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Optimal Denoising in Redundant Representations
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Abstract—Image denoising methods are often designed to min-
imize mean-squared error (MSE) within the subbands of a multi-
scale decomposition. However, most high-quality denoising results
have been obtained with overcomplete representations, for which
minimization of MSE in the subband domain does not guarantee
optimal MSE performance in the image domain. We prove that, de-
spite this suboptimality, the expected image-domain MSE resulting
from applying estimators to subbands that are made redundant
through spatial replication of basis functions (e.g., cycle spinning)
is always less than or equal to that resulting from applying the same
estimators to the original nonredundant representation. In addi-
tion, we show that it is possible to further exploit overcompleteness
by jointly optimizing the subband estimators for image-domain
MSE. We develop an extended version of Stein’s unbiased risk es-
timate (SURE) that allows us to perform this optimization adap-
tively, for each observed noisy image. We demonstrate this method-
ology using a new class of estimator formed from linear combina-
tions of localized “bump” functions that are applied either point-
wise or on local neighborhoods of subband coefficients. We show
through simulations that the performance of these estimators ap-
plied to overcomplete subbands and optimized for image-domain
MSE is substantially better than that obtained when they are opti-
mized within each subband. This performance is, in turn, substan-
tially better than that obtained when they are optimized for use on
a nonredundant representation.

Index Terms—Bayesian estimation, cycle spinning, noise re-
moval, overcomplete representation, , restoration, Stein’s unbiased
risk estimator (SURE).

I. INTRODUCTION

I MAGE denoising has undergone dramatic improvement
over the past decade, due to both the development of

linear decompositions that simplify the characteristics of the
signal, and to new estimators that are optimized for those
characteristics. A standard methodology proceeds by linearly
transforming the image, operating on the transform coefficients
with nonlinear estimation functions, and then inverting the
linear transform to obtain the denoised image. Estimation
functions generally take the form of “shrinkage” operators
that are applied independently to each transform coefficient
(e.g., [1]–[8]), or are applied to neighborhoods of coefficients
at adjacent spatial positions and/or from other subbands (e.g.,
[9]–[12]).
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The choice of estimation function is an essential part of the
denoising problem. From a statistical perspective, one may use
a prior probability model for the transform coefficients (either
assumed, or fit to a set of clean training images), and then use
this to derive a Bayes-optimal estimator. Alternatively, one may
directly assume a parametric form for the estimation function,
and select parameters by optimizing performance on a training
set containing pairs of clean images and their noisy counter-
parts (e.g., [13]). As described, these methodologies require ex-
plicit information about clean images, either through samples
or knowledge of the prior distribution, both of which will typ-
ically reflect the statistics of heterogeneous ensembles of im-
ages. However, there are ways of adaptively optimizing the pa-
rameters of the density model for the particular image being de-
noised. For example, an “empirical Bayes” estimator may be
derived from a prior density whose parameters are chosen to
best account for the observed noisy image (typically, by max-
imizing likelihood) [3]. A parametric estimator may also be
adaptively optimized by minimizing Stein’s unbiased risk es-
timate (SURE) [14], which provides an approximation of the
mean squared error (MSE) as a function of the observed noisy
data. Assuming there is enough data to capture the statistics of a
given image, adaptive methods will always perform better than
those optimized for a heterogeneous ensemble of images.

Although it is less well understood, the choice of linear
transform also has an impact on the quality of denoising re-
sults. Multiscale decompositions are a typical choice, and both
empirical Bayes methods [3], [5], [8], and SURE adaptive
methods have been used to optimize scalar [31], [16]–[18],
[22] and joint [15] estimators for application to subbands of
multiscale decompositions. Empirical evidence indicates that
redundant (overcomplete) multiscale representations are more
effective than orthonormal representations [19], [20]. This fact
is somewhat mysterious, since the estimators are generally
optimized for MSE within individual subbands, which (for
a redundant basis) is not the same as the MSE in the image
domain. Recent work provides an interesting explanation for
this phenomenon by interpreting shrinkage in overcomplete
representations as the first iteration of a Basis Pursuit denoising
algorithm [21].

In this paper, we prove that application of denoising func-
tions to subbands made overcomplete through cycle spinning or
elimination of decimation is guaranteed to be no worse in MSE
(and is in practice significantly better) than applying the same
functions in an orthonormal basis. This method of denoising,
however, does not take full advantage of the redundancy, and
further improvements may be obtained by jointly choosing sub-
band denoising functions that optimize MSE in the image do-
main. We provide a method for this image-domain optimization
by extending SURE to approximate the image-domain MSE
that results from applying estimation functions to coefficients

1057-7149/$25.00 © 2008 IEEE



RAPHAN AND SIMONCELLI: OPTIMAL DENOISING IN REDUNDANT REPRESENTATIONS 1343

of a redundant basis. We develop a family of parametric es-
timators based on a superposition of localized “bump” func-
tions, and demonstrate through simulations that optimizing the
image-domain SURE of these estimators applied within undec-
imated wavelet subbands leads to significant performance im-
provements over optimizing the subband-domain SURE of the
same estimators. A preliminary version of this work has been
presented in [22].

II. REDUNDANCY IMPROVES PERFORMANCE

Given a noisy image , we wish to compute an estimate of
the original (clean) image , where the estimator

is selected from a family to minimize the MSE

and indicates the expected value. We may consider to
be fixed but unknown (the so-called “frequentist” perspective),
with the expectation taken over conditioned on . Alterna-
tively, we may consider to be a sample drawn from some
prior probability distribution (the “Bayesian” perspec-
tive). In this case, the expectation is taken jointly over and

, or (equivalently) over conditioned on , and then over
.
A common practice in image denoising is to use estimators

that act on a linearly transformed version of the corrupted image,
. Here, can be a complete or overcomplete linear

transformation (an by matrix, , where is the
dimension of image space), that has a left inverse such
that . In this section, we assume that the trans-
form is a tight frame, for which . This includes or-
thogonal, cycle-spun and undecimated wavelet transforms, as
well as other overcomplete decompositions such as the steer-
able pyramid [23], curvelets [24], or complex dual-tree wavelets
[25].

In this situation, the estimate is computed by transforming
the original signal, applying an estimator in the transform
domain, and then inverse transforming with

The MSE incurred in using this estimator is thus

(1)

where , the transform of the clean image. Note
that in the case when is orthogonal, the transform pre-
serves vector lengths (as does ), and the MSE reduces to

, where the superscripts on are a
reminder that the coefficients were obtained from an orthogonal
transform. In the next sections, we explain why and under
what conditions the performance of a denoising function on an
orthonormal wavelet basis can be improved by adding redun-
dancy to the transform through cycle spinning or elimination
of decimation. For didactic purposes, we will consider cycle
spinning.

A. Scalar Estimators

Consider an estimator composed of scalar functions that
operate pointwise on the transform coefficients. Typically, the
transform coefficients are partitioned into subbands

, corresponding to shifted versions of the same basis
function, all of which can be assumed to have the same marginal
statistical properties. In this case, the same estimator will be
applied to all coefficients within each subband, and the MSE
can be partitioned into a sum of MSEs on each subband. If we
assume an orthogonal transform, we can write the MSE as

(2)

Now consider a cycle-spun decomposition, in which the basis
functions of the original orthonormal representation are repli-
cated at translated positions [19]. Each subband will contain

times as many coefficients as the corresponding subband of
the orthonormal representation. In order to form a tight frame,
each basis function must be divided by a factor of , rela-
tive to those of the orthonormal representation. Thus, if is
the marginal function used to denoise coefficients in the or-
thonormal wavelet representation, the corresponding function
that should be applied in the cycle-spun decomposition is

In addition to the tight frame assumptions, we also assume
that relationship between the noisy and clean coefficients in
each band will be the same (up to a factor of ) in the
cycle-spun representation as in the orthonormal representation.
Specifically, we assume the joint statistics of the rescaled
cycle-spun coefficients, are the same as those
of the orthogonal coefficients, . This allows us to
rewrite (2), in terms of the cycle-spun coefficients

(3)

Combining (2) and (3), we see that the MSE in the orthonormal
case is equal to the total subband-domain MSE in the cycle-spun
case.
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Now it is straightforward to compare the MSE in the or-
thonormal case, as given by (2) or (3), to the image-domain MSE
incurred with cycle-spun denoising, as specified by (1)

where the inequality holds because is an overcomplete tight
frame, and, thus, is a projection operator. That is, the
image-domain MSE for the cycle-spun case is always less than
or equal to that for the cycle-spun case. Note that we have as-
sumed nothing regarding the form of the estimators . We also
assumed very little about the corruption process—only that it
is stationary. The result may be easily extended to undecimated
wavelets, in which the number of coefficients in each band will
be multiplied by a different factor.

The upshot is that, as long as the joint statistics of pairs of
clean and noisy coefficients do not change when going to a re-
dundant basis (as is the case for stationary image and noise sta-
tistics), then the performance of any marginal denoising func-
tion on the redundant basis is guaranteed to be no worse then the
corresponding operations performed on the orthonormal repre-
sentation. In particular, if we choose an optimal estimator to de-
noise each subband of an orthogonal transform, the optimal es-
timator for the subbands of the redundant basis will be the same
(up to rescaling by ), and the performance of the redundant
system will generally be better than that of the orthogonal one.

B. Context Estimators

Thus far, we have been discussing scalar estimation functions.
However, recent literature has demonstrated that substantial
improvements can be achieved with estimators that operate
on the surrounding “context” of multiscale coefficients (e.g.,
[9], [10], [11], [12], [15], [26], [27], [28]). In general, the
surrounding neighborhood can include coefficients within the
same subband, as well as coefficients in other subbands, and the
neighborhoods are generally overlapping (i.e., each coefficient
belongs to more than one neighborhood). For our purposes, we
handle the overlap of neighborhoods by computing an estimate
only for the center coefficient (as in [10]–[12])

(4)

Thus, each coefficient is denoised as a function of its sur-
rounding neighbors. Analogous to the scalar case, we can
prove that, for certain neighborhood types, applying a vector
denoising function to the subbands of a representation made
redundant by spatial replication of orthonormal basis functions
leads to improvement in denoising performance over using the
original orthonormal basis. In an orthonormal basis, the MSE
given by (2) is replaced by

We now want to express this error in terms of the neighbor-
hoods of the redundant representation. In order to do so, we
must ensure that the neighborhoods in both representations have
the same statistics (appropriately scaled). The easiest way to

achieve this is to use the same sampling pattern. In a cycle-spun
representation, we simply draw adjacent neighbors from within
the shifted copies of the original orthonormal decomposition. In
an undecimated wavelet, we must choose neighbors of a coeffi-
cient on a subsampled lattice, with subsampling factor the same
as that used to form the associated orthogonal wavelet subband.
Thus, as in the scalar case, we may express the MSE for the or-
thogonal wavelets in terms of the cycle-spun wavelets

where, analogous to the marginal case

The rest of the proof, and the extension to undecimated wavelets
is completed as in the marginal case.1

III. STEIN’S LEMMA AND OPTIMAL DENOISING

The proofs of the previous section suggest that we can im-
prove the performance of subband estimators that are optimized
separately for each subband by increasing the redundancy of
the subbands. However, this does not tell us how much gain we
can expect. Nor does it imply that increasing redundancy alone
will allow the overall system to obtain the best possible perfor-
mance, as measured by MSE in the image domain. In partic-
ular, it is apparent that jointly optimizing the estimators that are
applied to each subband will always lead to performance that
is as good as, or better than, that obtained with estimators that
are independently optimized. As such, the remainder of this ar-
ticle examines the gains that are attainable through the two per-
formance-enhancing techniques of increasing redundancy, and
joint optimization.

In order to examine performance gains, we need to select a
means of optimizing the estimators. Reconsidering (1), it would
seem that choosing an optimal estimator requires that we know
either the clean image, (the frequentist view), or the density
of the clean image, (the Bayesian view). However, in
1981, Stein derived an alternative expression for the MSE, for
the special case when is derived from by addition of inde-
pendent zero-mean white Gaussian noise with known variance

[14]. Recasting the estimator in a form that is relative to the
identity, , Stein’s expression may be written
as

(5)

where the constant does not depend on the estimator . Thus,
by assuming knowledge of the statistical relationship between

1Note that it is sufficient for the transform domain MSE of the overcomplete
denoiser to be no greater than that for the orthogonal wavelet denoiser. There-
fore, if we use a different sampling lattice, the proof will still hold, as long as the
neighborhoods of the coefficient in the redundant basis can do at least as good
a job of estimating that coefficient.
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and , the MSE may be expressed without explicit reference
to either or . We have recently shown that this concept
may be generalized to several types of non-Gaussian noise, as
well as a variety of nonadditive corruption processes [29].

The expression in the curly braces of (5), known (up to an ad-
ditive constant) as Stein’sunbiased risk estimate (SURE),maybe
evaluated on a single observation to produce an unbiased esti-
mate of the MSE. As a consequence, the optimal estimation func-
tion can be approximated by minimizing the SURE expres-
sion

Although the derivation of this expression is relatively simple, it
leads us to the somewhatcounterintuitive conclusion that the esti-
mator maybeoptimizedwithoutexplicitknowledgeof theclean
signal ,either in the formof trainingdataoraprobabilitymodel.

Further intuition regarding the optimal choice of estimator
can be gained by considering the case when is a scalar oper-
ator, for which the SURE solution reduces to

(6)

where the are simply the components of vector . First, note
that the summations can now be viewed as sample average ap-
proximations of the expectation in (5). With this interpretation,
we see that the optimal function depends only on the marginal
density of the components of , regardless of any dependencies
between them. The first term of the objective function seeks to
select a that has small amplitude at locations of the data points

, and the second term seeks a with large negative derivative
at the data points. Together this means that the optimal denoiser

should “shrink” the observations toward those
locations where the data are most concentrated.

SURE was first applied to image denoising by Donoho and
Johnstone, who used it to determine optimal threshold values
for soft-threshold shrinkage functions applied to orthogonal
wavelet subbands [31]. It has also been used in conjunction
with cycle-spun wavelets [19], alternative pointwise nonlinear
estimators [16], two-component Gaussian mixture models
[17], and for an interscale contextual estimator [15], and, most
recently, to optimize a 2-parameter [18] and a multiparameter
[22] scalar subband estimator in the image domain.

A. SURE for Correlated Gaussian Noise

SURE was developed primarily for the case of uncorrelated
Gaussian noise. However, since we wish to use it to optimize
estimators that will be applied to subbands of redundant trans-
forms, we will need to consider conditions where the noise has
taken on transform-induced correlations. We can derive an ex-
tension of Stein’s expression for MSE in the case of correlated
noise. Specifically, when is derived from by addition of
independent Gaussian noise with covariance

(7)

where indicates the trace of a matrix, is the Ja-
cobian matrix, and the constant does not depend on the choice
of estimator. To derive this result, we first expand the left side
of (7)

(8)

Since the first term matches that of (7), we need only show that

(9)

The result may be proved by explicitly writing the integral ex-
pression for the expectation over Y conditioned on X, and then
integrating by parts

(10)

where . Note that we can obtain the same result
when X and Y are both random variables (the Bayesian case) by
taking the expectation over X.

B. SURE for Transform-Domain Estimators

Stein’s expression may also be easily extended to estima-
tors that operate on a linearly transformed version of the signal.
Analogous to the development in Section II, suppose we have a
family of estimators that are applied
to a transformed version of the noisy signal, . The es-
timate is computed by transforming with , applying , and
then inverse transforming with

(11)

Given the form of this estimator, will be given by
so that

(12)

Inserting this into in (7) gives following expression for the
image-domain MSE:

(13)
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As before, the expression in braces is an unbiased estimate of the
MSE and can be optimized even over a single sample of . For
simplicity, in what follows, we will again assume that the trans-
form is a tight frame . Notice that in this case, the
second term in (13) contains the covariance of the noise in the
transform domain, . In what follows, we will assume
that the additive noise is white (i.e., is a multiple of the iden-
tity matrix), but most of the results also hold for correlated noise.
The in the first term of (13) projects the estimated values
back into the image domain before computing the norm. For an
overcomplete representation, this term allows us to choose the
optimal denoiser in the transform domain that minimizes MSE
in the image domain.

IV. EXAMPLE: SCALAR ESTIMATORS IN OVERCOMPLETE BASES

Suppose now that consists of scalar functions that op-
erate pointwise on (i.e., on each element of) . The unbiased
risk estimator in (13) becomes

where is the th element of (the dot product of the
th and th rows of ). If the transform coefficients are parti-

tioned into subbands, as described in Section II, with the same
estimator applied to all coefficients within a subband, the unbi-
ased risk estimator becomes

(14)

where is the common value of for . For a single
transformed image , this expression provides a crite-
rion for choosing so as to minimize the image-domain
MSE.2

We will compare this with the denoiser resulting from mini-
mizing the SURE expression of (7) independently for each sub-
band. Specifically, assuming again that the are marginal
functions, and given that the marginal variance of the Gaussian
noise in the th subband is , the SURE approximation of
the MSE in the th subband is

(15)

Since the SURE expressions for each of the functions de-
pend only on the coefficients of their associated subband, ,
we may combine them into a single objective function for the
transform-domain MSE

(16)

We can see that this expression for the transform-domain
SURE differs from the image-domain SURE of (14) only in
the -norm expressed by the first term: image-domain SURE
is computed on the values of after projecting back
into the image domain, thus explicitly taking into account
the interactions that occur when the denoised coefficients are

2This result for scalar denoisers and white noise was derived in [18] and [22].

Fig. 1. Linear basis of “bump” functions, � , used to form � ���. Positions of
these functions are adapted to the noise level: Abscissa units are in multiples
of �, the standard deviation of the corresponding Gaussian noise distribution,
indicated by the gray region.

recombined in the image domain. We can, therefore, hope to
obtain significant improvement in MSE by jointly choosing
the to optimize (14). However, recall that SURE in either
domain is an empirical estimate of the MSE, which, while
unbiased, will still suffer from sampling variability that can
lead to suboptimal parameter choices. We will use empirical
studies to test the effects of this variability on the practical
performance of our method.

A. Implementation

In this section, we examine the empirical behavior of image-
domain and subband-domain SURE denoising. Optimization of
the SURE expression in (14) is greatly simplified if the de-
noising functions are drawn from a linear family [13], [15], [18]
[22], [29]. Specifically, linear parameterization leads to a SURE
expression that is quadratic in the parameters and, thus, easily
minimized using standard matrix calculations or gradient-de-
scent methods. We choose a family formed as a linear combina-
tion of functions

(17)

where

(18)

with a smooth localized “bump” function

, and are chosen to map the centers of the second and
last bump to and , respectively. The first bump is
altered to continue as a constant to the left of the peak (see
Fig. 1), providing the denoiser with the capability to eliminate
small amplitude coefficients. This family can generate smooth
shrinkage functions, including linear estimators, as well as
nonlinear “coring” estimators that approximate hard thresh-
olding. In order to restrict the number of parameters that must
be optimized, we limit the representation to four bumps, as
illustrated in Fig. 1.

To test our methodology, we used decompositions based on
a separable Haar basis [30], consisting of local averages and
differences of adjacent local averages. These are the simplest
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Fig. 2. Example shrinkage functions, ����� � � � � � ���, for various
subbands of an undecimated Haar decomposition, as optimized for SURE in
the subband domain (dashed line) and in the image domain (solid line). For
midrange bands (a)–(c), the image-domain estimation functions show more
shrinkage of low amplitude coefficients, with a compensatory amplification of
midrange values. The high frequency band (d) shows more shrinkage. Note
that all functions are equal to the identity for large values, beyond the location
of the last bump.

(and oldest) of all wavelets, and are easily and efficiently im-
plemented. We used the orthonormal basis, as well as an un-
decimated decomposition with periodic boundary extension. All
images were decomposed into five dyadic scales, which means
that the undecimated transform is overcomplete by a factor of
16.

B. Simulated Results

We computed optimal denoisers by optimizing SURE over
the coefficients of the bumps basis, a method which we will refer
to as SUREbumps. For the orthonormal case, we optimize (16),
which is equivalent to (14). For the overcomplete (undecimated)
case, we considered estimators optimized in the subband do-
main using (16) as well as estimators optimized in the image do-
main using (14). Fig. 2 shows a comparison of typical shrinkage
functions that result from image-domain and subband-domain
optimization. Roughly speaking, optimization in the image do-
main produces stronger suppression of small coefficients, along
with preservation (or even boosting) of coefficients of moderate
magnitude. That is, we may view the estimator as performing a
type of sparsification, as suggested in [7] and [21]: lower-ampli-
tude coefficients are suppressed, but medium-amplitude coeffi-
cients are boosted in order to compensate for the loss of signal
energy. The boosting of mid-amplitude coefficients is also con-
sistent with the findings of [13], in which linearly parameterized
marginal shrinkage functions applied to an overcomplete block
DCT representation were optimized for image-domain MSE by
training on an ensemble of clean images.

Fig. 3 shows a comparison of PSNR performance of three
methods, across nine test images [12] and a wide range of noise

Fig. 3. Comparison of denoising results for scalar SUREbumps denoisers.
Each group of lines (indicated by gray regions) shows results for one type
of estimator. Each line within a group indicates improvement in PSNR, as
a function of input PSNR, for one of nine denoised test images [12]. All
results are shown relative to those of SUREbumps applied to undecimated
Haar wavelets, optimized in the subband domain (dotted line). Bottom group:
SUREbumps applied to orthogonal Haar wavelets. Top group: SUREbumps
applied to undecimated Haar wavelets, optimized for image-domain MSE.

levels. Consistent with the proof of Section II, and with em-
pirical results of previous literature, we see that optimizing the
denoiser in the subbands of the undecimated basis leads to sig-
nificant improvement (typically 1.5 dB) over the orthonormal
basis. Optimizing in the image domain leads to additional im-
provement (typically 0.5 dB).

To give some indication of improvement compared to
a well-known result in the literature, we also compared
SUREbumps with SUREshrink [31], which is based on soft
thresholding functions of the form:

Although SUREshrink may be optimized for the image domain
using (14), the resulting multidimensional objective function is
nonconvex, and, thus, it is not feasible to guarantee global opti-
mality of the solution. Thus, we optimize each threshold param-
eter independently by minimizing SURE over subband
using (16), as was done in [19] and [31]. Fig. 4 shows a com-
parison across all test images and noise levels, demonstrating
that SUREbumps optimized in the image domain offers a sub-
stantial improvement over SUREshrink in the transform domain
(typically 0.6 dB).

C. Image-Domain Optimization of Other Redundant
Transforms

Thus far, we have shown examples with orthonormal and un-
decimated wavelet decompositions, which directly reveal the
advantages of introducing redundancy, and of joint optimiza-
tion in the image domain. However, our method for jointly op-
timizing the subband denoising functions is valid for any trans-
form with a left inverse, and in particular for all tight frames. As
such, we have also examined the behavior of SUREbumps when
jointly optimizing estimators applied to a tight frame known as
the “steerable pyramid” [23]. The representation is overcom-
plete by a factor of roughly , where is the number
of orientation bands utilized. In our tests, we used , which
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Fig. 4. Performance of SUREbumps optimized in the image domain, relative
to SUREshrink (soft thresholding) optimized in the subband domain [19]. Both
estimators are applied to coefficients of an undecimated Haar representation.
Each line indicates improvement in PSNR (dB) for one of nine test images [12].

Fig. 5. Performance of SUREbumps estimators on a steerable pyramid decom-
position, with five scales and four oriented subbands at each scale. Lines show
performance of SUREbumps optimized in the image domain, relative to SURE-
bumps optimized in the subband domain.

produces a transform that is overcomplete by a factor of 6.33.
Fig. 5 shows the improvement obtained by using SUREbumps in
the image domain compared with SUREbumps in the subband
domain. Significant improvement is still obtained, although not
quite as much as in the undecimated wavelet case shown in
Fig. 3, perhaps because the degree of overcompleteness is much
less than for the undecimated wavelet representation. Also no-
tice that at high noise levels (low PSNR), the pyramid-domain
method sometimes outperforms the image-domain method. As
mentioned earlier, this can arise from sampling errors in SURE,
which have more of an effect when trying to jointly optimize the
parameters for all the bands, instead of for each band separately.

V. EXAMPLE: LOCAL CONTEXT ESTIMATORS

IN OVERCOMPLETE BASES

As mentioned in Section II, substantial improvements can be
achieved with estimators that operate on neighborhoods of coef-
ficients. We previously defined context estimators in which each
coefficient is denoised as a function of its surrounding neigh-
bors, according to (4). Rewriting this in terms of gives

(19)

SURE can be extended to handle this situation, by taking into
account the fact that coefficients are no longer denoised inde-
pendently.

To simplify notation and computation, we assume that the
neighborhood of each coefficient contains only coefficients
from the same subband. Using our previous notation for the
inner products of the transform basis functions, we can express
the covariance structure of the noise within the subband as

Equation (7) implies that to denoise subband , we should pick
to minimize

(20)

where is a vector that contains the inner product of the basis
vector corresponding to the coefficient in the center of a neigh-
borhood with every basis function in that neighborhood. Anal-
ogous to (16), the single-band expressions may be additively
combined in a single objective function for optimizing the set

in the subband domain

(21)

On the other hand, if we wish to use SURE to denoise in the
image domain, (13) implies we must choose to minimize

(22)

As in the scalar case, the first term takes into account the in-
teractions of the denoising operations when the coefficients are
recombined in the image domain.

A. Implementation

Analogous to the 1-D case, we choose a linear family of es-
timators that operate by shrinking the noisy observation by a
factor that depends on the amplitude of the observation relative
to the noise strength

where is the noise covariance in the subband, and the bump
functions are defined as before by (18), except that the loca-
tions of the first and last bumps are scaled by the square root of
the dimension. An example of the type of shrinkage field that
results from this parameterization is shown for the 2-D case in
Fig. 6. As described in (19), we then use this to denoise the cen-
tral coefficient

To illustrate our theorem, we used spatial neighborhoods of size
3 3 coefficients, located on a subsampled lattice as described
in Section II, and boundaries (including neighborhood calcula-
tions) are handled with periodic extension.
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Fig. 6. Illustration of joint shrinkage function, as a vector field in two dimen-
sions, superimposed on a grayscale image representing the underlying Gaussian
noise density. Each vector shows the change made to an observed (noisy) vector
�. Elliptical contours indicate the maxima of the four bump functions, � . The
set of vectors � that lie along any one of these contours are denoised by multi-
plying by a common scalar shrinkage factor. In practice, only the coefficient at
the center of each neighborhood is multiplied by this factor.

Fig. 7. Comparison of denoising results for vector SUREbumps denoisers. See
caption of Fig. 3.

B. Simulation Results

Fig. 7 shows a performance comparison of the vector bumps
denoiser optimized individually for subband-domain MSE
[using (21)] and optimized jointly for image-domain MSE
[using (22)]. As in the scalar case, and consistent with the
proof of Section II, application of SUREbumps in the over-
complete (undecimated) representation leads to a substantial
improvement over application in the orthonormal representa-
tion (typically, dB), and optimization in the image domain
offers an additional improvement over optimization in the
subband domain (nearly 0.5 dB).

C. Comparison of Vector and Scalar SUREbumps

Thus far, we used a neighborhood structure such that the basis
vectors associated with the elements of a neighborhood are or-
thogonal. In this situation, examination of (22) shows that the
MSE estimate is not much different from that of the marginal
case, in that it does not make use of the derivative of the denoised
coefficient with respect to its neighbors. Consistent with this, we
find experimentally that a denoiser based on this neighborhood
structure does not show much performance gain compared to a
scalar denoiser. For these reasons, we have also implemented a
vector denoiser based on neighborhood containing a 3 3 set of
nearest neighbors on the undecimated lattice. Fig. 8 shows the

Fig. 8. Comparison of denoising results for vector SUREbumps (solid lines)
relative to those for scalar SUREbumps. Both estimators are applied to an un-
decimated Haar decomposition and optimized in the image domain. This vector
denoiser uses 3� 3 neighborhoods of adjacent coefficients in the undecimated
decomposition.

Fig. 9. Performance of vector SUREbumps optimized in the image domain,
relative to BLS-GSM estimator [12] (dotted line). Both estimators are applied
to coefficients of an undecimated Haar representation. Each line indicates im-
provement in PSNR (dB) for one of nine test images [12].

improvement of this nearest-neighbor denoiser over the scalar
denoiser, which is typically 0.1–0.5 dB.

D. Comparison to BLS-GSM Context Denoiser

To give some indication of improvement relative to another
result in the literature, we also applied the BLS-GSM estimator
of [12] to the undecimated Haar decomposition using the same
neighborhood structure. Note that the originally published
BLS-GSM results use a steerable pyramid decomposition,
reflected boundary handling, different neighborhood structure
near the boundary, and include coarser-scale parents as part of
the neighborhood. By enforcing the same decomposition and
neighborhood structure, we are providing a direct comparison
of the two statistical procedures: BLS-GSM, which is based on
an explicit prior model, and SUREbumps, which is prior-free
and based on an explicitly parameterized denoising function.
Fig. 9 shows the improvement in PSNR of using the vector
SUREbumps estimator optimized in the image domain, relative
to using the BLS-GSM estimator. Despite the simplistic func-
tional form of the estimator used in SUREbumps, performance
is typically better than that of BLS-GSM. Table I provides
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Fig. 10. Denoising results. (a) Original image (cropped); (b) noisy (15.00 dB); (c) scalar SUREbumps on orthogonal wavelet (22.96 dB); (d) scalar SUREbumps
on undecimated wavelet, optimized in the subband domain (23.89 dB); (e) scalar SUREbumps on undecimated wavelet, optimized in the image domain (24.39 dB);
(f) vector SUREbumps on undecimated wavelet, optimized in the image domain (24.86 dB). All methods are applied to a Haar decomposition.

PSNR values of the vector SUREbumps method, optimized
in the image domain, for all test images at all noise levels.
Although they do not quite achieve the performance level of
current state-of-the-art methods (e.g., [28]), the results are
roughly comparable to many recent results (e.g., [12], [32],
[33], [34]), especially at low to moderate levels of noise. Fig. 10
shows example denoised images. Increases in redundancy and
image domain optimization are both seen to improve visual
quality.

VI. DISCUSSION

In this paper, we have examined the problem of MSE-optimal
denoising in overcomplete subband representations. We’ve pro-
vided a formal explanation for the empirically observed fact
that subband denoising methods can be improved by making
the representation more redundant, and we’ve shown that
performance can be further improved by jointly optimizing the
subband estimators to minimize image-domain MSE. In order
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TABLE I
DENOISING RESULTS FOR THE VECTOR SUREBUMPS METHOD, FOR NINE IMAGES AT FIVE DIFFERENT NOISE LEVELS, EXPRESSED AS PEAK-TO-PEAK

SIGNAL-TO-NOISE RATIO (PSNR). FOR ALL RESULTS, SUREBUMPS WERE APPLIED TO A FIVE-SCALE UNDECIMATED HAAR DECOMPOSITION, WITH 3� 3
NEIGHBORHOOD OF ADJACENT COEFFICIENTS, OPTIMIZED FOR IMAGE-DOMAIN MSE

to examine these effects empirically, we developed general-
izations of Stein’s unbiased risk estimate to include correlated
noise, vector denoisers, and image-domain MSE estimates
for denoising functions applied to subbands of overcomplete
representations. Using scalar and vector denoisers constructed
from linear combinations of “bumps,” we have shown through
simulations that optimization of image-domain MSE can lead
to substantial performance gains over the suboptimal applica-
tion of SURE in each subband. These results underscore the
importance of distinguishing between the choice of subband
decomposition (e.g., orthogonal versus redundant, separable
versus oriented), the method of denoising (e.g., thresholding
versus BLS-GSM versus linearly parameterized bumps), the
means by which the denoiser parameters are selected (e.g.,
optimized over a training set versus maximum likelihood fitting
of a prior density versus SURE) and the domain in which the
parameters are optimized (subband versus image). Comparison
of methods that differ in more than one of these factors leaves
one unable to conclusively determine the underlying sources
of advantage or disadvantage. While it is difficult to formally
quantify the interaction of these factors, we believe such under-
standing would allow for further improvement in performance.

In order to simplify our presentation, we have focused on
denoisers operating on rather simple decompositions (Haar
wavelets with periodic boundary handling). These decom-
positions can easily be extended to form overcomplete tight
frames by cycle-spinning or eliminating decimation. It is worth
investigating the effects of overcompleteness in other bases,
particularly oriented redundant tight frames (e.g., steerable
pyramid [23], complex wavelets [25], curvelets [24]). In these
cases, it might also prove worthwhile to explore other means
of increasing redundancy, such as including rotated or dilated
copies of the initial basis set into the transform. If the sta-
tistics of subbands are maintained when this redundancy is
introduced, the proof of Section II will still guarantee improve-
ment for transform domain denoising. Bases that use reflected
boundary handling (as opposed to periodic handling) would
also likely lead to improvements in performance [12]. Another
issue worth investigating is the choice of neighborhoods on the
performance of context denoisers. For example, the inclusion of
coefficients from other subbands (e.g., coarser-scale “parents”)
in the neighborhood has been found to produce substantial
increases in performance [11], [12], [15], although a significant
portion of these increases may be obtained through the use of
larger spatial neighborhoods [35], [36].

Perhaps more importantly, we believe there is room for sub-
stantial improvement in the design of the denoising functions.
The examples in this article used a fixed linear family of “bump”

functions, whose shapes and positions were crudely hand-opti-
mized to deal with several issues that can affect MSE. First, as in
all statistical regression problems, the complexity of the model
governs a well-known tradeoff between systematic errors (bias)
and generalization errors (variance, or overfitting). Specifically,
the family of denoising functions should be sufficiently rich to
handle a wide variety of source images and noise levels, but it
should also be simple enough that its parameters are well con-
strained by the observed image data. Errors in parameter esti-
mation arise from errors in computing SURE, and these, in turn,
depend on both the amount of data (e.g., the number of coeffi-
cients in a subband), and the strength of the signal relative to the
noise. Second, the choice of denoiser need not rely entirely on
the data from the particular image being denoised. Generally,
denoising methods include some aspects that are tuned/adapted
to the idiosyncrasies of each particular image, and other aspects
that are chosen/optimized for performance over image ensem-
bles. In fact, some methods rely entirely on the latter, optimizing
over a large set of training images to select a single universal de-
noiser (e.g., [13], [33]). In our implementation, some prior infor-
mation is implicitly included through the design of the bumps.
Prior information could be more explicitly incorporated in the
deterministic choice of a function family, and/or through a prior
probability model on the parameter values. A principled solu-
tion should then trade off between adaptively optimizing for a
particular image, whenever the data provide a sufficient con-
straint, and using the prior information to regularize the solution
in cases for which the image data are insufficient.

More generally, the use of SURE for adapting a denoiser to
the properties of an observed noisy sample is a particular solu-
tion of the “universal” restoration problem, which aims to re-
cover a signal with unknown characteristics from observations
corrupted by a process with known characteristics. This problem
has been recently explored in several very different forms [27],
[28], [29], [37], [38], [39], and it should prove interesting to ex-
plore the similarities and relative advantages of these methods.
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