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Abstract

Selection of an optimal estimator typically relies on either supervised training samples (pairs of
measurements and their associated true values), or a prior probability model for the true values.
Here, we consider the problem of obtaining a least-squares estimator given a measurement pro-
cess with known statistics (i.e., a likelihood function), and a set of unsupervised measurements,
each arising from a corresponding true value drawn randomly from an unknown distribution. We
develop a general expression for a nonparametric empirical Bayes least squares (NEBLS) esti-
mator, that expresses the optimal least-squares estimator in terms of the measurement density,
with no explicit reference to the unknown (prior) density. We study the conditions under which
such estimators exist, and derive specific forms for a variety of different measurement processes.
We further show that each of these NEBLS estimators may be used to express the mean squared
estimation error as an expectation over the measurement density alone, thus generalizing Stein’s
unbiased risk estimator (SURE) which provides such an expression for the additive Gaussian
noise case. This error expression may then be optimized over noisy measurement samples,
in the absence of supervised training data, yielding a generalized SURE-optimized parametric
least squares (SURE2PLS) estimator. In the special case of a linear parameterization (i.e., a sum
of nonlinear kernel functions), the objective function is quadratic, and we derive an incremen-
tal form for learning this estimator from data. We also show that combining the NEBLS form
with its corresponding generalized SURE expression produces a generalization of the “score
matching” procedure for parametric density estimation. Finally, we have implemented several
examples of such estimators, and we show that their performance is comparable to their optimal
Bayesian or supervised regression counterparts for moderate to large amounts of data.

Keywords: least squares estimation, Bayesian estimation, nonparametric empirical Bayes least squares,
generalized SURE parametric least squares, SUREshrink, score matching, prior-free estimation, unsuper-
vised regression



1 Introduction

The problem of estimating signals based on partial, corrupted measurements arises whenever a machine or
biological organism interacts with an environment that it observes through sensors. Optimal estimation has a
long history, documented in the published literature of a variety of communities: statistics, signal processing,
sensory perception, motor control, and machine learning, just to name a few. The two most commonly used
methods of obtaining an optimal estimator are (1) Bayesian inference, in which the estimator is chosen to
minimize the expected error over a posterior distribution, obtained by combining a prior distribution with a
model of the measurement process; and (2) supervised regression, in which the estimator is selected from
a parametric family by minimizing the error over a training set containing pairs of corrupted measurements
and their correct values. Here, we consider the problem of obtaining a least-squares (also known as minimum
mean squared error) estimator, in the absence of either supervised training examples or a prior model.
Specifically, we assume a known measurement process (i.e., the probability distribution of measurements
conditioned on true values), and we assume that we have access to a large set of measurement samples, each
arising from a corresponding true value drawn from an unknown signal distribution. The goal, then, is to
obtain a least-squares estimator given these two ingredients.

The statistics literature describes a framework for handling this situation, generally known as Empirical
Bayes estimation, in which the estimator is learned from observed (noisy) samples. More specifically, in
the parametric Empirical Bayes approach, one typically assumes a parametric form for the density of the
clean signal, and then learns the parameters of this density from the noisy observations. This is usually
achieved by maximizing likelihood or matching moments (Morris, 1983; Casella, 1985; Berger, 1985), both
of which are inconsistent with our goal of minimizing mean squared estimation error. In addition, if one
assumes a parametric form for the density of the clean signal which can not give a good fit to the true
distribution, performance is likely to suffer. For the case of Poisson observations, Robbins introduced a
nonparametric Empirical Bayesian Least Squares (NEBLS) estimator that is expressed directly in terms
of the measurement density, without explicit reference to the prior (Robbins, 1956). This remarkable result
was subsequently extended to cases of additive Gaussian noise (Miyasawa, 1961), and to general exponential
measurements (Maritz and Lwin, 1989), where it was referred to as a simple empirical Bayes estimator.

Here, we develop a general expression for this type of NEBLS estimator, written in terms of a linear func-
tional of the density of noisy measurements. The NEBLS estimators previously developed for Poisson,
Gaussian, and exponential measurement processes are each special cases of this general form. We provide
a complete characterization of observation models for which such an estimator exists, develop a method-
ology for obtaining the estimators in these cases, and derive specific solutions for a variety of corruption
processes, including the general additive case and various scale mixtures. We also show that any of these
NEBLS estimators can be used to derive an expression for the mean squared error (MSE) of an arbitrary
estimator that is written as an expectation over the measurement density (again, without reference to the
prior). These expressions provide a generalization of Stein’s Unbiased Risk Estimate (SURE), which cor-
responds to the special case of additive Gaussian noise (Stein, 1981)), and analogous expressions that have
been developed for the cases of continuous and discrete exponential families (Berger, 1980; Hwang, 1982).
In addition to unifying and generalizing these previous examples, our derivation ties them directly to the
seemingly unrelated NEBLS methodology.

In practice, approximating the reformulated MSE with a sample average allows one to optimize a paramet-
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ric estimator based entirely on a set of corrupted measurements, without the need for the corresponding true
values that would be used for regression. This has been done with SURE (Donoho and Johnstone, 1995;
Pesquet and Leporini, 1997; Benazza-Benyahia and Pesquet, 2005; Luisier et al., 2006; Raphan and Simon-
celli, 2007b; Blu and Luisier, 2007; Raphan and Simoncelli, 2008; Chaux et al., 2008), and recently with
the analogous exponential case (Eldar, 2009)). We refer to this as a generalized SURE-optimized parametric
least squares estimator (since the generalized SURE estimate is used to obtain the parameters of the least
squares estimator, we use the acronym gSURE2PLS, with mnemonic pronunciation “generalized sure to
please”). For the special case of an estimator parameterized as a linear combination of nonlinear kernel
functions, we develop an incremental algorithm that simultaneously optimizes and applies the estimator to
a stream of incoming data samples. We also show that the NEBLS solution may be combined with the
generalized SURE expression to yield an objective function for fitting a parametric density to observed data,
which provides a generalization of the recently developed “score matching” procedure (Hyvärinen, 2005,
2008). Finally, we compare the empirical convergence of several example gSURE2PLS estimators with
that of their Bayesian counterparts. Preliminary versions of this work1 have been presented in (Raphan and
Simoncelli, 2007b; Raphan, 2007; Raphan and Simoncelli, 2009).

2 Introductory example: Additive Gaussian noise

We begin by illustrating the two forms of estimator for the scalar case of additive Gaussian noise (the vector
case is derived in Sec. 6.1). Suppose random variable Y represents a noisy observation of an underlying
random variable, X . It is well known that given a particular observation Y = y, the estimate that minimizes
the expected squared error (sometimes called the Bayes least squares estimator) is the conditional mean:

x̂(y) = EX|Y (X|Y = y)

=
∫

xPX|Y (x|y) dx

=
∫

x
PX,Y (x, y)

PY (y)
dx, (1)

where the denominator contains the distribution of the observed data, which we refer to as the measurement
density (sometimes called the prior predictive density). This can be obtained by marginalizing the joint
density, which in turn can be written in terms of the prior on X using Bayes’ Rule:

PY (y) =
∫

PX,Y (x, y) dx =
∫

PY |X(y|x)PX(x) dx. (2)

2.1 Nonparametric empirical Bayes least squares estimator

The NEBLS estimation paradigm, in which the least squares estimator is written entirely in terms of the
measurement density, was introduced by Robbins (1956), and was extended to the case of Gaussian additive
noise by Miyasawa (1961). The derivation for the Gaussian case is relatively simple. First note that the

1In these previous publications, we referred to the generalized NEBLS estimator using the oxymoron “prior-free
Bayesian estimator”, and to the corresponding generalized SURE method as “unsupervised regression”.
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conditional density of the measurement given the true value is

PY |X(y|x) =
1√

2πσ2
e−(y−x)2/2σ2

,

and thus, substituting into Eq. (2),

PY (y) =
∫ 1√

2πσ2
e−(y−x)2/2σ2

PX(x) dx. (3)

Differentiating this with respect to y, and multiplying by σ2 on both sides gives:

σ2 P ′
Y (y) =

∫
(x − y)

1√
2πσ2

e−(y−x)2/2σ2
PX(x) dx

=
∫

(x − y) PX,Y (x, y) dx

=
∫

x PX,Y (x, y) dx − y PY (y).

Finally, dividing through by PY (y), and combining with Eq. (1) gives

x̂(y) = y + σ2 P ′
Y (y)

PY (y)

= y + σ2 d

dy
log PY (y) . (4)

The important feature of the NEBLS estimator is its expression as a direct function of the measurement
density, with no explicit reference to the prior. This means that the estimator can be approximated by
estimating the measurement density from a set of observed samples. The derivation relies only on the
assumptions of squared loss function, and additive Gaussian measurement noise, but is independent of the
prior. We will assume squared loss throughout this article, but in Sec. 3, we describe a NEBLS form for
more general measurement conditions.

We can gain some intuition for the solution by considering an example in which the prior distribution for
x consists of three isolated point masses (delta functions). The measurement density may be obtained by
convolving this prior with a Gaussian (top, Fig. 1). And, according to Eq. (4), the optimal estimator is
obtained by adding the log derivative of the measurement density (bottom, Fig. 1) to the measurement. This
is a form of gradient ascent, in which the estimator “shrinks” the observations toward the local maxima of the
log density. In the vicinity of the most isolated (left) delta function, this shrinkage function is antisymmetric
with a slope of negative one, resulting in essentially perfect recovery of the true value of x. Note that
this optimal shrinkage is accomplished in a single step, unlike methods such as the mean-shift algorithm
(Comaniciu and Meer, 2002), which uses iterative gradient ascent on the logarithm of a density to perform
nonparametric clustering.

2.2 Dual formulation: SURE-optimized parametric least squares estimation

Next, as an alternative to the BLS estimator, consider the parametric regression formulation of the optimal
estimation problem. Given a family of estimators, fθ, parameterized by vector θ, we wish to select the one
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Fig. 1: Illustration of the NEBLS estimator for a one-dimensional value with additive Gaussian noise. Top: Measure-
ment density, PY (y), arising from a signal with prior consisting of three point masses (indicated by upward arrows)
corrupted by additive Gaussian noise. Bottom: Derivative of the log measurement density, which (when added to the
measurement), gives the NEBLS estimator (see Eq. (4)).

that minimizes the expected squared error:

θ̂ = arg min
θ

EX,Y

(
(fθ(Y ) − X)2

)
,

where the subscripts on the expectation indicate that it is taken over the joint density of measurements and
correct values. In practice, the optimal parameters are obtained by approximating the expectation with a
sum over clean/noisy pairs of data, {xk, yk}:

θ̂ = arg min
θ

1
N

N∑
k=1

(
fθ(yk) − xk

)2
. (5)

Although this regression expression is written in terms of a supervised training set (i.e., one that includes the
true values, xk), the NEBLS formula of Eq. (4) may be used to derive an expression for the mean squared
error that relies only on the noisy measurements, yk. To see this, we rewrite the parametric estimator as
fθ(y) = y + gθ(y), and expand the mean squared error:

EX,Y

(
(fθ(Y ) − X)2

)
= EX,Y

(
(Y + gθ(Y ) − X)2

)
= EX,Y

(
g2
θ(Y )

)
+ 2EX,Y

(
gθ(Y ) · (Y − X)

)
+ EX,Y

(
(Y − X)2

)
= EY

(
g2
θ(Y )

)
+ 2EX,Y

(
gθ(Y ) · (Y − X)

)
+ σ2. (6)

The middle term can be written as an expectation over Y alone, by substituting the NEBLS estimator from
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Eq. (4), and then integrating by parts:

EX,Y

(
gθ(Y ) · (Y − X)

)
= EY

(
gθ(Y ) · (Y − EX|Y (X|Y ))

)
= EY

(
gθ(Y ) · (Y − Y − σ2 P ′

Y (Y )
PY (Y )

)
)

= −σ2 EY

(
gθ(Y ) · P ′

Y (Y )
PY (Y )

)
= −σ2

∫ (
gθ(y) · P ′

Y (y)
PY (y)

)
PY (y) dy

= −σ2
∫

gθ(y) · P ′
Y (y) dy

= σ2
∫

g′θ(y) · PY (y) dy

= σ2 EY

(
g′θ(Y )

)
,

where we have assumed that the term PY (y)gθ(y)|∞−∞ that arises when integrating by parts is zero (i.e., as
y goes to ±∞, we assume PY (y) dies off faster than gθ(y) grows).

Finally, substituting this back into Eq. (6) gives an expression for estimation error:

EX,Y

((
X − fθ(Y )

)2
)

= EY

(
g2
θ(Y )

)
+ 2σ2EY

(
g′θ(Y )

)
+ σ2

= EY

(
g2
θ(Y ) + 2σ2g′θ(Y ) + σ2

)
. (7)

This remarkable equation expresses the mean squared error over the joint distribution of values and mea-
surements as an expected value over the measurements alone. It is known as Stein’s unbiased risk estimator
(SURE), after Charles Stein, who derived it2 and used it as a means of comparing the quality of different
estimators (Stein, 1981). In Sec. 4, we derive a much more general form of this expression that does not
assume additive Gaussian noise.

In practice, SURE can be approximated as an average over an unsupervised set of noisy measurements, and
this approximation can then be minimized over the parameters, θ, to select an estimator:

θ̂ = arg min
θ

1
N

N∑
k=1

(
g2
θ(yk) + 2σ2g′θ(yk)

)
, (8)

where we’ve dropped the last term (σ2) because it does not depend on the parameter vector, θ. Note that
unlike the supervised regression form of Eq. (5), this optimization does not rely on access to true signal
values, {xk}. We refer to the function associated with the optimized parameter, gθ̂(y), as a SURE-optimized
parametric least squares (SURE2PLS) estimator. This type of estimator was first developed for removal
of additive Gaussian noise by Donoho and Johnstone (1995), who used it to estimate an optimal threshold

2Note that Stein derived the expression directly, without reference to Miyasawa’s NEBLS estimator. In addition,
Stein formulated the problem in a “frequentist” context where X is a fixed (nonrandom) but unknown parameter,
and his result is expressed in terms of conditional expectations over Y |X . This may be readily obtained from our
formulation by assuming a degenerate prior (Dirac delta) with mass at this fixed but unknown value, and replacing all
expectations over {X,Y } or Y with conditional expectations over Y |X . Conversely, Stein’s formulation in terms of
conditional densities may be easily converted into our result by taking expectations over X .
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shrinkage function (the resulting estimator is named SUREshrink). These results have been generalized to
other shrinkage estimators (Benazza-Benyahia and Pesquet, 2005; Chaux et al., 2008), as well as linear
families of estimators (Pesquet and Leporini, 1997; Luisier et al., 2006; Raphan and Simoncelli, 2007b; Blu
and Luisier, 2007; Raphan and Simoncelli, 2008), which we discuss in Sec. 5.

Intuitively, the objective function in Eq. (8) favors functions g(·) that have both a small squared magnitude
and a large negative derivative in locations where the measurements, yk, are concentrated. As such, a good
estimator will “shrink” the data toward regions of high probability, as can be seen in the optimal solution
shown in Fig. 1. Note also that the noise parameter σ2 acts as a weighting factor on the derivative term,
effectively controlling the smoothness of the solution.

2.3 Combining NEBLS with SURE yields the Score Matching density estimator

The SURE2PLS solution developed in the previous section can be applied to any parametric estimator. Con-
sider a specific estimator that is derived by starting with a parametric form for the prior, P (φ)

X (x). Combining
this with the likelihood (using Eq. (3), which specifies a convolution of the Gaussian noise density with the
prior) generates a parametric form for the measurement density, P

(φ)
Y (y). And given this, the expression of

Eq. (4) gives the BLS estimator associated with this prior: gφ(y) = σ2 d
dy log P

(φ)
Y (y). Finally, substituting

this estimator into Eq. (8) and eliminating common factors of σ yields an objective function for the density
parameters φ given samples {yk}:

φ̂ = arg min
φ

1
N

N∑
k=1

[(
d

dy
log P

(φ)
Y (yk)

)2

+ 2
d2

dy2
log P

(φ)
Y (yk)

]
. (9)

This objective function allows one to choose density parameters that are optimal for solving the least-squares
estimation problem. By comparison, most parametric empirical Bayes procedures select parameters for
the prior density by optimizing some other criterion (e.g., maximizing likelihood of the data, or matching
moments) (Casella, 1985), which are inconsistent with the estimation goal.3

Outside of the estimation context, Eq. (9) provides an objective function that can be used for estimating
the parameters of the density P

(φ)
Y (y) from samples. This general methodology, dubbed score matching,

was originally proposed by Hyvärinen (2005), who developed it by noting that differentiating the log of a
density eliminates the normalization constant (known in physics as the “partition function”). This constant
is generally a complicated function of the parameters, and thus an obstacle to solving the density estimation
problem. In a subsequent publication (Hyvärinen, 2008), Hyvärinen showed a relationship of score match-
ing to SURE, by assuming the density to be estimated is the prior (i.e., the density of the clean signal), and
taking the limit as the variance of the Gaussian noise goes to zero. Here (and previously, in (Raphan and
Simoncelli, 2007b)), we have interpreted score-matching as a means of estimating the density of the noisy
measurements, with the objective function expressing the MSE achieved by an estimator that is optimal for
removing finite-variance Gaussian noise when the measurements are drawn from P

(φ)
Y (y). Notice that in

this context, although σ2 does not appear in the objective function of Eq. (9), it provides a means of con-
trolling the smoothness of the parametric density family, P

(φ)
Y (y), by Eq. (3). Of course, just as maximum

likelihood (ML) has been used to estimate parametric densities outside the context in which it is optimal

3In particular, maximizing likelihood minimizes the Kullback-Leibler divergence between the true density and the
parametric density (Wasserman, 2004).
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(i.e., compression), the score matching methodology has been used in contexts for which squared estima-
tion error is not relevant, and with parametric families that cannot have arisen from an additive Gaussian
noise process.

3 General formulation: NEBLS estimator

We now develop a generalized form for the NEBLS estimator of Eq. (4). Suppose we make a vector obser-
vation, y, that is a corrupted version of an unknown vector x (these need not have the same dimensionality).
The BLS estimate is again the conditional expectation of the posterior density, which we can express using
Bayes’ rule as4

x̂(y) =
∫

x PX|Y (x|y) dx

=
∫

x PY |X(y|x)PX(x) dx

PY (y)
. (10)

Now define linear operator A to perform an inner product with the likelihood function

A{f}(y) ≡
∫

PY |X(y|x) f(x) dx,

and rewrite the measurement density in terms of this operator:

PY (y) =
∫

PY |X(y|x)PX(x) dx

= A{PX}(y). (11)

Similarly, the numerator of the BLS estimator (Eq. (10)) may be rewritten as a composition of linear trans-
formations applied to PX(x):

N(y) =
∫

PY |X(y|x)x PX(x) dx

= (A ◦ X){PX}(y), (12)

where operator X is defined as
X{f}(x) ≡ xf(x).

Note that Eq. (11) implies that PY always lies in the range of A. Assuming for the moment that A is
invertible, we can define A−1, an operator that inverts the observation process, recovering PX from PY .
The numerator can then be written as:

N(y) = (A ◦ X ◦ A−1){PY }(y)

= L{PY }(y). (13)

with linear operator L ≡ A ◦ X ◦ A−1. In general, this operator maps a scalar-valued function of a vector,
PY (y), to a vector-valued function. In the discrete scalar case, PY (y) and N(y) are each vectors, the

4The derivations throughout this article are written assuming continuous variables, but they hold for discrete vari-
ables as well, for which the integrals must be replaced by sums, functions by vectors, and functionals by matrices.
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argument y selects a particular index, A is a matrix containing PY |X , X is a diagonal matrix containing
values of x, and ◦ is simply matrix multiplication. Combining all of these, we arrive at a general NEBLS
form of the estimator:

x̂(y) =
L{PY }(y)

PY (y)
. (14)

That is, the BLS estimator may be computed by applying a linear operator to the measurement density,
and dividing this by the measurement density. This linear operator is determined solely by the observation
process (as specified by the density PY |X ), and thus the estimator does not require any knowledge of or
assumption about the prior PX .

The derivation given above may seem like sleight of hand, given that we assumed that the prior could
be recovered exactly from the measurement density using A−1. But in Sec. 6.2, we show that while the
operator A−1 may be ill-conditioned (e.g., a deconvolution in our introductory example of Sec. 2), it is
often the case that the composite operator L is more stable (e.g., a derivative in the introductory example).
More surprisingly, even when A is strictly non-invertible, it may still be possible to find an operator L that
generates a NEBLS estimator. In Sec. 6 and Appendix B, we use Eq. (14) to derive NEBLS estimators for
specific observation models, including those that have appeared in previous literature.

The NEBLS expression of Eq. (14) may be used to rewrite other expectations over X in terms of expectations
over Y . For example, if we wish to calculate EX|Y {Xn|Y = y}, then Eq. (13) would be replaced by
(A ◦ Xn ◦ A−1){PY } = (A ◦ X ◦ A−1)n{PY } = Ln{PY }.5 Exploiting the linearity of the conditional
expectation, we may extend this to any polynomial function, g(x) =

∑
ckx

k:

EX|Y (g(X)|Y = y) ≈ EX|Y

(∑
k

ckX
k
∣∣∣Y = y

)

=
∑

k ckLk{PY }(y)
PY (y)

=
g(L){PY }(y)

PY (y)
. (15)

And finally, consider the problem of finding the BLS estimator of X given Z where

Z = r(Y ),

with r an invertible, differentiable, transformation. Using the known properties of change of variables for
densities, we can write PY (Y ) = JrPZ(r(Y )), where Jr is the Jacobian of the transformation r(·). From
this, we obtain

EX|Z (X|Z = z) = EX|Y
(
X|Y = r−1(z)

)
=

L{PY }(r−1(z))
PY (r−1(z))

=
L
{
Jr(PZ ◦ r)

}
(r−1(z))

JrPZ(z)
. (16)

5It is easiest to imagine this in the scalar case, but the formula is also valid for the vector case, where n becomes a
multi-index.
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4 Dual formulation: SURE2PLS estimation

As in the scalar Gaussian case, the NEBLS estimator may be used to develop an expression for the mean
squared error that does not depend explicitly on the prior, and this may be used to select an optimal estimator
from a parametric family. This form is particularly useful in cases where it proves difficult to develop a stable
nonparametric approximation of the ratio in Eq. (14) (Carlin and Louis, 2009).

Consider an estimator fθ(Y ) parameterized by vector θ, and expand the mean squared error as:

EX,Y

(
|fθ(Y ) − X|2

)
= EX,Y

(
|fθ(Y )|2 − 2fθ(Y ) · X + |X|2

)
. (17)

Using the NEBLS estimator of Eq. (14), the second term of the expectation may be written as

EX,Y (fθ(Y ) · X) = EY

(
fθ(Y ) · EX|Y (X|Y )

)
= EY

(
fθ(Y ) · L{PY }(Y )

PY (Y )

)
=

∫
fθ(y) · L{PY }(y)

PY (y)
PY (y) dy

=
∫

fθ(y) · L{PY }(y) dy (18a)

=
∫

L∗{fθ}(y) · PY (y) dy (18b)

= EY

(
L∗{fθ}(Y )

)
, (18c)

where L∗ is the dual operator of L, defined by the equality of lines (18a) and (18b). In general, L∗ maps a
vector-valued function of y into a scalar-valued function of y. In the discrete scalar case, L∗ is simply the
matrix transpose of L. Substituting this for the second term of Eq. (17), and dropping the last term (since it
does not depend on θ), gives a prior-free expression for the optimal parameter vector:

θ̂ = arg min
θ

EX,Y

(
|fθ(Y ) − X|2

)
= arg min

θ
EY

(
|fθ(Y )|2 − 2L∗{fθ}(Y )

)
. (19)

This generalized SURE (gSURE) form includes as special cases those formulations that have appeared in
previous literature6 (see introduction, and Table 1, for specific citations). Our approach thus serves to unify
and generalize these results, and to show that they can be derived from the corresponding NEBLS estimators.
Conversely, it is relatively straightforward to show that the estimator of Eq. (14) can be derived from the
gSURE expression of Eq. (19) (see (Raphan, 2007) for a proof).

In practice, we can solve for the optimal θ by minimizing the sample mean of this quantity:

θ̂ = arg min
θ

1
N

N∑
k=1

{
|fθ(yk)|2 − 2L∗{fθ}(yk)

}
. (20)

6As in the Gaussian (SURE) case, these previous results were described in a frequentist setting in which X is
fixed but unknown, and are written as expectations over Y |X , but they are equivalent to our results (see footnote 2).
In practice, there is no difference between assuming the clean data are i.i.d. samples from a prior distribution, or
assuming they are fixed and unknown values that are to be estimated individually from their corresponding Y values.
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where {yk} is a set of observed data. This optimization does not require any knowledge of (or samples
drawn from) the prior PX , and so we think of it as the unsupervised counterpart of the standard (supervised)
regression solution of Eq. (5). When trained on insufficient data, this estimator can still exhibit errors
analogous to overfitting errors seen in supervised training. This is because the sample mean in Eq. (20) is
only asymptotically equal to the MSE. As with supervised regression, cross-validation or other resampling
methods can be used to limit the dimensionality or complexity of the parameterization so that it is appropriate
for the available data.

The resulting generalized SURE-optimized parametric least squares (gSURE2PLS) estimator, fθ̂, may be
applied to the same data set that is used to optimize θ̂. This may seem odd when compared to supervised
regression, for which such a statement makes no sense (since the supervised training set already includes
the correct answers). But in the unsupervised context, each newly acquired measurement can be used for
both estimation and learning, and it would be wasteful not to take advantage of this fact. In cases where one
also has access to some supervised data {xn, yn|n ∈ S}, in addition to unsupervised data {yn|n ∈ U}, the
corresponding objective functions may be combined additively (since they both represent squared errors) to
obtain a semi-supervised solution:

θ̂ = arg min
θ

∑
k∈S

|fθ(yk) − xk|2 +
∑
k∈U

{
|fθ(yk)|2 − 2L∗{fθ}(yk)

}
= arg min

θ

∑
k∈S∪U

|fθ(yk)|2 − 2
∑
k∈S

xkfθ(yk) − 2
∑
k∈U

L∗{fθ}(yk),

where we’ve again discarded a term that does not depend on θ. Again, the gSURE2PLS methodology allows
the estimator to be initialized with some supervised training data, but then to continue to adapt its estimator
while performing the estimation task.

The operator L∗ extracts that information from a function on Y that is relevant for estimating X , and may
be used in more general settings than the one considered here. For example, the derivation in Eq. (18c) can
be generalized, using the result in Eq. (15), to give

EX,Y (f(X)g(Y )) = EY (f(L∗){g}(Y )) ,

for arbitrary polynomials f and g (and hence functions that are well-approximated by polynomials). And
this may be further generalized to any joint polynomial, which can be written as a sum of pairwise products
of polynomials in each variable. As a particular example, this means that we can recover any statistic of X

(e.g., any moment of the prior) through an expectation over Y :

EX (f(X)) = EY

(
f(L∗){1}(Y )

)
, (21)

where 1 indicates a function whose value is (or vector whose components are) always one.

Finally, for a parametric prior density, the NEBLS estimator of Eq. (14) may be substituted into the gSURE
objective function of Eq. (20) to obtain a generalized form of the score matching density estimator of Eq. (9).
Specifically, a parametric density P

(φ)
Y may be fit to data {yk} by solving

φ̂ = arg min
φ

1
N

N∑
k=1

∣∣∣∣∣L{P
(φ)
Y }

P
(φ)
Y

(yk)

∣∣∣∣∣
2

− 2L∗
{

L{P (φ)
Y }

P
(φ)
Y

}
(yk)

 . (22)

Recall that the operator L is determined by the observation process that governs the relationship between
the true signal and the measurements in the original estimation problem. When used in this parametric
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density estimation context, different choices of operator will lead to different density estimators, in which
the density is selected from a family “smoothed” by the measurement process underlying L. In all cases, the
density estimation problem can be solved without computing the normalization factor, which is eliminated
in the quotient L{P (φ)

Y }/P
(φ)
Y .

As a specific example, assume the observations are positive integers, n, sampled from a mixture of Poisson
densities, P (φ)

Y (n), where the rate variable X is distributed according to a parametric prior density, P (φ)
X (x).

Using the form of L for Poisson observations (see Sec. 6.1), we obtain an estimator for parameter φ from
data {nk}:

φ̂ = arg min
φ

1
N

∑
k


(

(nk + 1)P (φ)
Y (nk + 1)

P
(φ)
Y (nk)

)2

− 2

(
(nk)2P

(φ)
Y (nk)

P
(φ)
Y (nk − 1)

) .

5 Incremental gSURE2PLS optimization for kernel estimators

The gSURE2PLS methodology introduced in Sec. 4 requires us to minimize an expression that is quadratic
in the estimation function. This makes it particularly appealing for use with estimators that are linear in
their parameters, and several authors have exploited this in developing estimators for the additive Gaussian
noise case (Pesquet and Leporini, 1997; Luisier et al., 2006; Raphan and Simoncelli, 2007b; Blu and Luisier,
2007; Raphan and Simoncelli, 2008). Here, we show that this advantage holds for the general case, and we
use it to develop an incremental algorithm for optimizing the estimator.

Consider a scalar estimator that is formed as a weighted sum of fixed nonlinear kernel functions:

fθ(y) =
∑
j

θj hj(y) = θT h(y),

where h(y) is a vector with components containing the kernel functions, hj(y). Substituting this into
Eq. (20), and using the linearity of the operator L∗ gives a gSURE expression for unsupervised parame-
ter optimization from n samples:

θ̂n = arg min
θ

1
n

{
θT

(
n∑

k=1

h(yk)h(yk)T

)
θ − 2θT

n∑
k=1

L∗{h}(yk)

}
, (23)

where L∗{h}(y) is a vector whose jth component is L∗{hj}(y). The quadratic form of the objective
function allows us to write the solution as a familiar closed-form expression:

θ̂n = C−1
n mn, (24)

where we define

Cn ≡
n∑

k=1

h(yk)h(yk)T (25a)

mn ≡
n∑

k=1

L∗{h}(yk). (25b)
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yn

xn

θ̂n

x̂n

L∗{h}(yn)

h(yn)

outer
prod.

matrix
inv.

∆t

∆t

+

mn

C−1
n

Fig. 2: Circuit diagram for an incremental gSURE2PLS kernel estimator, as specified by Eqs. (24) and (26). The
quantities mn and Cn must be accumulated and stored internally. The gray box encloses the portion of the diagram
in which C−1

n is computed, and may be replaced by a circuit that directly accumulates the inverse matrix, Sn = C−1
n

(see Appendix A). The entire diagram can also be formulated in terms of the parameter vector, θ̂n, in place of the
vector mn (also shown in Appendix A). If supervised data (i.e., clean values xn) are available for some n, they may
beincorporated by flipping the switch to activate the dashed-line portion of the circuit (effectively replacing the right
hand side of Eq. (18c) by the left hand side).

Note that the quantity mn is (n times) an n-sample estimate of EY (L∗{h}(Y )), which by Eq. (18c) pro-
vides an unsupervised estimate of EX,Y (h(Y ) · X).

In addition to allowing a direct solution, the quadratic form of this objective function lends itself to an
incremental algorithm, in which the estimator is both applied to and updated by each measurement as it is
acquired sequentially over time. The advantage of such a formulation is that the estimator can be updated
gradually, based on all previous observations, but without needing to store and access those observations for
each update. To see this, we rewrite the expressions in Eq. (25) as:

Cn = Cn−1 + h(yn) h(yn)T (26a)

mn = mn−1 + L∗{h}(yn). (26b)

These equations, combined with Eq. (24), imply that the optimal parameter vector can be computed by
combining the most recent data observation yn with summary information stored in an accumulated matrix
Cn−1 and vector mn−1. The basic algorithm is illustrated in a flow diagram in Fig. 2. For each iteration
of the algorithm, an incoming data value yn is used to incrementally update the estimator, and the same
estimator is then used to compute the estimate x̂n. The diagram also includes an optional path for supervised
data xn, which may be used to improve the estimator.

This incremental formulation bears some similarity to the well-known Kalman filter (Kalman, 1960), which
provides an incremental estimate of a state variable that is observed through additive Gaussian measure-
ments. But note that the standard Kalman filter is based on a state model with known linear/Gaussian dy-
namics and known Gaussian noise observations, whereas our formulation allows a more general (although
still assumed known) observation model that is applied to independent state values drawn independently
from an unknown prior.

In practice, this algorithm may be made more efficient and flexible in a number of ways. Specifically, the
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equations may be re-written so as to accumulate the inverse covariance matrix, thus avoiding the costly
matrix inversion on each iteration. They may also be written so as to directly accumulate the estimator
parameter vector θ̂, instead of m. Finally, the accumulation of data can be weighted (e.g., exponentially)
over time, so as to emphasize the most recent data and “forget” older data. This is particularly useful in
a case where the distribution of the state variable is changing over time. These variations are described in
Appendix A.

6 Derivation of NEBLS estimators

In Sec. 2, we developed the NEBLS estimator for the scalar case of additive Gaussian noise. The formulation
of Sec. 3 is much more general, and can be used to obtain NEBLS estimators for a variety of other corruption
processes. But in many cases, it is difficult to obtain the operator L directly from the expression in Eq. (13),
because inversion of the operator A is unstable or undefined. This issue is addressed in detail in Sec. 6.2.
But we first note that it is necessary and sufficient that applying L to the measurement density produce the
numerator of the BLS estimator in Eq. (10):

(L ◦ A) {PX} = (A ◦ X) {PX} ,

where we’ve used Eqs. (11) and (12) to express both numerator and measurement density as linear functions
of the prior. This expression must hold for every prior density, PX . From the definition of A, this means
that it is sufficient to find an operator L such that

L{PY |X(y|x)} = xPY |X(y|x). (27)

Cressie (1982) noted previously that if an operator could be found that satisfied this relationship, then it
could be used to define a corresponding NEBLS estimator. Here, we note that in the scalar case, this
equation implies that for each value of x, the conditional density PY |X(y|x) must be an eigenfunction
(or eigenvector, for discrete variables) of operator L, with associated eigenvalue x.7 We have used this
eigenfunction property to obtain a variety of NEBLS estimators by direct inspection of the observation
density PY |X . Table 1 provides a listing of these, including those examples that appear previously in the
nonparametric empirical Bayes and SURE-optimized estimator literatures.

6.1 Derivation of specific NEBLS estimators

In this section, we provide a derivation for a few specific NEBLS estimators and their gSURE2PLS coun-
terparts. Derivations of the remainder of the estimators given in Table 1 are provided in appendix B.

Additive noise: general case. Consider the case in which a vector-valued variable of interest is corrupted
by independent additive noise: Y = X + W , with the noise drawn from some distribution, PW (w). The
conditional density may then be written

PY |X(y|x) = PW (y − x).

7For the vector case, this must be true for each component of x and associated component of the operator.
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Obs. process Obs. density: PY |X(y|x) Numerator of estimator: L{PY }(y)

General discrete A (matrix) (A ◦ X ◦ A−1)PY (y)
A

dd
it

iv
e

General (6.1) PW (y − x)
yPY (y)

−F−1
{

i∇ω ln
(
P̂W (ω)

)
P̂Y (ω)

}
(y)

Gaussian
[Miyasawa61, Stein81*]

exp− 1
2 (y−x−µ)T Λ−1(y−x−µ)√

|2πΛ| (y − µ)PY (y) + Λ∇yPY (y)

Laplacian 1
2αe−|(y−x)/α| yPY (y) + 2α2{P ′

W � PY }(y)

Poisson
∑

λke−λ

k! δ(y − x − ks) yPY (y) − λsPY (y − s)

Cauchy 1
π ( α

(α(y−x))2+1 ) yPY (y) − { 1
2παy � PY }(y)

Uniform

{
1
2a , |y − x| ≤ a

0, |y − x| > a

yPY (y)+ a
∑

k sgn(k)PY (y − ak)
− 1

2

∫
PY (ỹ)sgn(y − ỹ)dỹ

Random # components
PW (y − x), where:

W ∼∑K
k=0 Wk,

Wk i.i.d. (Pc), K ∼ Poiss(λ)
yPY (y) − λ{(yPc) � PY }(y)

Gaussian scale mixture
Y = x +

√
ZU ,

U ∼ N(0,Λ), Z ∼ pZ

yPY (y)+(
F−1

{∫∞
0

zpz(z)e−z 1
2 ωT Λωdz∫∞

0
pz(z)e−z 1

2 ωT Λωdz

}
� Λ∇yPY

)
(y)

D
is

c.
E

xp
.

General (B.1)
[Maritz89, Hwang82*]

h(x)g(n)xn g(n)
g(n+1)PY (n + 1)

Inverse [Hwang82*] h(x)g(n)x−n g(n)
g(n−1)PY (n − 1)

Poisson (6.1)
[Robbins56, Hwang82*]

xne−x

n! (n + 1)PY (n + 1)

C
ts

.E
xp

.

General (B.2)
[Maritz89, Berger80*]

h(x)g(y)eT (y)x g(y)
T ′(y)

d
dy

(
PY (y)
g(y)

)
Inverse [Berger80*] h(x)g(y)eT (y)/x −g(y)

∫∞
y

T ′(ỹ)
g(ỹ) PY (ỹ)dỹ

Laplacian scale mixture 1
xe−

y
x , x, y > 0 Pr{Y > y}

P
ow

er
of

fix
ed

General (B.3) P̂Y |X(ω|x) = [P̂W (ω)]x
(
F−1

{
1

i d
dω ln(P̂W (ω))

}
� (yPY )

)
(y)

Gaussian scale mixture 1√
2πx

e−
y2

2x EY {Y ;Y > y}
Signal-dependent AWGN Y = ax +

√
xW , W ∼ N (0, 1) sgn(a)

(
(eax I{ax<0}) � (yPY )

)
(y)

Multiplicative α-stable Y = x
1
α W , W α-stable

(
F−1

{
i

sgn(ω)|ω|α−1

}
� (yPY )

)
(y)

Multiplicative lognormal (B.4) Y = xeW , W Gaussian e
3
2 σ2

PY (eσ2
y)y

Uniform mixture (B.5)
1
2x , |y| ≤ x

0, |y| > x
|y|PY (y) + Pr{Y > |y|}

Table 1: NEBLS estimation formulas for a variety of observation processes, as listed in the left column. Parenthesized
expressions indicate the section containing the derivation, and brackets contain bibliographic references for operators
L, with * denoting references for the parametric (dual) operator, L∗. Middle column gives the measurement density
(note that variable n replaces y for discrete measurements). Right column gives the numerator of the NEBLS estimator,
x̂(y) = L{PY }(y)

PY (y) . The symbol � indicates convolution, a hat (e.g., P̂W ) indicates a Fourier transform, and F−1 the
inverse Fourier transform.
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We seek an operator which, when applied to this conditional density (viewed as a function of y), will obey

L{PW (y − x)} = x PW (y − x). (28)

Subtracting y PW (y − x) from both sides of Eq. (28) gives:

M {PW (y − x)} = −(y − x)PW (y − x).

where we’ve defined linear operator M {f} (y) ≡ L{PY }(y) − y PY (y). Since this equation must hold
for all x, it implies that M is a linear shift-invariant operator (acting in y), and can be represented as
convolution with a kernel m(y). Taking the Fourier transform of both sides, and using the convolution and
differentiation properties gives:

m̂(ω)P̂W (ω) = −(̂yPW )(ω)

= −i∇ωP̂W (ω),

so that

m̂(ω) = −i
∇ωP̂W (ω)

P̂W (ω)

= −i∇ω ln
(
P̂W (ω)

)
. (29)

Thus, the linear operator is:

L{PY }(y) = y PY (y) + F−1
{
m̂(ω) P̂Y (ω)

}
(y), (30)

where F−1 denotes the inverse Fourier transform. The dual operator (consistent with Eqs. (18a) and (18b)),
is then:

L∗{f}(y) = yT f(y) + F−1
{˜̂m(ω) f̂(ω)

}
(y), (31)

where f is the vector-valued estimator, and tilde indicates the Hermitian transpose (i.e. conjugation and
transpose).

Note that throughout this discussion X and W play symmetric roles. Thus, we can solve for the BLS
estimator if we know the density of either the noise, or the signal. We also note that if the additive noise is
such that the observation process is not invertible (e.g., if the Fourier transform of PW is bandlimited), the
proof of Eq. (30) implies that this operator is still valid if we define

∇ω ln
(
P̂W (ω)

)
= 0,

whenever P̂W (ω) = 0. As examples, we consider the following specific cases of additive noise.

Additive Gaussian noise (vector case). The expression in Eq. (30) can be used to derive the solution for
the full vector-valued generalization of the scalar Gaussian additive noise case given in Sec. 2. The noise
model is:

PW (x) =
1

(2π|Λ|)n/2
e−

1
2
(x−µ)T Λ−1(x−µ),
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with covariance matrix Λ, and mean vector µ. In this case, the Fourier transform of the density is:

P̂W (ω) ∝ e−iωT µ− 1
2
ωT Λω,

which, upon substitution into Eq. (29) yields:

m̂(ω) = [iΛω − µ] .

Substituting into Eq. (30), and then into Eq. (14) yields the NEBLS estimator:

EX|Y (x|Y = y) = y − µ +
Λ∇yPY (y)

PY (y)
= y − µ + Λ∇y ln(PY (y)). (32)

And substituting into Eq. (31) yields the dual operator:

L∗{f}(y) = (y − µ)T f(y) −∇y · (Λf(y)) .

In (Raphan and Simoncelli, 2007a, 2010), we have developed a practical implementation of this NEBLS
estimator, based on a local exponential approximation of the gradient of the log of the measurement density
PY .

Additive Laplacian noise (scalar case). When the additive noise is drawn from a Laplacian distribution,
we have

PW (x) =
1
2α

e−|x/α|,

with Fourier transform

P̂W (ω) =
1

1 + (αω)2
,

which gives
m̂(ω) = 2iα2ωP̂W (ω).

The resulting BLS estimator is then

EX|Y (x|Y = y) = y +
2α2P ′

W (y) � PY (y)
PY (y)

, (33)

where � denotes convolution and

P ′
W (y) = −(

1
α

)sgn(y)PW (y),

with

sgn(y) =


−1, y < 0

0, y = 0

1, y > 0.

This solution uses a convolutional operator, as compared to the differentiation found in the Gaussian case.
There are a variety of noise densities (for example, the family of generalized Gaussian distributions) for
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which the operator will be a convolution with a kernel that depends on the form of the noise. In these cases,
the kernel may be used directly to approximate the convolutional operator from observed samples {yk}:

K � PY (y) ≈ 1
N

N∑
k=1

K(y − yk).

Note that this has the form of a kernel density estimator. While such density estimators are generally
biased (Scott, 1992), in our situation this approximation is unbiased and converges to the desired convolution
K � PY as the number of samples (N ) increases, since

EY

(
1
N

N∑
k=1

K(y − yk)

)
=
∫

K(y − ỹ)PY (ỹ) dỹ.

Of course, the denominator of Eq. (33) still needs to be approximated using some choice of density estimator
(see (Scott, 1992) for a review and further references).

Finally, substituting into Eq. (31) yields the dual operator:

L∗{f}(y) = yf(y) − 2α2(P ′
W � f)(y),

where the � indicates convolution.

Poisson process with random rate. Assume the hidden value, X , is positive and continuous, while the
observation, Y , is discrete and has Poisson distribution with rate X:

PY |X(n|x) =
e−xxn

n!
.

It is easy to verify that

(n + 1)PY |X(n + 1|x) = xPY |X(n|x),

and from this, that

L{PY }(n) = (n + 1)PY (n + 1).

As a result, the NEBLS estimator is

EX|Y (X|Y = n) =
(n + 1)PY (n + 1)

PY (n)
,

which matches the original result derived by Robbins (1956).

Finally, the dual operator, L∗, is readily derived from L by writing Eqs. (18a) and (18b), and replacing the
integral by a sum:

∞∑
n=0

f(n) L{PY }(n) =
∞∑

n=0

f(n) (n + 1)PY (n + 1)

=
∞∑

k=1

f(k − 1) kPY (k)

=
∞∑

k=0

L∗{f}(k) PY (k),

from which we see that L∗{f}(n) = nf(n − 1).
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6.2 Non-invertible Observations

A NEBLS estimator always exists when the observation process, A, is invertible, as can be seen from
Eq. (13). In some cases (including some of those derived in this paper), the estimator exists even when A−1

is not defined. On the other hand, it is clear that some estimation problems do not allow a NEBLS form.
Consider the extreme situation in which the observation contains no information about the quantity to be
estimated: the optimal estimator is simply the mean of the prior density, which must be known in advance
(i.e., it cannot be estimated from the data). In this section, we examine the conditions under which a NEBLS
estimator may be defined for a non-invertible observation process.

We first decompose the prior into a sum of three orthogonal components, PX(x) = P1(x)+P2(x)+P3(x),
with

P1 ∈ N (A)⊥

P2 ∈ N (A) ∩N (A ◦ X)⊥

P3 ∈ N (A) ∩N (A ◦ X),

where N (·) denotes the nullspace of an operator, and ()⊥ the orthogonal complement of a subspace. The
measurement density may now be expressed as

PY = A ◦ PX = A ◦ P1,

since the second and third density components lie in the nullspace of A. And since the first component of
the prior is orthogonal to the nullspace, it may be recovered from the measurement density: P1 = A#{PY },
where ()# indicates the pseudo-inverse. Note that P1 is guaranteed to integrate to one as long as PY does,
since ∫

PY (y) dy =
∫

A{P1}(y) dy

=
∫ ∫

PY |X(y|x)P1(x) dx dy

=
∫ [∫

PY |X(y|x) dy

]
P1(x) dx

=
∫

P1(x) dx.

Substituting the decomposed prior into the numerator of the BLS estimator, as given by Eq. (12), produces

(A ◦ X) {PX} = (A ◦ X) {P1} + (A ◦ X) {P2}
=

(
A ◦ X ◦ A#

)
{PY } + (A ◦ X) {P2}

= L {PY } + (A ◦ X) {P2} , (34)

where we’ve discarded the term containing P3 (since it lies in the nullspace of operator A ◦X, and replaced
the term containing P1 with its NEBLS equivalent. The second term depends on P2, the component of the
prior that cannot be recovered from the observation density but is nevertheless required to construct the BLS
estimator. Thus, we can express the optimal estimator in NEBLS form if and only if the subspace containing
this second component is zero (as is true of all solutions derived in this article). If not, then obtaining an
optimal estimator requires a priori knowledge of that term.
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Consider a simple example. Suppose we randomly select a coin with probability of heads X ∈ [0, 1], where
X has prior density PX . We then perform a binomial experiment, flipping the chosen coin n times and
observing the number of heads, so that

PY |X{k|x} =

(
n

k

)
xk(1 − x)n−k,

where
(n
k

)
= n!

(n−k)!k! . From this, we see that for each number of observed heads, k, the measurement
probability consists of an inner product of PX with a particular polynomial of degree n:

PY (k) = A{PX}(k)

=

(
n

k

)∫ 1

0
PX(x)xk(1 − x)n−k dx. (35)

Since the measurement process maps an arbitrary continuous prior density on the unit interval to a discrete
measurement distribution, a simple dimensionality argument tells us that this process cannot be invertible.
In particular, the measurement distribution contains the inner product of the prior density with n+1 linearly
independent polynomials of degree n, so we can recover the inner product of our prior with any polynomial
of degree n, but not with polynomials of higher degree. Define {qk(x)}∞k=0 as the set of orthogonal polyno-
mials of ascending degree (obtained by starting with monomials and using Gram-Schmidt orthogonalization
over the unit interval). Then N (A)⊥ is the space of polynomials of degree up to n, spanned by {qk(x)}n

k=0,
and N (A) is spanned by {qk(x)}∞k=n+1. From the observation distribution, we may reconstruct P1, the
projection of the prior density onto N (A)⊥, but no component of the prior in N (A).

It might seem natural at this point to simply constrain the prior to be an nth order polynomial in X , which
would allow recovery of the entire prior from the observation distribution. Although this constraint would
certainly allow construction of a NEBLS estimator, it is far more restrictive than necessary. To construct
the BLS estimator, we must be able to calculate its numerator, which is the inner product of the prior with a
polynomial of degree n + 1:

N(k) = (A ◦ X){PX}(k)

=

(
n

k

)∫ 1

0
PX(x)xk+1(1 − x)n−k dx

=

(
n

k

)
EX

(
xk+1(1 − x)n−k

)
.

This does not depend on the prior component P3 which lies in the space spanned by {qk(x)}∞k=n+2, and
therefore, there is no need to place any restrictions on this component of the prior (for example, by assuming
it is equal to zero). The prior component P2, on the other hand, which lies in the space spanned by qn+1(x)
(i.e., P2(x) = cqn+1(x), for some constant c), cannot be recovered from the observation density and is
required to derive the BLS estimator. Thus, the BLS estimator may be written as a sum of a prior-free term,
and a second term,

(A ◦ X){P2}(k) = c

(
n

k

)∫ 1

0
qn+1(x)xk+1(1 − x)n−k dx.

The value of c must be assumed a priori.
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It is worth pointing out that this behavior is tied to the parameterization used. If, for example, we choose
X ∈ [0,∞) with density PX and then perform the Bernoulli experiment with probability of heads X

X+1 then

PY (k) =

(
n

k

)∫
PX(x)

(
x

x + 1

)k ( 1
x + 1

)n−k

dx

=

(
n

k

)∫
PX(x)xk

(
1

x + 1

)n

dx.

In order to obtain the BLS estimator of X we need to know

N(k) =

(
n

k

)∫
PX(x)xk+1

(
1

x + 1

)n

dx.

Now it is easy to see that for k < n

N(k) =
(n
k

)( n
k+1

)PY (k + 1).

Knowing PY (k) gives the inner product of PX , using weighting function ( 1
x+1)n, with all polynomials

up to degree n. However, in order to know N(n), we need to know the inner product of PX with xn+1.
Therefore, in general we cannot solve for N(n). Again, we can get around this by making assumptions
about the missing (but necessary) portion of the prior.

Now consider the problem of developing a gSURE formula when the observation process is non-invertible.
In this case, the constraints on the operator involve an interaction between the observation process and the
family of estimators over which optimization occurs. From Eq. (18c), we see that the gSURE expression for
the MSE relies on finding an operator M∗ satisfying

EY (M∗{fθ}(Y )) = EY (EX (X|Y )fθ(Y )) , ∀fθ ∈ F , (36)

which must hold for any observation density that could have arisen through the measurement process (i.e.,
PY = A ◦ PX , for some density PX ). Decomposing the prior into orthogonal components as in Eq. (34),
allows us to write

EX|Y (X|Y = y) =
L{PY }(y)

PY (y)
+

(A ◦ X){P2}(y)
PY (y)

.

Substituting this back into Eq. (36) and integrating by parts, we see that∫
M∗{fθ}(y)PY (y) dy = EY

(
L{PY }(Y )

PY (Y )
fθ(Y )

)
+ EY

(
(A ◦ X){P2}(Y )

PY (Y )
fθ(Y )

)
=

∫
L∗{fθ}(y)PY (y) dy +

∫
(A ◦ X){P2}(y)fθ(y) dy, ∀fθ ∈ F ,

or, equivalently,∫
(M∗ − L∗){fθ}(y)PY (y) dy =

∫
(A ◦ X){P2}(y)fθ(y) dy, ∀fθ ∈ F , (37)

which must hold for PY = A{PX}, for any prior PX = P1 + P2 + P3. Note that PY does not depend on
the prior component P2 (since it lies in the nullspace of A). Thus, if we vary this component of the prior,
the left side of Eq. (37) will stay the same while the right side will change, which implies that∫

(A ◦ X){P2}(y)fθ(y) dy = 0, ∀fθ ∈ F , ∀P2 ∈ N (A) ∩N (A ◦ X)⊥.
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or equivalently
F ⊆ (A ◦ X){P2}⊥, ∀P2 ∈ N (A) ∩N (A ◦ X)⊥. (38)

This is therefore a necessary condition for the operator M∗ to exist. It is also a sufficient condition, since if
Eq. (38) is satisfied, then the operator M = L will satisfy Eq. (37). Thus, selecting a family of estimators that
satisfies the constraint of Eq. (38) guarantees that the optimal solution may be found through gSURE2PLS
even when a NEBLS solution does not exist. Note that for over-restricted families of estimators, the choice
of operator, M, may not be unique.

In our coin tossing example, since the subspace of functions which are in the nullspace of A but orthogonal
to the nullspace of A ◦ X is spanned by qn+1(x), Eq. (38) requires that

n∑
k=0

(
n

k

)
fθ(k)

∫
qn+1(x)xk+1(1 − x)n−k dx = 0, ∀fθ ∈ F ,

(note that integral over y is replaced by a sum over k). Since, qn+1(x) is orthogonal to polynomials of
degree less that n + 1, this is equivalent to requiring that

n∑
k=0

(
n

k

)
fθ(k)

∫
qn+1(x)xn+1 dx = 0, ∀fθ ∈ F ,

which in turn implies that
n∑

k=0

(
n

k

)
fθ(k) = 0, ∀fθ ∈ F .

7 Empirical convergence properties

In this section, we implement several scalar NEBLS and gSURE2PLS estimators, and examine their con-
vergence properties.

7.1 NEBLS examples

In practice, the NEBLS estimators rely on approximating the density of the observed data, PY (Y ), and the
estimator quality depends critically on the choice of density estimator. If the density estimate converges to
the true measurement density, then the associated NEBLS estimator should approach the BLS estimator as
the number of data samples grows. In Fig. 3, we examine the behavior of three estimators based on Eq. (14).
The first case corresponds to data drawn independently from a binary source, which are observed through a
process in which bits are switched with probability 1

4 . The estimator does not know the binary distribution
of the source (which was a “fair coin” for our simulation), but does know the bit-switching probability. For
this estimator we use the observations to approximate PY using a simple histogram, and then use the matrix
version of the linear operator in Eq. (13) to construct the estimator. We then apply the constructed estimator
to the same observed data to estimate the uncorrupted value associated with each observation. We measure
the behavior of the estimator, x̂(y), using the empirical MSE,

1
N

N∑
k=1

(x̂(yk) − xk)2, (39)
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Fig. 3: Empirical convergence of NEBLS estimator to conventional BLS solution, as a function of number of observed
samples of Y . For each number of observations, each estimator is simulated many times. Black dashed lines show
the improvement of the NEBLS estimator, averaged over simulations, relative to the ML estimator. White line shows
the mean improvement using the conventional BLS solution, EX|Y (X|Y = y), assuming the prior density is known.
Gray regions denote ± one standard deviation. (a) Binary noise (10,000 simulations for each number of samples); (b)
Poisson noise (1,000 simulations); (c) additive Gaussian noise (1,000 simulations).

where {xk} are the underlying true values and {x̂(yk)} are the corresponding estimates based on the obser-
vations. We characterize the behavior of this estimator as a function of the number of data points, N , by
running many Monte Carlo simulations for each N , constructing the estimator using the N observations,
applying the constructed estimator to these observations and recording the empirical MSE. Figure 3 indi-
cates the mean improvement in empirical MSE (measured by the increase in empirical MSE compared with
using the ML estimator, which, in this case, is the identity function) over the Monte Carlo simulations, the
mean improvement using the conventional BLS estimation function, x̂(y) = EX|Y (X|Y = y), assuming
the prior density is known, and the standard deviations of the improvements taken over our simulations.
Note that the large variance in the BLS estimator for small numbers of data points arises from fluctuations
of the empirical MSE.

Figure 3b shows the case of estimating a randomly varying rate parameter that governs an inhomogeneous
Poisson process. The prior on the rate (unknown to the estimator) is exponential. The observed values Y are
the (integer) values drawn from the Poisson process. In this case the histogram of observed data was used
to obtain a naive approximation of PY (n), the appropriate operator from Table 1 was used to convert this
into an estimator, and this estimator was then applied to the observed data. It should be noted that improved
performance for this estimator is expected if we were to use a more sophisticated approximation of the ratio
of densities.

Figure 3c shows similar results for additive Gaussian noise, with the empirical MSE being replaced by the
empirical Signal to Noise Ratio (SNR), which is defined as

SNR(dB) = 20 log10(
∑N

k=1 x2
k∑N

k=1(x̂(yk) − xk)2
). (40)

The signal density is a generalized Gaussian with exponent 0.5, and the noisy SNR is 4.8 dB. In this case,
we compute Eq. (14) using a more sophisticated approximation method, as described in (Raphan and Si-
moncelli, 2007a). We fit a local exponential model similar to that used in (Loader, 1996) to the data in bins,
with binwidth adaptively selected so that the product of the number of points in the bin and the squared bin-
width is constant. This binwidth selection procedure, analogous to adaptive binning procedures developed
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Fig. 4: Example “bump” kernel functions, as used for linear parameterization of “SUREbumps” estimators in Figs. 5(a)
and 5(b). The sum of these functions is the identity (indicated by the dotted black line).

in the density estimation literature (Scott, 1992), provides a reasonable tradeoff between bias and variance,
and converges to the correct answer for any well-behaved density (Raphan and Simoncelli, 2007a). Note
that in this case, convergence is substantially slower than for the binary case, as might be expected given
that we are dealing with a continuous density rather than a single scalar probability. But the variance of the
estimates is quite low, even for relatively small amounts of data.

7.2 gSURE2PLS examples

Now consider the empirical behavior of the gSURE2PLS methodology in the additive Gaussian case, as
developed in Sec. 2.2. The estimator is written as

fθ(y) = y + gθ(y),

and the parameter vector, θ, may be optimized over the observed data using the expression given by Eq. (8).
As in the parameterization of Sec. 5, we write the function gθ(y) as a linear combination of nonlinear kernels

gθ(y) =
∑
j

θjhj(y) = θT h(y), (41)

where h(y) is a vector with jth component equal to kernel function hj(y). We define these kernels as

hj(y) = y cos2
(

1
α

sgn(y) log2 (|y|/σ + 1) − jπ

2

)
,

as illustrated in Fig. 4. Then, as in Sec. 5, substituting this into Eq. (7) yields a quadratic objective function
with optimal solution

θ̂n = C−1
n mn, (42)

where

Cn =
n∑

k=1

h(yk)h(yk)T

mn = −σ2
n∑

k=1

h′(yk).

We apply this estimator to the same data that were used to obtain θ̂n, and measure the empirical SNR.
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Fig. 5: Empirical convergence of gSURE2PLS methods, compared to optimal BLS solution, as a function number
of data observations, for three different parameterized estimators. (a) 3-bump kernel estimator; (b) 15-bump kernel
estimator; (c) Soft thresholding (SUREshrink). (d) Comparisons of gSURE2PLS and supervised regression, for the
15-bump kernel estimator. All simulations use a generalized Gaussian prior (exponent 0.5), and additive Gaussian
noise. Noisy SNR is 4.8 dB.
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For our simulations, we used a generalized Gaussian prior, with exponent 0.5. The noisy SNR was 4.8 dB.
Figure 5 shows the empirical behavior of these “SUREbumps” estimators when using three bumps ( Fig. 5a)
and fifteen bumps (Fig. 5b), illustrating the bias-variance tradeoff inherent in the fixed parameterization.
Three bumps behaves fairly well for small amounts of data, but the asymptotic behavior for large amounts
of data is biased and thus falls short of ideal. Fifteen bumps asymptotes correctly but has very large variance
for small amounts of data (i.e., it is overfitting). A more sophisticated method might use cross validation
or some other resampling method to appropriately set the number of bumps to minimize both these effects.
For comparison purposes, we have included the behavior of SUREshrink (Donoho and Johnstone, 1995), in
which Eq. (7) is used to choose an optimal threshold, θ, for the function

fθ(y) = sgn(y)(|y| − θ)+.

As can be seen, SUREshrink shows significant asymptotic bias although the variance behavior is nearly
ideal.

Figure 5(d) shows a comparison of the gSURE2PLS method to a supervised method, for the 15-bump kernel
estimator (we find that the performance of the gSURE2PLS solution in the 3-bump and soft thresholding
cases is nearly identical to that of the corresponding supervised regression solution). For each number
of samples, N , the supervised method is trained on N pairs of state/measurement data, and then tested
on a separate set of N measurements. Compared with the gSURE2PLS method, we see that the average
performance of the supervised method converges slightly faster, but the variance is slightly worse.

8 Discussion

We have developed two general (and related) reformulations of the least squares estimation problem for the
setting in which one knows the observation process, and has access to corrupted observations of many data
samples. We do not assume knowledge of the prior density, nor do we assume access to samples from the
prior.

The NEBLS form expresses the estimator in terms of a linear operator that depends only on the observation
model. This unifies and generalizes those cases found in the literature (Robbins, 1956; Miyasawa, 1961;
Maritz and Lwin, 1989). We discussed the conditions on measurement densities under which such NEBLS
estimators may be obtained, provided a methodology for deriving them, and used it to derive solutions for
a variety of specific observation situations. These estimators require one to estimate the observation density
from observed data, and this may limit their usefulness, especially in high-dimensional cases. It is worth
noting, however, that the NEBLS form can be employed successfully for the problem of denoising local
blocks of signal or image data (Raphan and Simoncelli, 2010), where it provides an asymptotic correction
of the recently developed “nonlocal means” estimator (Buades et al., 2005).

We also used the NEBLS form to express the MSE as an expectation over the measurement density. This
provides a generalization of SURE and related methods for exponential cases (Stein, 1981; Berger, 1980;
Hwang, 1982), as well as providing a new means of deriving them from their seemingly unrelated NEBLS
counterparts. The generalized risk estimate may then be used to optimize a parametric estimator (dubbed
the gSURE2PLS estimator), as has been done with SURE for the Gaussian noise case (Donoho and John-
stone, 1995; Pesquet and Leporini, 1997; Benazza-Benyahia and Pesquet, 2005; Luisier et al., 2006; Raphan
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and Simoncelli, 2007b; Blu and Luisier, 2007; Raphan and Simoncelli, 2008; Chaux et al., 2008). In cases
where a NEBLS operator does not exist, we’ve shown how a parametric estimator family can be chosen
so that gSURE2PLS is still valid. For any gSURE2PLS estimator that is parameterized as a sum of kernel
functions, the gSURE optimization may be computed in closed form, and this leads naturally to an incre-
mental algorithm in which the estimator is simultaneously refined by and applied to an incoming stream of
measurements. Note that this incremental solution is general, and not limited to the case of additive Gaus-
sian observations. We also showed that the two forms may be combined to yield a new form of parametric
density estimation that is equivalent to score matching when the observation process is additive Gaussian
noise.

Finally, we have implemented several NEBLS and SURE2PLS estimators, and examined their empirical
convergence properties, showing that these estimators can perform as well as their full Bayesian or super-
vised regression counterparts. The implementation of NEBLS estimators must be handled on a case by
case basis, and can be tricky since it requires the estimation of the measurement density from observed
samples. The gSURE2PLS case is generally more straightforward, with success depending primarily on
selection of a parametric family that can provide a good approximation to the optimal estimator, and for
which optimization of the gSURE2PLS objective function is feasible. More generally, one could imagine
adjusting the complexity of the estimator family depending on the amount of data available (for example,
using cross-validation methods), or incorporating prior information about a particular problem to regularize
the solution.

We believe it should be possible to generalize and extend these methods further. For example, we’ve as-
sumed squared error loss throughout, but it is worth considering whether other loss functions might allow
some form of nonparametric empirical Bayes solution. Note that Eq. (15) implies that our formulation is
easily extended to any loss function that can be expressed as MSE in a nonlinearly transformed signal space.
The advantage of the BLS solutions is that they effectively smooth the prior with the likelihood before
integrating, whereas other estimators (such as MAP) will not generally have this property. A recent method-
ology, known as the Discrete Universal Denoiser (DUDe) (Weissman et al., 2005), provides a method for
computing an optimal unsupervised denoiser with arbitrary loss functions. But the algorithm relies on re-
covery of the entire prior from the observed data, and is thus restricted to discrete priors. Our other main
assumption has been that the observation model is fully known, and we have not studied the effect of errors
in this model on the performance of the resulting NEBLS and gSURE2PLS estimators. We believe it may
also be possible to learn the dual operator L∗ satisfying Eq. (18c) from supervised data (e.g., for a scenario
in which the measurement process is unknown but stable, and the statistics of the environment are drifting,
thus precluding the use of supervised regression). Note that in this case, it is only necessary to learn the
operator L∗ in terms of its action on members of the parametric estimator family.

More generally, we think that the framework described here could be relevant for the design and construction
of machines that need to optimize their estimation behavior in an environmentally adaptive way. On the
biological side, Bayesian inference has been used to explain a variety of phenomena in human sensory and
motor behavior, but very little has been said about how these estimators can be implemented, and even less
about how these estimators can be learned without supervision or built-in priors. The estimators discussed
here may offer a promising avenue for resolving these issues.
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A Incremental forms for gSURE2PLS estimators

In Sec. 5, we showed a simple incremental form of gSURE2PLS for an estimator written as a linear combi-
nation of kernel functions. Here, we expand on this, providing a more efficient and more general form.

First, we note that it may be desirable to weight the incremental update rule in Eq. (26):

Cn = anCn−1 + (1 − an)hnhT
n

mn = bnmn−1 + (1 − bn)L∗{h}(yn),

where the weights, an and bn, are scalars in the range (0, 1), and hn is an abbreviation for h(yn). The
weighting can provide numerical stability (so that the stored quantities do not continue to grow indefinitely),
and allow the estimator to adapt to slowly time-varying statistics. A value of n−1

n will equally weight all past
data, while smaller weights will weight recent data more heavily. The choice of weighting allows a compro-
mise between including more data (which reduces the variance of the estimation error) and adapting more
rapidly (which reduces bias). The former depends on the complexity/dimensionality of the parameterization,
and the latter depends on the rate at which the environmental statistics change.

Second, note that the incremental solution as provided in Sec. 5 requires the inversion of a matrix, which
can be expensive, depending on the number of parameters. As is common in the derivation of the Kalman
filter, we can use the Woodbury matrix identity (Hager, 1989) to rewrite the incremental form directly in
terms of the inverse matrix:

C−1
n =

(
anCn−1 + (1 − an)hnhT

n

)−1

= a−1
n C−1

n−1 − a−1
n C−1

n−1hn

(
(1 − an)−1 + hT

na−1
n C−1

n−1hn

)−1
hT

na−1
n C−1

n−1

= a−1
n

[
C−1

n−1 −
(

an

1 − an
+ hT

nvn

)−1

vnvT
n

]
,

where we have defined
vn ≡ C−1

n−1hn.

Note that since hT
nvn is a scalar, computation of this expression does not require matrix inversion. Putting

all of this together, and letting Sn denote C−1
n , the incremental algorithm is defined by the following set of

equations:

vn = Sn−1hn (44a)

Sn = a−1
n

[
Sn−1 −

(
an

1 − an
+ hT

nvn

)−1

vnvT
n

]
(44b)

mn = bnmn−1 + (1 − bn)L∗{h}(yn) (44c)

θ̂n = Snmn (44d)

x̂n = hT
n θ̂n. (44e)

The matrix Sn and the vector mn constitute the stored state variables, and vn, θ̂n, and x̂n are calculated
based on this state and the observed data, yn (or, more specifically, the observed data processed by the
kernels, h(yn) and L∗{h}(yn)).
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Finally, it is also possible to rewrite these equations so that the parameter vector, θ̂n, takes the role of the
stored state variable, in place of mn. Specifically, we can substitute Eq. (44c) into Eq. (44d) to obtain:

θ̂n = bnSnmn−1 + (1 − bn)SnL∗{h}(yn)

=
bn

an

[
Sn−1 −

(
an

1 − an
+ hT

nvn

)−1

vnvT
n

]
mn−1 + (1 − bn)SnL∗{h}(yn)

=
bn

an

[
θ̂n−1 −

(
an

1 − an
+ hT

nvn

)−1

vnhT
n θ̂n−1

]
+ (1 − bn)SnL∗{h}(yn).

B Derivations of additional NEBLS estimators

In this section, we provide derivations of the remainder of the NEBLS estimators and their dual operators,
as listed in Table 1 (derivations for general additive noise and Poisson noise are in Sec. 6.1).

B.1 Discrete exponential families

First, consider the discrete exponential family of the form

PY |X(n|x) = h(x)g(n)xn,

where h is chosen to normalize the density (i.e., so that summing over n gives one). This case includes the
Poisson case discussed in the previous section, amongst others. Noting that

PY |X(n + 1|x) = h(x)g(n + 1)xn+1,

we see by inspection that an operator satisfying the eigenfunction relationship of Eq. (27) is

L{PY }(n) =
g(n)

g(n + 1)
PY (n + 1),

which tells us that

EX|Y (X|Y = n) =
g(n)

g(n + 1)
· PY (n + 1)

PY (n)
,

as found in (Maritz and Lwin, 1989). The dual form is readily obtained from Eqs. (18a) and (18b) :

L∗{f}(n) =
g(n − 1)

g(n)
f(n − 1).

Also, we note from Eq. (15) that the appropriate linear operator for EX|Y
(

1
X |Y = n

)
will be

L{PY }(n) =
g(n)

g(n − 1)
PY (n − 1).

This means that if PY |X is instead parameterized as

PY |X(n|x) = h(x)g(n)x−n,

29



we will have

EX|Y (X|Y = n) =
g(n)

g(n − 1)
· PY (n − 1)

PY (n)
.

The dual form is then

L∗{f}(n) =
g(n + 1)

g(n)
f(n + 1).

B.2 Continuous exponential families

Now consider the continuous exponential family of the form

PY |X(y|x) = h(x)g(y)eT (y)x,

where we assume that T is differentiable. By inspection, we obtain

L{PY |X(y|x)} =
g(y)
T ′(y)

d

dy

{
PY |X(y|x)

g(y)

}
= xPY |X(y|x)

which gives the NEBLS estimator

EX|Y (X|Y = y) =
g(y) d

dy{PY (y)
g(y) }

T ′(y)PY (y)

=
1

T ′(y)
d

dy
ln(

PY (y)
g(y)

).

The dual operator is

L∗{f}(y) =
−1
g(y)

· d

dy

(
f(y)g(y)

T ′(y)

)
.

As before, we may also deduce that if the likelihood is instead parameterized as

PY |X(y|x) = h(x)g(y)eT (y)/x,

we then have8

L{PY }(y) = −g(y)
∫ ∞

y

T ′(ỹ)
g(ỹ)

PY (ỹ)dỹ,

and so

EX|Y
(

1
X

|Y = y

)
=

−g(y)
∫∞
y

T ′(ỹ)
g(ỹ) PY (ỹ)dỹ

PY (y)
.

The dual operator is then

L∗{f}(y) = −T ′(y)
g(y)

∫ y

0
g(ỹ) f(ỹ) dỹ.

8We are assuming here that y takes on positive values. In some cases y can take on negative, or both negative and
positive values, in which case the limits of integration would have to be changed for the operator L or the dual operator
L∗.
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A particular case is that of a Laplacian scale mixture, for which

PY |X(y|x) =
1
x

e−
y
x ; x, y > 0,

so that

L{PY }(y) = PY {Y > y},
and

EX|Y (X|Y = y) =
PY {Y > y}

PY (y)
.

B.3 Power of Fixed Density

An interesting family of observation processes are those for which

P̂Y |X(ω|x) = [P̂W (ω)]x, (45)

for some density PW . This occurs, for example, when X takes on integer values, and Y is a sum of X i.i.d.
random variables with distribution PW . Taking the derivative of Eq. (45) gives

P̂Y |X
′
(ω|x) = P̂W

′
(ω)x P̂W (ω)x−1

=
P̂W

′
(ω)

P̂W (ω)
x P̂W (ω)x

=
d

dω
ln(P̂W (ω))x P̂Y |X(ω|x).

Rearranging this equality, and using the fact that differentiation in the Fourier domain is multiplication by
an imaginary ramp in the signal domain gives

x P̂Y |X(ω|x) =
1

d
dω ln(P̂W (ω))

P̂Y |X
′
(ω|x)

=
1

i d
dω ln(P̂W (ω))

ŷPY |X(ω|x).

and comparing to the desired eigenfunction relationship of Eq. (27) allows us to define the operator

L{PY }(y) = F−1

{
1

i d
dω ln(P̂W (ω))

ŷPY (ω)

}
(y)

=
(
m � (yPY )

)
(y), (46)

where

m(y) = F−1

{
1

i d
dω ln(P̂W (ω))

}
. (47)

Thus, the linear operation first multiplies PY by y and then convolves with m(y). The corresponding dual
operator must first convolve f(y) with the dual of m(y), and then multiply by y, which we can express in
the Fourier domain as:

L∗{f}(y) = y · F−1{˜̂m(ω) · f̂(ω)}.
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Four special cases are of particular interest. The first occurs when X is a positive variable and Y is a Poisson
random variable with rate X . This corresponds to Eq. (45) with

P̂W (ω) = e(e−iω−1).

Substituting into Eq. (47) gives
m̂(ω) = eiω.

Substituting this into Eq. (46), taking the inverse Fourier transform and substituting into Eq. (10), gives the
estimator

EX|Y (X|Y = n) =
(n + 1)PY (n + 1)

PY (n)
,

consistent with the result derived in Sec. 6.1.

The second example arises when X is a positive random variable and Y is a zero mean Gaussian with
variance X , a case known as the Gaussian Scale Mixture (GSM) (Andrews and Mallows, 1974). In this case
Eq. (45) holds for

P̂W (ω) = e−
1
2
ω2

,

and the operator will be

m̂(ω) =
−1
iω

,

which gives

EX|Y (X|Y = y) =
−(H(y) − 1

2) � (yPY (y))
PY (y)

,

where H is the Heaviside step function. Since yPY (y) is odd this is equal to

EX|Y (X|Y = y) =
−(H(y)) � (yPY (y))

PY (y)

=
− ∫ y

−∞ ỹPY (ỹ)dỹ

PY (y)

=
−EY {Y ; Y < y}

PY (y)
,

where the numerator is now the mean of the density to the left of y and may be approximated in an unbiased
way by the average of data less than y. Note that since EY {Y } = 0, this may also be written as 9

EX|Y (X|Y = y) =
EY {Y ; Y > y}

PY (y)
,

in agreement with our results in Section B.2.

A third special case occurs when Y ∼ N (aX, X). That is, Y is aX corrupted by by zero mean additive
Gaussian noise, with variance equal to X (we can trivially generalize to variance which is linear in X). In
this case Eq. (45) will hold for

P̂W (ω) = e−
1
2
ω2−iaω.

9More generally, it may be the case that more than one operator L agree on the range of A (i.e., they agree on all
possible PY that may arise from a particular process). In this case, the NEBLS estimator may not be unique.
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In this case, the NEBLS operator is

L{PY }(y) =
(
F−1{ 1

a − iω
} � (yPY )

)
(y),

where

F−1{ 1
a − iω

}(y) = sgn(a)eayI{ay<0},

so that

EX|Y (X|Y = y) =

(
(sgn(a)eayI{ay<0}) � (yPY )

)
(y)

PY (y)
.

A fourth special case is when X is a random positive value, W is an independent variable drawn from an
α-stable distribution (Feller, 1970) with Fourier transform

P̂W (ω) = e−
1
α
|ω|α ,

and
Y = X

1
α W.

Generally, if PW is an infinitely divisible distribution and X is an arbitrary positive real number, then the
right side of Eq.(45) will be the Fourier transform of some density, which can be used as the observation
process. In the particular case of the alpha-stable distribution, the NEBLS operator is

L{PY }(y) =
(
F−1{ i

sgn(ω)|ω|α−1
} � (yPY )

)
(y)

So that

EX|Y (X|Y = y) =

(
F−1{ i

sgn(ω)|ω|α−1 } � (yPY )
)

(y)

PY (y)
.

B.4 Multiplicative Lognormal Noise

Now consider the case of multiplicative lognormal noise:

Y = XeW ,

where W is Gaussian noise of variance σ2, and independent of X . In this case, taking logarithms gives

ln(Y ) = ln(X) + W,

yielding an additive Gaussian noise model. From the NEBLS solution for additive Gaussian noise (Eq. (32)),
we have

EX|Z (ln(X)|Z = z) =
(z + σ2Dz){PZ}(z)

PZ(z)
,
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where Z = ln(Y ) and Dz represents the derivative operator with respect to z. However, we wish to find
EX|Y (X|Y ) so we need to use the change of variables formula in Eq. (16). Since X = eln(X), we have

EX|Z (X|Z = z) =
e(z+σ2Dz){PZ}(z)

PZ(z)
.

By the Baker-Campbell-Hausdorff formula (Wilcox, 1967) we have that

e(z+σ2Dz){PZ}(z) = ez+ 1
2
σ2

(eσ2Dz{PZ}(z))

= ez+ 1
2
σ2

PZ(z + σ2),

so that

EX|Z (X|Z = z) =
ez+ 1

2
σ2

PZ(z + σ2)
PZ(z)

.

Next, using the fact that ln(Y ) = Z, we have by the change of variables formula

PZ(ln(y)) = yPY (y),

so that

EX|Y (X|Y = y) =
e

3
2
σ2

PY (eσ2
y)

PY (y)
y.

Note that it would have been difficult to garner this result by simple inspection of the likelihood,

PY |X(y|x) =
1

y
√

2πσ2
e−

1
2σ2 (ln(y/x))2 .

The dual form is
L∗{f}(y) = e−σ2/2y · f(e−σ2

y).

B.5 Mixture of Uniform Noise

Consider the case when our observation is drawn from a uniform density, whose width is controlled by
hidden variable X:

PY |X(y|x) =

{
1
2x , |y| ≤ x

0, |y| > x
,

where x ≥ 0. The density of Y is thus a mixture of uniform densities. We note that the (complement of the)
cumulative distribution is ∫ ∞

|y|
PY |X(ỹ|x)dỹ =

{
1
2x(x − |y|), |y| ≤ x

0, |y| > x

= (x − |y|)PY |X(y|x),

and thus, by inspection, an operator that has PY |X as an eigenfunction may be written

L{PY }(y) =
∫ ∞

|y|
PY (ỹ)dỹ + |y|PY (y),
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giving

EX|Y (X|Y = y) = |y| +
∫∞
|y| PY (ỹ)dỹ

PY (y)

= |y| + Pr{Y > |y|}
PY (y)

= |y| + 1 − Pr{Y ≤ |y|}
PY (y)

.

That is, the estimator adds to the observed value the complement of the cumulative distribution divided by
the measurement density. The dual operator is

L∗{f}(y) =

{
|y|f(y) +

∫ y
−y f(ỹ) dỹ, y ≥ 0,

|y|f(y), y < 0.
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