pedestal are separated.  
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4.2.2 Counterphase family 

Upon confirming previous reports that a component of the null suppressive sig-

nal is local in MT, we were interested in further characterizing this signal in MT 

and the strongly directionally V1 cells that are known to form a large component 

of the MT input.  To do so, we used a stimulus that we will refer to as the “coun-

terphase family”.  In each instantiation, the stimulus presented was a combina-

tion of a preferred drifting and null drifting grating, each presented at the same 

location and at the full size of the classical receptive field.  While the total 

(summed) contrast of the two gratings was held constant, the contrast of the pre-

ferred versus null grating varied in 10% increments ranging from a preferred 

motion exclusively, through equal preferred and null contrasts (counterphase 

flicker), to null motion exclusively.   We presented 11 preferred-null ratios at 5 

different total contrasts (figure 4-2a). We were interested in probing direction-

ally tuned suppressive signals while minimizing the effects of untuned suppres-

sive influences (like contrast normalization).  Thus stimuli were presented in 

blocks of constant total contrast in an attempt to hold the gain state of the cell 

constant while assessing the effect of varying the preferred and null components.   

 The responses of a representative MT cell to the counterphase family 

stimuli are presented in figure 4-2.  Figure 4-2b illustrates the strong suppression 

caused by the addition of a null drifting grating with a contrast that increases as 

the preferred contrast decreases.  For this cell, stimuli dominated by null drifting  
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Figure 4-2:  Representative response of an MT neuron to the counterphase fam-
ily stimuli.  a) Diagram of the stimulus design.  Stimuli were weighted combina-
tions of gratings drifting in the preferred and null (opposite) direction such that 
the total contrast was held fixed while the relative contribution by the preferred 
and null grating varied; equal contribution of preferred and null stimuli produces 
a contrast inverting stationary (counterphase) grating.  Eleven preferred-null 
grating combinations were displayed at 5 different total contrasts; black dots 
correspond to the 55 stimuli presented. b)  Response to a preferred grating of 
increasing contrast as compared to a stimulus containing the same preferred 
stimulus in addition to a null grating such that preferred contrast (P) + null con-
trast (N) = 1; arrows indicate the suppression caused by the null grating.  Dashed 
line indicates the steady-state baseline response to a gray screen.  c) Response to 
the full counterphase family plotted against the contrast of the preferred grating, 
disregarding the null grating contribution.  Stimuli were presented in blocks of 
constant total contrast; line thickness corresponds the total contrast as indicated 
in the legend.  d) The same responses shown in c but plotted against the ratio of 
preferred and null contrasts.  “P” indicates the preferred stimulus alone (infinity 
on this axis), “N” the null stimulus (zero on this axis). Salient characteristics 
found across MT neurons and are labeled:  1)  the curves collected at different 
absolute contrasts cross at a single point and this crossing point corresponded to 
a particular ratio, the “crossing-ratio” 2)  curves collected at different total con-
trasts fan about the crossing point and the amount of this spread increases with 
total contrast 3) responses saturate for high contrast stimuli in both the preferred 
and null direction. 
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gratings were effective at decreasing the response to preferred gratings over 40-

fold, well below baseline firing rates. 

 The responses of this cell to the full counterphase family are plotted as a 

function of the contrast of the preferred stimulus (figure 4-2c) and as function of 

the ratio of preferred and null contrasts (figure 4-2d).  Across the population of 

MT neurons, responses to these stimuli displayed a characteristic structure illus-

trated by plotting response against the ratio between preferred and null contrasts 

on log-log axes (figure 4-2d). One of the most salient characteristics was the 

crossing of the curves collected at different total contrasts at a single point (la-

beled “1” in figure 4-2d). About this crossing point, the curves collected atdif-

ferent total contrasts tended to fan out with a spread that increased with total 

contrast (indicated by “2” in figure 4-2d).  The different total contrast curves 

often saturated at high preferred and null contrasts (labeled “3” in figure 4-2d). 

The regularity of responses across MT provides clues into the mecha-

nisms by which these receptive fields are constructed; the interpretation of each 

of these salient points are addressed below.   

The crossing point 

The crossing point occurred near steady-state baseline in all cells.  This crossing 

point can be associated with a particular preferred:null contrast ratio; this “cross-

ing ratio” represents the contrast ratio at which excitation overcomes suppres-
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sion to cause an increase in firing.  Cells with a crossing ratio of one have per-

fectly balanced excitation and suppression, a value less than one represents a 

cell dominated by excitatory influences, and a value greater than one represents 

a cell that is dominated by suppression.  Both the cells in figures 4-2d and 4-3a 

have crossing ratios of ~0.7-0.8, indicating slightly stronger excitatory than sup-

pressive influences (see figure 4-12a for a population comparison).     

Because the crossing ratio reflects the strength of the null suppressive 

signal, we can use it to assess how the signal changes under different manipula-

tions such as changing the direction of the non-preferred stimulus.  Most cells in 

MT display at least partial “pattern” selectivity (Gizzi et al 1990, Movshon et al 

1985) and will respond in a nonlinear manner to the intersection of two super-

imposed gratings drifting in different directions.  This nonlinearity precludes 

probing the direction tuning of the suppressive signal.  However, a subset of MT 

neurons are known to respond approximately linearly to the components of su-

perimposed gratings  (Gizzi et al 1990, Movshon et al 1985) and in these cells 

we compared the suppressive effect of the null drifting grating to that of an or-

thogonal (perpendicular) drifting grating.  For the cell illustrated in figure 4-3, 

the counterphase family stimuli produced a crossing ratio of 0.8.  Replacing the 

null grating with an orthogonal grating produced responses with a clear crossing 

ratio but one that was decreased to a value of 0.38, indicative of weaker suppres-

sion in the orthogonal versus null direction.  This behavior suggests that the null 

suppressive signal is tuned for direction in MT.     



 108

 The counterphase family experiments were run in blocks of constant to-

tal contrast in an attempt to keep the cell in a constant gain state.  To determine 

whether the crossing point was dependent on long time-scale adaptation, we 

tested a subpopulation of neurons with all the stimuli interleaved (figure 4-3c).  

We observed clear crossing points in all cases.  

 

Fanning and saturation 

Saturation of the responses to stimuli at high preferred and null contrasts 

was common in MT.  Saturation of signals at high contrasts have been described 

as contrast gain adjustments that occur through a process of divisive normaliza-

tion in V1 and MT (Britten & Heuer 1999, Carandini et al 1997, Heeger 1992).  

If the signal adjusting the gain of the MT cell were linear and untuned 

for direction, such saturation would not exist; the expected response would be 

linear rather than sigmoidal. Models of contrast gain control postulate a gain 

signal that is proportional to the square of the contrast (Heeger 1992).  As a test 

of this normalization model, we held the energy of the stimulus constant (pre-

ferred contrast2 + null contrast2 = constant; figure 4-3d).  If the squared form of 

the normalization model were correct, we would expect non-saturating (linear) 

responses to the constant energy stimulus.  Although we couldn’t test the full 

range of preferred and null contrasts while keeping the contrast energy constant 
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Figure 4-3:  Counterphase family variants.  In all figures, arrows indicate the 
crossing ratio for each cell; line thickness corresponds to total contrast with the 
same convention as figure 4-2.  a)  Counterphase family run in blocks of con-
stant total contrast, similar to figure 4-2. b) Results from an experiment in which 
the null stimuli were replaced with orthogonal (90 degree from preferred) drift-
ing gratings.  Gray arrow indicates the crossing ratio from panel a for compari-
son. c) Counterphase family run with all 55 stimuli interleaved.  d) Counter-
phase family with constant contrast energy as opposed to constant total contrast 
(see text).   
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 (due to physical upper bound of 100% contrast), even within the range tested 

responses clearly saturated.  These results are inconsistent a non-directional, 

squared gain control signal.  

 About the crossing point, the curves collect at different total contrasts 

displayed a consistent fanning structure.  The amount of spread of the excita-

tory-dominated responses compared to the suppressive-dominated responses 

(those to the right and left of the crossing point, respectively) was often symmet-

ric about the crossing point when plotted on a log response axis (figures 4-2d, 4-

3a, 4-4c).  In other cases, we observed a larger magnitude fanning above (figure  

4-4b) and below (figure 4-4a) the crossing point.  The amount of fanning was 

not reliably connected to the crossing ratio of the cell.   

 It is interesting to note that presentation of null suppressive stimuli at the 

highest contrasts never completely silenced MT neurons; we reliability recorded 

non-zero firing rate responses to null direction stimuli that decreased with the 

contrast of the null stimulus.  The suppressive signal in many neurons is quite  

strong; for the cell displayed in figure 4-2b, a null grating reduced the responses 

to an excitatory stimulus by more than 25 impulses/sec and yet a null drifting 

grating presented alone failed to completely silence the 10 impulses/sec baseline 

firing rate.  If the effect of the null suppressive were purely subtractive we 

would expect that a high contrast null drifting stimulus would hyperpolarize the 

cell below threshold, resulting in zero firing rates. 
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Figure 4-4:   A sample of the range of responses observed in MT neurons to the 
counterphase family stimuli. In all panels, the gray arrows indicate the crossing 
ratio.  As in figure 4-1, stimuli were presented in constant total contrast blocks 
and line thickness indicates the total contrast of the stimulus. 
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 Baseline response 

The steady-state baseline response was measured by recording the response to a 

gray screen over 15 seconds.  In addition to recording a steady-state baseline, for 

some cells we sampled the baseline response during each total contrast presenta-

tion by interleaving short (320 msec) gray stimuli into each total contrast block.  

For many cells, the response during these “integrated” blanks was lowest at the 

highest total contrasts.  This behavior is indicative of an adaptation signal that 

decreases the response of the cell in proportion to the total contrast of the stimu-

lus.  We found cells for which the suppression below steady-state baseline in 

response to a null grating could completely be explained by the reduction of the 

integrated baseline (figure 4-5a).  For these cells, the suppression observed in 

the null direction is not due to a directionally tuned suppressive signal, rather, 

suppression is simply the absence of excitation and a baseline reduction at high 

contrasts.  We also found cells that were clearly suppressed below both inte-

grated and steady-state baseline by null drifting stimuli (figure 4-5b).  For these 

cells, baseline adaptation may have recovered with a timecourse shorter than the 

320 msec integrated blank period.  Alternatively, an active null suppressive 

component may exist in these neurons. 

 To summarize, the counterphase family experiments revealed a number 

of interesting properties of MT neurons that constrain descriptions of their 

mechanism.  First, curves collected at different total contrasts crossed at a single 
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point when plotted as response versus the ratio between preferred and null con-

trasts.  The preferred:null ratio corresponding to this point (the crossing ratio), 

varied with the direction of the non-preferred grating, indicative of a direction-

ally tuned suppressive signal.  Second, strong saturation at high preferred and 

null contrasts was consistently observed in MT even when the contrast energy 

was held constant, suggestive of a nonlinearity that deviates from classical nor-

malization model predictions.  Third, the symmetry of “fanning” about the 

crossing point varied from cell to cell and was independent of the location of the 

crossing ratio.  Fourth, the baseline firing rate tended to vary inversely with the 

total contrast of the stimulus, suggesting the existence of an adaptation to total 

contrast in MT.  Finally, the decrement below steady-state baseline by a high-

contrast null drifting stimulus was incapable of silencing MT neurons, despite 

the strong effect the null grating had on an excitatory stimulus.  This suggests 

that the excitatory and suppressive signals are not pooled linearly.   

Model fits 

The salient characteristics of responses to the counterphase family stimuli con-

strain the class of models that can describe the data.  We considered a number of 

models before arriving at one that provided a good description of all the cells we 

recorded.     
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Figure 4-5:  Suppression relative to baseline responses.  Blank (gray) stimuli 
were integrated into each block of constant total contrast.  Dashed line thickness 
indicates the total contrast of the stimulus block in which the blank was inserted; 
the solid gray line indicates the steady-state baseline response (collected in re-
sponse to 15 seconds of a gray screen).  a)  A cell for which the integrated base-
line recorded within each constant total contrast block varied inversely with total 
contrast and the suppression below steady-state baseline could be explained by 
this decrement.  b) A cell for which  null drifting gratings suppress the responses 
below both the absolute and integrated baseline response.   
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 The crossing point is the most salient characteristic of MT responses to 

the counterphase family.  As we have described above, the crossing point repre-

sents the balance of excitation and suppression in these neurons.  Suppression 

can take on many mathematical forms; the existence of a crossing point is most 

easily described as a weighted difference between the contrast of the signal in 

the preferred direction (P) and the contrast of the signal in the null direction (N):   

 

The weight α determines the balance point of excitation and suppression and 

determines where the crossing point falls along the x-axis.  The output of this 

difference operation is then rectified (indicated by the half brackets), a step that 

is crucial to account for the local nature of the null suppressive signal in MT 

(described below).  To account for the saturation at high contrasts, the output of 

the rectified difference is self-normalized by a divisive process and a scalar β is 

applied:  

       R1norm =  β * R1
ε / (R1

ε + σN) 

We fit a different σN to each total contrast curve to account for the adaptation 

observed during blocks of total contrast (Ohzawa et al 1982).   

 Motivated by the results shown in figure 4-5, we include a baseline re-

sponse that is inversely proportional to the total contrast (Ctot = P + N).  The 

decrement in baseline with increasing contrast is described as a divisive process 

⎣ ⎦NPR α−=1



 116

to account for the inability of a null drifting stimulus to completely silence the 

response of these cells: 

             R2 = δ / (γ*Ctot + 1) 

The response of the MT neuron is the combination of the normalized signal 

R1norm  and the baseline R2: 

            R = R1norm + R2 

In the case of the regular counterphase family stimulus set, the model includes 

10 parameters (α, β, ε, δ, γ, and σ1-5) fit to 56 data points.   

 The model fit to an example cell (from figure 4-2) is shown in figure 4-6 

as response plotted against the preferred component of the stimulus (figure 4-6a) 

and as a function of the ratio between preferred and null contrasts (figure 4-6b).  

For this cell, the weight of the subtractive suppressive term α was fit as 0.54.  

The difference between preferred and null signals produced negative firing rates 

at high contrast N; the differenced signal was then rectified to zero (R1).  Sup-

pression of responses below baseline at high contrast N arises from adding a 

baseline parameter back into the model that is inversely proportional to contrast 

(R2). The saturation of the response at low contrast ratios is thus produced by the 

rectification stage.  Saturation at high contrast is produced through self-

normalization (R1norm), determined at each total contrast by the σ fit for that 

curve.  Figure 4-6c plots σ as a function of the total contrast block; this cell was  
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Figure 4-6:  Model fits.  A parametric model including rectified subtraction, 
self-normalization, and a baseline inversely proportional to firing rate fit to the 
data shown in figure 4-2 (see Results).  a) Response plotted against the contrast 
of the preferred component of the stimulus, as in figure 4-2c.  b) Response plot-
ted against the ratio of preferred and null stimuli, as in figure 4-2d.  The data and 
fits for each constant contrast block are indicated by a different color: 100% - 
green; 50% - pink; 25% - black; 12.5% - red; 6.25% - cyan.  Parameters fit for 
the model were: α: 0.54; β: 95.8  ε: 2.64  δ: 11.47; γ: 6.66.  c) The sigma fit to 
each total contrast curve as a function of total contrast.   
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Figure 4-7:  Model fits to the counterphase family variants shown in figure 4-3.  
Plots are shown with the same convention as figure 4-6.  a) Counterphase family 
stimuli.  Parameters fit for the model were:  α: 0.7; β: 64.2  ε: 1.56  δ: 5.39; γ: 
9.25, σ1-5: 0.06 0.06 0.08 0.14 0.25.  b) Responses of the same cell when the null 
drifting mask was replaced with an orthogonal mask.  The model was fit with all 
parameters held to the values fit for panel a with the exception of α: 0.29 and β: 
54.0. c) Responses of the same cell with all 55 stimuli interleaved.  Data were fit 
with the same parameters as panel a, but with β: 54.8 and a single σ: 0.14.  d) 
Responses of the cell when contrast energy was held constant.  Parameters for 
the fit α: 0.62; β: 49.3  ε: 2.14  δ: 5.29; γ: 10.1, σ1-5: 0.01 0.01 0.01 0.02 0.06. 
 
 



 120

  

typical of many neurons in that sigma increased with increasing contrast after a 

threshold (see figure 4-12b for a population summary).   

 Direction tuning of the suppressive signal is captured in the model by the 

weight of α.  Figure 4-7 shows the fits for the cell illustrated in figure 4-3.  In 

the case of a null drifting non-preferred stimulus, α was fit as 0.7 (figure 4-7a).  

When the model was fit to data collected with an orthogonal non-preferred 

stimulus, and all the parameters except the inhibitory weight α and the scalar β 

held constant (β was allowed to vary to account for slight variations in firing 

rate due non-interleaved stimulus conditions), the data were well fit and α de-

creased to 0.29 (figure 4-7b).   

 When presenting the stimuli in constant total contrast blocks, the cell is 

expected to adapt to the total contrast of the block, captured in our model by the 

different σ fit to each curve.   When all the stimuli are interleaved, we might 

predict that a single σ would account for all the curves.  Figure 4-7c shows an 

interleaved stimulus set fit in this manner; the data are well fit with a single 

sigma of 0.14.  The data were also well fit in the case of constant contrast energy 

(using multiple σ; figure 4-7d). 

 The fanning of the excitatory-dominated response is controlled in the 

model by the scalar β  whereas the fanning of the suppressive-dominated re-

sponse is controlled by the baseline term R2.  The independence of these two  
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Figure 4-8:  Model fits to the same cells shown in figure 4-4 with a range of 
asymmetries about their crossing points.  Plots are shown with the same conven-
tions as figure 4-6. 
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Figure 4-9: Fits of the model to the two patch experiment applied to the exam-
ple cell shown in figure 4-1.  Top:  contrast response function collected alone 
(dark gray) and in the presence of a null pedestal at the same location (light 
gray).  Bottom: data plotted with the same convention as in the top panel but for 
a non-localized null pedestal (see figure 4-1 for details).  All the data points 
shown were fit simultaneously and the same parameters applied to both condi-
tions with the exception of the subtractive weight α (fit α are labeled).  Other 
parameters were fit as: β: 71.0  ε: 3.0  δ: 25.4; γ: 0.89, σ = 0.001. 
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 terms allowed the model to fit data with a range of asymmetries about the cross-

ing point (figure 4-8).     

 The model also provided a good account of the behavior observed in the 

two patch experiments (figure 4-9).  We fit the four contrast response functions 

obtained from this experiment simultaneously (overlapping and separated con-

figurations in the presence and absence of the null pedestal) by forcing the pa-

rameters in the overlapping and separated condition to be the same with the ex-

ception of the subtractive weight α.  In the overlapping condition, α was typi-

cally set to a large value (e.g. in figure 4-9a α = 0.75) whereas in the separated 

condition the α parameter was usually set to a much smaller value, often zero 

(e.g. figure 4-9b).  Thus in the separated configuration,  all that remained to ac-

count for the decrement in response below baseline to the null patch was the  

divisive effect that total contrast had on the baseline R2 term.  Rectification of 

the subtractive signal is crucial in accounting for the two-patch data; otherwise 

the subtractive process would act globally across the receptive field. Taken to-

gether, the two-patch and counterphase experiments provide strong evidence for 

two independent components of the null suppressive signal in MT.   

4.2.3 V1 

Both the two-patch and counterphase family experiments suggest a local, sub-

tractive signal that is rectified before arriving at the soma of MT neurons.  Such 
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behavior would be observed if the subtractive signal acted not in MT but in ear-

lier visual areas such as V1.  MT projecting V1 neurons are believed to be a 

subpopulation strongly tuned for direction (Movshon & Newsome 1996), thus 

we limited our investigation in V1 to strongly direction selective cells. In V1,  

we found neurons whose responses to the counterphase family stimuli were 

strikingly similar to those observed in MT.  Figure 4-10a and 4-10b show the 

responses of two such neurons.  Both have a clear crossing point corresponding 

to a preferred:null ratio of 0.6-0.7, fanning about this point, saturation, and sup-

pression below steady-state baseline.  For the cell in figure 4-10b, we observed a 

integrated baseline response that decreased with total contrast; this baseline dec-

rement explained the majority of the suppression below steady state baseline in 

response to null-dominated stimuli (compare with figure 4-5).  Within V1, we 

also found strongly direction-selective neurons that did not display a crossing 

ratio (figure 4-10c).  As expected, neurons that failed to produce a clear crossing 

ratio also had small excitatory responses to null stimuli (figure 4-10d).  Some 

neurons with very weak excitatory responses to null stimuli also produced clear 

crossing ratios (e.g. figure 4-10b).   

To determine whether the null suppressive signal in V1 is tuned for di-

rection, we substituted the null non-preferred stimulus with gratings drifting at 

different directions (similar to the experiment shown in figure 4-3b).  Similar to 

the responses of MT neurons, the location of the crossing ratio varied with the 

direction of the non-preferred stimulus.  For the example cell shown in figure 4-
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11, an orthogonal non-preferred stimulus produced a crossing ratio of ~0.3.  As 

the direction of the non-preferred stimulus approached the direction opposite the 

preferred, the crossing ratio increased to the point of approximately balanced 

excitation and suppression (crossing ratio 0.9).  These results present strong evi-

dence for the existence of a directionally tuned suppressive signal in the sub-

population of V1 neurons with crossing ratios.   

Histograms of the crossing ratios across the population of MT and V1 

neurons we recorded are displayed in figure 4-12a. The geometric mean crossing 

ratio across the MT population is 0.88, indicating that excitation tends to slightly 

outweigh suppression in MT.  For the V1 neurons in which we observed cross-

ing ratios, the geometric mean crossing ratio was slightly lower, 0.80.   
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Figure 4-10:  V1 responses to the counterphase family stimuli.  a, b) Two cells 
representative of the strongly directional V1 neurons with behavior similar to 
that observed in MT.  Line thickness corresponds to total contrast and dotted 
lines indicate integrated baseline firing rate with the same convention as figure 
4-5.  c) A cell representative of V1 neurons without a crossing ratio.   d) Direc-
tion tuning curves for the cells shown in a-c.  Arrowheads indicate the preferred 
and null directions used in the counterphase family experiments.  Cells without 
crossing ratios displayed an excitatory response to stimuli drifting in the null 
direction (n=7).  Cells with crossing ratios were either suppressed below base-
line by null stimuli or displayed weak excitatory responses (n=11). 
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Figure 4-11:  Direction tuning of the V1 null suppressive signal.  The counter-
phase family stimuli with non-preferred gratings drifting 90, 113, 158, and 180 
degrees from the preferred grating.  Gray arrows and labels indicate the crossing 
ratio for each cell.  Data and model fits are shown with the same convention as 
figure 4-6.  α values: 0, 0.13, 0.26, and 0.71 respectively. 
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Figure 4-12:  Population summary.  a) Crossing ratios observed in MT and V1. 
Geometric means: 0.88 (MT) and 0.80 (V1).   b) The sigma fit to each total con-
trast curve as a function of total contrast after normalizing the sigma at total con-
trast = 1 for each cell before taking the population averages.   
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4.3 Discussion 

 
We present evidence in this paper for two components of the null suppressive 

signal in MT.  The strongest component of this signal can only act upon co-

localized excitation within large MT receptive fields.  In our model, this signal 

produces the characteristic crossing point in the responses to the counterphase 

family stimuli and it is tuned for the null direction. We account for these behav-

iors in the model by representing the signal as a local, weighted subtraction be-

tween excitation and suppression followed by rectification.  In the sense that the 

signal is tuned for the null direction and well represented by a subtractive proc-

ess, it is most similar to the “motion opponent” signal postulated for these neu-

rons. 

 Our results suggests that a second signal in MT produces the suppression 

below baseline in response to a null moving stimulus. This signal is not specifi-

cally tuned for the null direction; it is the product of adaptation to the total con-

trast of the stimulus and results in a reduction of the baseline firing rate.  In our 

model, this signal describes the global suppressive effect observed in our two 

patch experiments.  In V1, tonic hyperpolarization proportional to the total con-

trast of a preferred drifting sinusoidal grating has been directly recorded in-

tracellularly in (Carandini & Ferster 1997). 

   To determine whether the local, subtractive component of the null sup-

pression in MT reflected a computation performed in V1, we presented strongly 
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directional V1 cells with the counterphase family stimuli.  We found that cells 

with the strongest directionality produced responses indistinguishable from 

those in MT, including a crossing ratio and baseline hyperpolarization propor-

tional to total contrast.  We also found that the strength of the suppressive signal, 

reflected by the crossing ratio, depended on the direction of the non-preferred 

stimulus and was strongest in the null direction.  These results suggest that the 

“motion opponent” computation is in fact performed in some V1 neurons. 

 Is the motion opponent computation performed in V1 exclusively?  As 

described in the introduction, it is unlikely that the motion opponent computa-

tion occurs in MT: the lack of feedforward inhibitory projections from V1 to 

MT require a subpopulation of inhibitory interneurons with receptive fields the 

size of V1 neurons and no such cells have ever been reported.  If the motion op-

ponent computation were to occur entirely in V1, the population of neurons pro-

jecting from V1 to MT would have to be comprised primarily of the highly di-

rection-selective neurons that produce crossing ratios in their responses to the 

counterphase family stimuli.  Movshon and Newsome (1996) identified MT pro-

jecting V1 neurons through antridromically activation resulting from electrical 

stimulation of MT.  Most (60%) of the MT projecting V1 neurons they identi-

fied were inhibited below baseline by a null moving stimulus; 90% of MT pro-

jecting V1 neurons were strongly directional (direction index > 0.8).  These 

characteristics are consistent with the types of cells that produced crossing ratios 
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to the counterphase family stimuli.  Based on this evidence, we conclude that the 

motion opponent computation is likely exclusive to V1. 

   The Simoncelli-Heeger (SH) model of motion processing (1998) pro-

poses that the direction computation occurs in two stages.  First, contrast invari-

ant direction tuning is conferred in a subset of V1 neurons through an untuned, 

divisive gain control signal.  The direction tuning computed in V1 is then further 

sharpened in MT.  MT neurons receive excitatory input from V1 neurons prefer-

ring one direction and inhibitory input from cells with the opposite direction 

preference (motion opponency).  In MT, the gain of the cell is again adjusted 

through an untuned, divisive signal.  A grating drifting in the null direction in-

duces three types of suppression in the SH model: 1) divisive gain control in V1 

2) motion opponency in MT and 3) divisive gain control in MT.   

 Our data are consistent with a multi-stage computation of direction but 

suggest modifications to this model.  First, the motion opponent computation 

should be included in V1, not MT.  If this modification were included in the 

model, the model would correctly predict stronger null suppression of co-

localized versus non-localized excitation.  Suppression below baseline could be 

conferred in the SH model if the gain control signal were allowed to act upon 

baseline firing rates.  But the saturation of responses to constant contrast energy 

(figure 4-7d) suggests that the MT gain control signal should be modified to in-

clude a non-linear saturating process, either arising through a self-normalization 

or normalization via  an alternative compressive nonlinear mechanism. 
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5 Discussion 

 The work presented in this thesis relates to a larger body of work whose 

goal is to “understand” neural processing in terms of the computations per-

formed at each stage.  In the work presented in chapter 2, I focused on signal 

transmission in primary visual cortex and found surprising evidence that the re-

liability of V1 neurons decreases during development.  In chapters 3 and 4, I fo-

cused on signal representation and computation in V1 and MT using two differ-

ent approaches.  In chapter 3, I presented an extension to classical spike-

triggered techniques to recover functional models of V1 neurons; application of 

this method revealed that V1 neurons have more subunits than are included in 

classical models.  In chapter 4 I probed the role of suppression in sharpening 

direction selectivity by presenting stimuli comprised of preferred and null drift-

ing sinusoidal gratings.  There, I presented evidence that a directionally tuned 

suppressive (motion-opponent) signal likely operates in  V1 and is merely re-

flected in MT responses.  Below I develop the common themes of these chapters 

in terms of their experimental design and the physiological mechanisms they 

suggest. 

 

 
 



 134

5.1  Comparing responses mapped with gratings and   
       stochastic stimuli 

 

Simple and complex cell subunits:  

 Chapter 3 presents evidence for many more subunits in V1 simple and 

complex cells than standard models suggest.  These neurons have been studied 

in great detail; why haven’t these subunits been revealed before?   This question 

can be viewed from the perspective of asking what stimuli and analysis tech-

niques can distinguish the standard models from alternatives.  Physiologists 

have been aware of the continuum from simple-to-complex for some time, based 

upon the responses to isolated bars and sinusoidal grating stimuli (Skottun et al 

1991) and have held the intuition that cells on the simple/complex border are 

comprised of both asymmetric and symmetric subunits.  The spike-triggered 

characterization presented in chapter 3 confirms this intuition.  In contrast, sinu-

soidal grating stimuli provided no hints of the multiple spatially-shifted subunits 

we revealed from complex cells.   Identification of subunits along an axis re-

quires the presentation of multiple stimulus combinations along that axis and 

comparison of a neuron’s differential response to those stimuli; a periodic grat-

ing stimulus such as a sinusoid fails to provide such variation.  Two-bar interac-

tion experiments (Emerson et al 1987, Gaska et al 1994, Livingstone & Conway 

2003, Movshon et al 1978, Szulborski & Palmer 1990) satisfy the requirement 

of variation and effectively map the same covariance matrix as our dense bar 
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stimulus.  The crucial difference between the two-bar interaction experiments 

and the spike-triggered covariance (STC) method we applied was in the applica-

tion of the principal components analysis (PCA) to this data structure.  PCA 

transformed the map of second-order response dependencies between stimulus 

dimensions (the covariance matrix) into a small number of linear axes that de-

fined a subspace in the high-dimensional space of all stimuli.   Standard models 

of complex cells predict that the neuron’s response will reside within a two-

dimensional subspace whereas our results suggest that this space is much higher 

dimensional.   

 

Mapping the interaction of excitation and suppression: 

 Portions of chapters 3 and 4 examine the combination of excitatory and 

suppressive influences in V1.  The counterphase family experiments presented 

in chapter 4 were designed to test the suppressive signal in strongly directionally 

selective neurons; below I compare the responses to this grating stimulus with 

the results obtained by the spike-triggered characterization of neurons with simi-

lar direction selectivities (chapter 3).    

 Our spike-triggered analysis identified the linear subspace of the higher 

dimensional stimulus space that impact a neuron’s response, including both ex-

citatory and suppressive influences.  The joint distribution of raw stimuli across 

the excitatory and suppressive pooled signals is shown in figure 5-1 (top left) for 

the example cell from figure 3-4.  For this cell, the excitatory and suppressive 



 136

signals were sampled with a nearly continuous distribution that peaked at mod-

erate values of excitation and suppression.  In contrast, the counterphase family 

stimulus was selected from 55 discrete combinations of a preferred-drifting and 

null-drifting grating (the same 11 ratios of preferred and null contrast at 5 con-

trasts; figure 5-1 top right).   

 In both chapters 3 and 4, I presented parametric models that were well fit 

to responses to the two stimulus classes.  The model that best accounted for the 

spike-triggered data included a saturating excitatory function as well as subtrac-

tive and divisive suppressive terms.  The model fit to the counterphase data in-

cluded a rectified difference between excitation and suppression, self-

normalization, and a baseline inversely proportional to contrast.  We can use 

these models to fill-in the unsampled excitatory-suppressive combinations for 

each experiment; those surfaces are shown in figure 5-1 (second row).  The axes 

for the spike-triggered covariance map are normalized and extended to include 

the prediction of the response to a 100% contrast sinusoidal grating at the same 

spatial and temporal frequencies used in the counterphase experiment (axes la-

beled Ec and Sc).   

 Despite the fact that the experiments were performed on the same neu-

ron, the two surfaces are quite different.  The surface determined for the spike-

triggered characterization contains gentle response contours that radiate from the 

x-axis and change in slope (figure 5-1, second row, left).  Along the surface de-

termined for the counterphase family, contours of constant firing rate are
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Figure 5-1:  Comparison of the results from the spike-triggered characterization 
and the counterphase family experiments.  Top row:  Distribution of data col-
lected in each experiment across the excitatory and suppressive axes.  In the 
spike-triggered characterization, sampling density is shown proportional to in-
tensity for a range of outputs of the excitatory and suppressive pools (left).  In 
the counterphase experiments, discretely sampled preferred and null grating 
combinations are indicated by the dots (right).  Second row:  Firing rate as a 
function of the output the excitation and suppression determined by parametric 
models fit to each data set (see chapters 3 and 4 for details).  The axes for the 
spike-triggered surface (labeled Ec and Sc) are normalized such that 1 corre-
sponds to the predicted firing rate to a full contrast sinusoidal grating with the 
same parameters used in the counterphase experiments (E output 3.2; S output 
1.8).  Equally spaced contours of constant firing rate are indicated in red.  Third 
row:  the two surfaces sampled at the points used in the counterphase family ex-
periments (top right).  Bottom row:  Horizontal slices across increasing excita-
tion at constant levels of suppression. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 139

 

 

 

 

 

 



 140

 
Figure 5-2:  Comparison of the spike-triggered and counterphase family ex-
periments II.  a) Pooled excitatory (green) and suppressive (red) frequency spec-
tra as a weighted-sum of the amplitude spectra for the set of filters revealed by 
STC for each class.  The spatial and temporal frequency selected for the coun-
terphase family experiments are shown for the preferred grating (yellow) and the 
null grating (white).  b) Firing rate as a function of the output of the strongest 
excitatory filter (the projection of the filter and a stimulus) revealed for this cell 
by spike-triggered covariance.   Instantiations of the binary bar stimulus that oc-
curred at three points along this axis are shown.   The strongest (non-zero) re-
gions of the filter are highlighted as are the same regions of the bar stimuli for 
comparison.  c) Response plotted as a function of contrast for an otherwise op-
timized drifting sinusoidal grating.  Standard error bars are shown.  Also shown 
are stimuli taken from three points along the contrast axis for comparison with b.   
The prediction of the response to the same contrasts by the spike-triggered 
model is shown in grey.  d)  A post-stimulus time histogram of the same neu-
ron’s response to 320 msec of a full contrast, optimized drifting sinusoidal grat-
ing to illustrate the onset transient.   The first 40 msec have been removed to ad-
just for the latency of the cell. 
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clustered about a steeply sloped firing rate precipice that follows a constant ratio 

of excitation and suppression (figure 5-1, second row, right).  For a closer look 

atthese responses, figure 5-1 (third row) shows the response surfaces sampled at 

the points used in the counterphase experiment (top row, right) plotted in the  

same manner as the data were presented in chapter 4 (firing rate as a function of 

the ratio between excitation and suppression).  The data taken from the counter-

phase family experiment show the characteristic behaviors reported in chapter 4, 

including a point at which all the curves cross, steeply sloping functions that fan 

about this point, and saturation at high and low values of excitation and suppres-

sion.  The data taken from the spike-triggered surface fail to cross at a single 

point and the functions are much shallower.  Figure 5-1 (bottom row) shows 

slices of increasing excitation taken at different values of constant suppression, 

similar to figure 3-8.  Again, the slices taken from the counterphase experiment 

are steeper and saturate more than those for the spike-triggered characterization.  

Note that these differences are not due to differences between the models fit to 

the two data sets, rather they reflect differences in the response properties of this 

neuron to the two stimuli (data not shown).   

 Why does the neuron respond so differently to the two stimulus sets? 

One difference between the two experiments is related to the nature of the exci-

tatory and suppressive stimuli that were used in the characterization.  Figure 5-

2a compares the frequency spectra of the stimuli used in each experiment.  

Shown are the pooled frequency spectra for the excitatory and suppressive filters 
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in the spike-triggered characterization (green and red, respectively, taken from 

figure 3-4).  The two signals cover a similar range of spatial and temporal fre-

quencies but are tuned for opposite directions of motion.  Also shown are the 

spatial and temporal frequencies of the gratings used in the counterphase family 

experiment performed on the same cell (preferred drifting grating: yellow; null  

drifting grating: white).  The excitatory and suppressive frequencies chosen for 

the counterphase experiment were in fact deemed excitatory and suppressive by 

the spike-triggered characterization, although the location of the null-drifting 

grating at the edge of the pooled suppressive spectra may suggest that a more 

effective suppressive stimulus could have been chosen.  Some models of con-

trast adaptation predict stronger adaptation to concentrated versus diffuse spatio-

temporal excitatory energy (Carandini et al 2002), but the dramatic differences 

in the slope and saturation of these surfaces are unlikely to be explained solely 

by this effect.   

 More likely, the differences arise from the different means of manipulat-

ing excitability in the two experiments. To illustrate this difference, figure 5-2b 

shows firing rate as a function of the output of the strongest excitatory filter re-

vealed by spike-triggered covariance.  Below, the spatiotemporal structure of the 

filter is shown along with instantiations of the bar stimulus at three points along 

this axis. The subregion of the filter that is most relevant in determining its re-

sponse is highlighted, as are the same regions of the bar stimuli for comparison.  

Stimuli that most resembled the filter produced the highest firing rates from the 
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neuron (right); stimuli that bore no resemblance to the filter produced the lowest 

responses from the cell (left).  (In actuality, the full model of the neuron con-

tained seven other excitatory filters and seven suppressive filters; the response to 

a stimulus depended on the output of all 15 filters).  For comparison, the tradi-

tional sine-grating contrast response function for the neuron is shown in figure 

5-2c (black) and stimuli from three points along this axis are indicated.  Com-

parison of a 100% contrast grating stimulus with the highlighted region of the  

rightmost stimulus in 5-2b reveals that they are quite similar.  However, com-

parison of the 0% contrast stimulus (figure 2c, left) with the bar stimulus bearing 

no resemblance to the excitatory filter (figure 5-2b, left) highlights the differ-

ence between these two experiments.  In the counterphase experiment, excitation 

was titrated by manipulating the contrast of the stimulus; in the bar experiments, 

the excitation was manipulated (through random selection of stimuli) by intro-

ducing ineffective spatiotemporal structure while holding the stimulus intensity 

constant. Although the stimuli can be quite different in nature (e.g. in contrast), 

the model assumed by the spike-triggered characterization assigns the same fir-

ing rate to stimuli that produce the same output from the excitatory pool. Thus a 

50% contrast stimulus with maximal spatiotemporal similarity with the pooled 

filters is assigned the same firing rate as a 100% contrast stimulus with half-the 

spatiotemporal similarity. 

 The contrast response function predicted by the full STC model is shown 

in figure 5-2c in gray.  The cell is much more sensitive to low contrast gratings 
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than the spike-triggered model predicts, suggestive of a difference in the contrast 

adaptation state during the grating versus bar characterization.  The difference in 

gain states may be attributed to masking, a well documented phenomenon in V1 

neurons (Dean et al 1981, Morrone et al 1982).  Masking refers to the ability of 

a non-excitatory stimulus (such as an orthogonal grating or spatiotemporal noise 

stimulus) to reduce the response to a simultaneously presented excitatory stimu-

lus.  Masking stimuli have been shown to have a divisive effect on a V1 neu-

ron’s response (Carandini & Heeger 1994, Heeger 1992).  In the spike-triggered 

characterization, the titration of excitability through introduction of “noise” may 

similarly act as a mask to the neuron and reduce the response relative to an 

equivalent sinusoidal grating at low contrasts. 

 The responses of the neuron to highly excitatory instantiations of the bar 

stimulus were approximately two-fold larger than the responses to a high con-

trast, optimized sinusoidal grating (figure 5-2c).   This may be attributed to the 

time course over which the two stimuli are characterized.  The response to sinu-

soidal gratings represents the average response over a 320 msec presentation 

whereas the spike-triggered characterization was performed by presenting a new 

stimulus every 10 msec.  Figure 5-2d shows a PSTH of the response to 320 msec 

of a preferred direction drifting grating.  This neuron does respond with a large 

onset transient for 30 msec that is then reduced approximately two-fold and 

maintained for the remainder of the stimulus presentation.  The spike-triggered 

model is likely to be more reflective of the onset transient as compared to the 
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steady state response.  Potentially, some of the differences in the responses to 

the grating and bar stimuli can be ascribed to differences in the interaction be-

tween excitation and suppression during transient versus steady-state responses. 

 To summarize, the differences in the firing rate surfaces during the 

spike-triggered versus counterphase family characterizations are probably pri-

marily described by differences in the gain states of the neuron during the two 

characterizations. During the spike-triggered characterization, the non-excitatory 

noise stimuli act as a mask, thus reducing the responses to preferred stimuli.  

Because the motivation of the spike-triggered analysis is in part to construct 

generalized models that can predict the responses to any stimulus, these differ-

ences highlight the need to incorporate a contrast gain adjustment into the func-

tional models of these cells.  Contrast gain control effects are known to act at 

many different time scales, making this a challenging undertaking.  Differences 

in the results may also arise from the different time epochs analyzed in the two 

experiments.  To the degree to which this is true, the stochastic stimulus better 

resembles the operating regime of the neuron during naturalistic viewing condi-

tions. 

5.2  Computation in area MT 

 Two computations are commonly thought to occur in MT: 1) sharpening 

of direction selectivity via a motion-opponent process, and 2) computation of the 
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direction of a moving pattern as the intersection-of-constraints of the pattern 

components.  In this thesis I present evidence that motion opponency cannot act 

globally across the MT receptive field, implying that the suppressive (motion 

opponent) signal is combined and rectified before reaching the soma of MT neu-

rons.  Similarly, the pattern computation appears to require the co-localization of 

motion signals.  In their experiments, Majaj et al (Soc for Neurosci Abstracts, 

1999) collected a pattern-direction tuning curve by varying the direction of two 

gratings presented 120 degrees apart (a plaid stimulus).  “Component” cells re-

sponded to each of the components of the plaid, resulting in bimodal direction 

tuning curves.  “Pattern” cells responded only to the intersection of constraints 

of the two gratings together, resulting in unimodal tuning curves.  In pattern 

cells, placement of the second grating in a non-localized portion of the receptive 

field produced “component” behavior, suggesting that the pattern computation 

requires co-localization of the two motion signals.   

 The requirement of spatial co-localization for both the motion-opponent 

and pattern computation is striking.  However, multiple lines of evidence sug-

gest that this similarity should not be taken as evidence of the same physiologi-

cal locus.  First, pattern selectivity is found in an extremely small subpopulation 

of V1 neurons, if at all (Blakemore 1990, Movshon et al 1985); the antridromi-

cally activated V1 projecting MT neurons identified by Movshon and Newsome 

(1996) were component, not pattern selective.  In contrast, motion opponency is 

found in strongly directional V1 neurons, consistent with the subpopulation of 
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cells that projection to MT.  Second, the lack of feedforward inhibitory projec-

tions from V1 to MT requires a subpopulation of inhibitory interneurons with 

receptive fields the size of V1 neurons to explain a local motion opponent com-

putation in MT.  No such neurons have ever been recorded.  However, local 

combination of excitatory signals for the pattern computation could hypotheti-

cally occur via spatially specific projections onto the dendrites of MT neurons.  

Alternatively, the pattern computation may require that the two excitatory sig-

nals are preprocessed by the same V1 neurons even if the computation is not 

completely carried out there  (e.g. local normalization or masking of the two 

signals in V1).   

 Despite the physiological heterogeneity of cortex, different cortical areas 

are remarkably similar anatomically.  Thus it seems possible that cortical areas 

instantiate their computations according to a generic formulation.  Based upon 

their modeling efforts in V1 and MT, Heeger et al (1996) proposed a potential 

computational framework for cortical processing.  In their model, neurons in a 

given area implement a three-stage computation: 1) linear combination of input 

signals; 2) divisive normalization by the pooled signal of neighboring neurons; 

and  3) spike-generation.  In their model of V1, direction tuning is conferred 

through 1) linear combination of appropriately arranged spatiotemporal inputs to 

produce space-time oriented receptive fields; followed by 2) an untuned divisive 

signal that results in contrast-invariant tuning.  In MT, motion opponency and 

the pattern computation are instantiated in their model by 1) convergence of V1 
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excitatory inputs with different direction preferences to confer pattern selectivity 

and inhibitory input from neurons with the opposite direction preferences; and 

2) divisive normalization by an untuned signal to confer contrast-invariant tun-

ing (Simoncelli and Heeger, 1998).  The results I present here suggest modifica-

tions to the MT model that have implications for this generalized cortical com-

putational scheme.  First, motion opponency likely occurs in V1, not MT.  How-

ever, a linear combination of excitatory inputs is still required for the pattern 

computation in MT.  Second, the saturation of MT responses cannot be ex-

plained by an untuned divisive normalization signal, but rather are transformed 

through a sigmoidal nonlinearity that is better described as self- (or directionally 

tuned) normalization.  The utility of self-normalization is unclear as it results in 

reducing the directionality of a cell at high contrasts.  Regardless, these results 

suggest that the normalization stage of the general computational framework 

should be reconsidered. 

5.3 Feature representation and computation: past and future 
 

Sensory processing begins by deconstructing the physical world into the most 

basic components.  From this rudimentary representation, the brain “recon-

structs” an amazingly sophisticated understanding of the world around us.  One 

can seek to understand the brain at many different levels, ranging from proteins 

and their DNA sequences; to cognition.  Retinal physiologists of the 1960s in-
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troduced the ideal of understanding neural processing in terms of the computa-

tional operations performed at each stage.  For the last four decades, visual neu-

roscientists interested in description at this level have been refining the retinal 

models first proposed by those pioneers and applying extensions of their tech-

niques to successive stages of the visual pathway.  V1 simple cells were first 

described in 1962 and their line-weighting functions first mapped in 1978 (see 

the Introduction for references).  In 1980, Gabor models were suggested as the 

functional description of simple cell spatial profiles and in 1985 these models 

were extended to describe direction tuning.  Complex cells were first described 

in 1962 and their subunits first mapped in 1978.  Functional models of complex 

cells (e.g. the Energy model) were first proposed for these cells in the mid-

1980s.  My work (2004) fits into this context by proposing a unified, multi-

subunit functional model to describe both simple and complex cells in V1.  In 

MT, pattern selectivity was first described in 1985 and a model explaining this 

nonlinear computation proposed in 1998.  Thus far, no attempts at mapping and 

testing functional models of individual MT neurons have been made.  In sum-

mary, we have reasonable functional models of the computation performed in 

the retina, LGN, V1, and the beginnings of such models in MT (although re-

finements to these descriptions are certainly required before we achieve the goal 

of constructing functional models that can quantitatively predict the response to 

any stimulus).   



 150

 Few would argue that we have made any substantial progress toward un-

derstanding the computations underlying the perception of objects beyond V1. 

Why has the description of these neurons (e.g. V4, IT) proven to be such a diffi-

cult problem?  If one knows the input to a cell, arriving at a description of the 

input-output relationship of that cell should be relatively straightforward.  The 

problem, as I see it, is two-fold.  The extreme selectivity of neurons in visual 

areas V4 and IT suggests that their computations are highly nonlinear and 

nonlinearities are difficult to describe systematically.  In addition, our mapping 

techniques (e.g. spike-triggered characterizations) are designed to describe neu-

rons in terms of a linear process performed directly on the stimulus and an in-

stantaneous nonlinearity.  As we ascend the processing pathway, one can envi-

sion that single-stage linear-nonlinear models become increasingly inadequate.  

Thus our efforts must be focused on designing nonlinear systems techniques that 

characterize multi-stage computation.  Sophisticated nonlinear systems analysis 

techniques such as spike-triggered covariance, coupled with techniques that al-

low us to probe the input-output relationship of multi-stage computations, may 

be the key to understanding the neural representation of our visual world. 
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Appendix: Physiological methods 
 
 
We recorded from isolated single units in MT and primary visual cortex (V1) of 

adult macaque monkeys (Macaca fascicularis and Macaca Nemestrina).   

Animals were premedicated with atropine sulfate (0.05 mg/kg) and di-

azepam (1.5 mg/kg) 30 minutes before the induction of anesthesia with 10.0 

mg/kg ketamine.  During surgery, anesthesia was maintained with 3% 

isoflourane in a O2/CO2 (98%-2%) mixture.   We placed cannaulae in the 

saphenous veins of both hindlimbs and a implanted a trachea tube.  The animal 

was then mounted in a stereotaxic apparatus and the gas anesthesia discontinued.  

Anesthesia was maintained with continuous infusion of 4-16 µg/kg/hr of sufen-

tinil citrate mixed in a lactated ringer’s solution and 2.5% dextrose throughout 

the experiment.   

We performed a craniotomy and durotomy over the region of interest 

and placed an agar filled chamber over the region to protect the cortical surface 

and stabilize the region.  V1 was targeted ~7mm posterior to the lunate and 

~12.5 mm lateral from the midline.  MT was targeted by a 20 degree from hori-

zontal penetration at the same location.  Along this trajectory the electrode 

passed through visual areas V1, V2, and V3, followed by a 5-15 mm stretch of 

white matter, and finally MT.  Initial confirmation of MT was made through 

physiological properties including receptive field size and eccentricity, strong 

directional selectivity, and robust responses to moving dots and gratings. In both 
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MT and V1, cells had receptive fields that ranged from 1-20 degrees eccentric-

ity. 

During experiments, the animal was artificially respired and body tem-

perature was maintained with a heating pad.  Vital signs (heart rate, lung pres-

sure, EEG, ECG, body temperature, and end-tidal CO2) were monitored con-

tinuously. The paralytic norcuron was administered intravenously at a dose of 

0.15 ug/kg/hr mixed in a lactated ringer’s solution and 2.5% dextrose to prevent 

involuntary slow drifts of the eyes.  Total fluid intake was maintained at ap-

proximately 4-8 mg/kg/hr.  Gas permeable contact lenses were used to protect 

the corneas throughout the experiment. Animals received daily injections of  the 

antibiotic Bicillin and the anti-inflammatory agent dexamethasone.  Experiments 

lasted 4-5 days.  At the end of the experiment, animals were sacrificed with an 

overdose of Nembutal and perfused with 4% paraformaldehyde.  Confirmation 

of recording sites was made through histological identification of electrolytic 

lesions. All experiments were performed in compliance with the National Insti-

tutes of Heath Guide for the Care and Use of Laboratory Animals and within the 

guidelines of the New York University Animal Welfare Committee.   

We adjusted the focus of the display through supplementary glass lenses 

chosen initially to bring retinal capillaries in focus with an othalmoscope.  Lens 

strength was confirmed by maximizing the spatial resolution of neuronal re-

sponses.   
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Single unit activity was recorded using platinum-tungsten microelec-

trodes (Thomas Recordings, Giessen, Germany).  Signals were amplified, band-

pass filtered, and fed into a time-amplitude window discriminator.  Spike arrival 

times and stimulus synchronization pulses were stored with a resolution of 0.25 

msec. 
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