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Bayesian estimators are commonly constructed using ancexptior
model. In many applications, one does not have such a maukkiit &
difficult to learn since one does not have access to uncauupeasure-
ments of the variable being estimated. In many cases howiecerding
the case of contamination with additive Gaussian noise Bidngesian
least squares estimator can be formulated directly in terfntise distri-
bution of noisy measurements. We demonstrate the use of this formu-
lation in removing noise from photographic images. We usacallap-
proximation of the noisy measurement distribution by exgrdials over
adaptively chosen intervals, and derive an estimator fiwis1approxi-
mate distribution. We demonstrate through simulationsttiia adaptive
Bayesian estimator performs as well or better than prelyqusblished
estimators based on simple prior models.

1 Introduction

Denoising is a classic signal processing problem, and Baya@sethods can provide well
formulated and highly successful solutions. Bayesianmegtirs are derived from three
fundamental components: 1) the likelihood function, whattaracterizes the distortion
process, 2) the prior, which characterizes the distriloutibthe variable to be estimated
in the absence of any measurement data, and 3) the lossdianethich expresses the
cost of making errors. Of these, the choice of a prior is oftenmost difficult aspect of
formulating the problem. If the prior is not known in advan@&emust be learned from
uncorrupted samples(if available), or from noise-coredpata.

If one uses a least squares loss function, however, it turnthat in many cases the Bayes
estimator can be written as a simple expression in termseafeéhsity ohoisy observations
[1, 2, 3, 4]. In this paper we introduce the concept of a “pfiee” Bayesian estimator
for the additive Gaussian noise case, develop it into a manpetric implementation for
denoising photographic images, and demonstrate that tiegileg results are competitive
with those of methods that make use of explicit assumptioksiowledge of the prior.



1.1 Bayesdenoising: Conventional formulation

Suppose we make an observatiafn, of a noise-corrupted version of variabhle, where
either or both variables can be finite-dimensional vectGigen this observation, we wish

to obtain the estimate oX that minimizes the expected squared error. This is a classic
problem, and the solution, known as the Bayesian Least 8§(BLS), or Minimum Mean
Square Estimate (MMSE), is simply the expected valu& afonditioned or’, E{X|Y}.

If the prior distribution onX is Px (x) then this can be written using Bayes'’ rule as

BIX)Y =y} = [xPaylxly)ix
= [ xPoxolx) Pr(x) dx | Pr(y). &
where the denominator contains the distribution of theyholsservations:
Py(y) = /PX(X) Py x(ylx) dx . (2

Although this approach is generally appealing, it is ofteticized for the reliance on
knowledge of the prior distributiom?x (x). In some applications, the prior is known or can
be estimated through a set of offline measurements. But iy wases, it must be learned
from the same noisy measuremerits,that are available in the estimation problem. The
resulting dilemma presents a problem for machine as welidsdical systems: How can

a denoiser learn to denoise without having ever seen cldaf? da

1.2 Bayesian denoising: Prior-free formulation

Surprisingly, under restricted conditions, the BLS estamaay be written without explicit

reference to the prior distribution. Specifically, in theseaf corruption by additive Gaus-
sian noise, the BLS estimator can be expressed entirelyrimstef the distribution of the

“noisy” measurements?y (y):

BXIY =y} = v+ o g @
= ¥+ AV (P (Y)) @

whereA is the covariance matrix of the noise.[2] The proof of thistfia straightforward.
First, we write the observation equation for additive Garsgsoise contamination;

1 1 T A—1
- = e sy=0)TAT %)
Pyix(ylx) = (Qﬂ)n/z‘AP/ze ’ ®)

Next, note that

VyPyix(yIx) = A Py x (y[x)(x — y) - (6)
Taking the gradient of
Pr(¥) = [ Prix(yix) Px(x)dx ™
with respect tay, dividing by Py-(y), and substituting Eq. (6) yields:
VyPr(y) _ [ Px(x)VyPyx(ylx)dx
Py(y) Py (y)
AT [ Px(x) Pyix(y]x) (x — y) dx
- Py (y)

~ A / Py (xly) (x — y) dx

= AE{X[Y =y} -y]. (8)



Finally, rearranging the terms gives Eq. (3). In what fokowe will restrict ourselves to
discussing the case of scalar data.

2 Learningtheestimator function from data

The formulation of Eq. (3) offers a means of computing the Bisfimator from noisy
samples if one can construct an approximation of the noistyibition. But simple his-
tograms will not suffice for this approximation, because(8qrequire us to compute the
logarithmic derivative of the distribution.

2.1 Approximating local logarithmic derivative

A natural solution for this problem is to approximate theddthmic derivative of the den-
sity at the observatiolr,, = y as being constant over some interval,, z;) containingy.
This is equivalent to assuming that the density is approtétp@xponential in the interval:

Py (y) = ce™, o <y<x 9

whereq is the estimate of the logarithmic derivative in the intérv®, «1). Note that it is
thea’s which are to be used for the estimator, while feare irrelevant. For this reason,
we look at the conditional density gfgiven thaty is in the interval(xg, z1)

e”
Py|ye@oa)(y) = ml(w‘mm)
o

a,—a(y—2)
g€

= T .
sinh(%Ax) (@o,@1)

(10)

wherel(,, .,) denotes the indicator function 6fo,z1), 7 = 22 andAz = z; — .
Comparing this with Eg. (9), we see that the conditional dgris also an exponential
function of y over the intervalzg, 21 ), with the same exponent but is normalized so
thatc no longer appears, and so that it integrates to one over thevah. If we then have
observations;, drawn fromPy (y), and keep only data which fall ifg, z1), these data
will have distributionPy |y ¢ (5, »,) (), SO we can use this to estimate the parameter

One very popular estimator used for such a problem is the Miaxi Likelihood (ML)
estimator. Assuming that Eq.(10) is a good approximatiothefconditional density on
(x0, 1), this estimator can be written

a = arg max Z In(Py |y e(wo,en)(Yn))
{n:Yn€(zo0,21)}
= argmax{ln(a) —a(Y — 7) — ln(SiHh(%Ax))} (11)
where 1
= def
5 des Y, 12
#{Yn € (xo,xl)} Z "

Yn€(zo,71)

is the average of the data that fall infey, z1). Setting the derivative of Eq. (11) with
respect tax equal to zero yields
1 _ a Az
or _
alAx Y-z
)= Ax
2

— — coth( (14)
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Solving this fora gives

a=-f 5 ) (15)
where .
fly) = e coth(y) (16)

This local exponential approximation is similar to that dise [5] for local density esti-
mation except that, since we are approximating the looadlitional density,c disappears
from the equation foé. This has the benefit that we only need to invert a scalar immaof
one variablef, to calculate the estimate at all points, instead of inkgré two dimensional
vector function of two variables, as is done in [5].

Obviously, it isY, the local mean, which requires the most calculation, Hatesmost

of this calculation comes from adding up the value of datacWifall in the interval, this

may be done in an iterative way, subtracting or adding fromraing sum. This method
is efficient enough that it may be calculated at each data pither than on a grid with
interpolation.

2.2 Choice of binwidth

In order to calculate Eq. (15) for a particulgr it is necessary to choose the interval
(z0, 1), Or, equivalently, to choose the binwidth= ©; — z¢. To define what we mean by
an optimal binwidth, we must choose a measure of how "goodsimate is. We will use
the MSE of the estimate, which may be separated into a varigamm and a bias term

E{(a—a)*} E{((a — E{a}) + (B{a} — a))*}
— B{(a- B{ah?} + (B{a} - a)?
= Var{a} + (E{a} — a))* a7)

wherea is the data-dependent estimate of the true valuEhe first term is the variance of
the estimatorg and will decrease as the binwidth of the interval is incrdasence more
data will fall into the interval, giving a more reliable estite. The second term is the
squared bias, which will conversely increase as the inktésviacreased, since the expo-
nential fit of the density over the interval will in generalcoene worse, which means that
the estimateé will not give a good estimate of the true value of the logamith derivative,
a. Thus we have a bias-variance tradeoff.

In order to choose an optimal binwidth, we must analyze how(EQ) behaves as a function
of the binwidth,h. For large amounts of data, we expédb be small, and so we may use
smallh approximations for the bias and variance. In general, thiawee in estimating the
parameterq, for the interval(xq, z1) will depend inversely on the amount of data which
falls in the interval. If there aré&/ total data points, we can approximate the number falling
in the interval(zy, z1) as

n~ Py(y)Nh (18)
Hence, we will assume that c
Var{a} ~ ———— 19

for an appropriate constant,

On the other hand, the squared bias will generally dependarmhow well the exponential
fits the true density over the interval. As— 0 the bias for the interval will decrease to
zero. For smalk we assume that

(E{a} — a)?> ~ Dh™ (20)



whereD = D(Py,y) depends only on the shapef in the interval, but not on the actual
value Py (y) (see [5]). In what follows, we will assume that the densitgrisooth enough
that we may ignore the dependencdbbn shape, and tre&? as constant for all values of
y. Since, in our casé&?y comes from convolving’x with a GaussianPy will be at least
as smooth a$’y, and will become smoother as the noise variance increadesrefbre,
this approximation will become better as the amount of niviseeases.

Putting everything together than yields the approximation
C

)’ ———

I’} Py (y)Nh

Setting the derivative of this equation with respech tequal to zero yields

B{(a- + D™ (21)

C
Dmh™t! — =0 22
Py (y)N (22)
or c
h=(—— _)mr 23

which verifies our assumption that— 0 as the amount of data increases. Substituting this
into Eq. (21) gives

L

m-+1

(DmC™)mit ) C m
(Py (y)=+1) mPy (y)

E{(a-a)*} = <7 + D (

which shows that both the squared bias and variance, ana ilbadSE, go to zero as
N — o0. Using Eg. (18) to approximatBy in Eq. (23) gives

Ch | 1

~ mFT 25
(Dmn) o (25)
Rearranging this equation gives
m_C
nh™ = D (26)

and thus the optimal binwidth is chosen such that the prodfithe number of points
which fall in the interval times some power of the binwidthtloé interval is constant. (For
a review of bandwidth selection methods for density esimnasee [6]. It does not seem
that our method of bandwidth selection has been suggested.)

2.3 Choice of power

To determine the binwidth, it is necessary to determine tivestantm. If m = 0, then
n, the number of data points in the neighborhood, will be camistor all data points, a
method known as k nearest neighbors (KNN). In the limitras— oo, the binwidth will
be fixed at a constant value for all data points. Assuming tthatapproximation of the
true logarithmic derivative of the density by a constantfidirst order ink leads to the
result that the squared bias will be of ordér, which givesm = 2 in Eq. (20). This may
be justified by the use of Taylor series whielis very small. In this case there will be an
interplay between the binwidth and number of points in therival.

In this section we compare the empirical behavior of binhédthosen withm =
{0,2, 00}, to see how they behave for two different distributions. Tibadl three methods
on the same footing, the constant product for each is chas#émas the average binwidth
across data points is the same. Thus, we are looking at havth@ghree methods allocate
this average binwidth.
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Fig. 1: Estimate of logarithmic derivative of Cauchy (dasliee is actual value)d) using
KNN (m = 0); (b) using fixed binwidth {2 = o0); (C) usingm = 2 to select binwidth

The first density we examine is the Cauchy distribution.

1
P _ - 27
so that
L Py (y) = —2L— (28)
dy YW T T 052

Figure 1 shows the behavior of the estimate of the logarithaarivative for the three dif-
ferent methods of binwidth selection for a samplé®ai00 points drawn from the Cauchy
distribution. As can be seen, the KNN methad & 0) has a systematic bias in the tails,
the fixed binwidth {n — oo) method has larger variance in the tails, while the= 2
method has reduced the bias seen in the KNN method withawidimting the variance
present in the fixed binwidth method.

Now consider the Laplacian distribution

Py (y) oc ™! (29)
which gives
d
& In(Py (y)) = sgn(x) (30)
Figure 2 shows the behavior of the estimate of the logarititharivative for the three differ-
ent methods of binwidth selection @n000 points drawn from the Laplacian distribution.
Notice that in this case, since the logarithmic derivatveonstant away from the origin,
there is no bias problem. As can be seen in this case, the KNiNathdnas more of a
variance problem near the origin, the fixed binwidth methasllarger variance in the tails,
while them = 2 method has reduced the variance near the origin withowtdntring vari-

ance in the tails. Based on these two examples, in what fellseswill restrict ourselves
to using then = 2 method.



@ | |

S
()

Fig. 2: Estimate of logarithmic derivative of Laplacian ¢tiad line is actual valuep)
using KNN ¢n = 0); (b)using fixed binwidth 2 = co; (€) usingm = 2 to select binwidth

The next question is how to choose the average binwidth. vi&abpritly, we are trying to
determine the constant value of the product in Eq. (26). énegkamples that follow, we
will choose the constant so that the average binwidth aditesslata is proportional to

ayN*ﬁ, whereoy is the standard deviation of the observed dataThe dependence
onoy stems from the intuition that if the data are multiplied byngoconstant the density
will simply be stretched out by that factor, and the binwidtiould grow proportionally.
The behavior as a function &f comes directly from Eq. (23).

Now that we have a method of binwidth selectidhz and Az, can all be calculated, then
Eq. (15) applied to obtain the estimate of the logarithmigua¢ive, which is then used in
Eg. (3) to obtain the BLS estimator.

3 Convergencetoideal BLS estimator with increasein data

Since each bin shrinks and the amount of data in each birasesewith increasing amounts
of data, our BLS estimator will approach the ideal BLS estonas the amount of data
increases. In Fig. 3, we illustrate this behavior. For ttgsife, the density of the prior
signal is a generalized Gaussian distribution (GGD)

Py (x) ox e X/ (31)
with s = 1, and exponenp = 0.5. We characterize the behavior of this estimator as
a function of the number of data pointa], by running many Monte Carlo simulations
for eachN, drawing N samples from the prior distribution, corrupting them witidaive
univariate Gaussian noise, applying the prior free esbm@ai the data and measuring the
resulting SNR. Figure 3 shows the mean improvement in eogi8NR (relative to the ML
estimator, which is the identity function), the mean imgment using the conventional
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Fig. 3: Empirical convergence of prior-free estimator ttimal BLS solution, as a function
number of observed samples¥of For each number of observations, each estimator is sim-
ulated many times. Black dashed lines show the improvemfethieqprior-free estimator,
averaged over simulations, relative to the ML estimator. té/lihe shows the mean im-
provement using the conventional BLS solutidi, X |Y" = y}, assuming the prior density

is known. Gray regions denote one standard deviation.

BLS estimation function,

J #Px (2) Py|x (y|z)dz

J Px(x)Py|x (y|z)dz
—(y—=)2

[ xPx(x)e S da
—(y—x)2 )

[ Px(x)e S da

and the standard deviations of these improvements takemav®onte Carlo simulations.

E{X]Y =y}

(32)

As can be seen, our estimator improves in performance agivém more data, and ap-
proaches the performance of the ideal BLS estimator as tlweiaihof data increases. It
does this without making any assumption about the priorideatthe data, instead adapt-
ing to the data it does observe. As can also be seen, the saridrhis estimator is quite
low, for even moderate amounts of data.

4 Comparison with Empirical Bayes

As we have discussed, our prior free estimator will adaphéoabserved data, and, given
enough data, will give behavior that is near ideal, regasite the form of the prior distri-
bution. If, instead, we were to assume a particular paraofetm for the prior distribution,
as in the commonly used Empirical Bayes methods[7], andrtleegrior did not fall into
this parametric family, then the behavior of this estimatould likely be compromised.
Thus, our estimator gives a potential advantage over mstiwbith use parametric forms
for estimators, since it makes no assumptions about the gistribution. In exchange,
it may require more data than a parametric method. In thiscsgave will compare the
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Fig. 4: Other Priors: d) Laplacian b) shifted Laplaciang) bimodal Laplaciand) asym-
metric GGD

empirical behavior of our estimator with that of a parante&stimator under conditions
where the assumptions of the parametric estimator are salidunder conditions where
these assumptions are false.

For our simulations, the Empirical Bayes estimator, base{h assumes a GGD form
for the prior, as in Eq. (31). The parametepsand s, are fit to the noisy observation by
maximizing the likelihood of the noisy data, and the eston@ computed by numerical
integration of

~la/sl? =Y
~ xre e 20 X
Xeap(y) = I - (33)

f e—lz/slPe 22 dx

and this estimator is then applied to the noisy observations

4.1 Prior Distributions

The priors we will deal with are shown in Fig. 4. The first is thaplacian prior (a special
case of the GGD), the second is a Laplacian prior with shiftedn, the third is a bimodal
Laplacian

1 1
Px(z) x 56_‘1_7"‘ + 56_‘75‘“”' (34)
and the fourth is an asymmetric GGD:
e lEIM <o
PX(:'C) X —| P2 B (35)
e %2 x>0

where the constants are chosen such that the distributibimest zero mean. Thus, the first
distribution fits the model assumed by the Empirical Bayethook whereas the last three
break it in some simple ways.
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Fig. 5. Coring Functions for:d) Laplacian b) shifted Laplaciand) bimodal Laplacian
(d) asymmetric GGD prior distributions. In all figures, thetadtline denotes the identity
function for reference.

4.2 Results

In these cases, since the prior is known the optimal solutiay be calculated directly
numerically integrating Eq. (32). Figure 5 shows the estims also known as coring
functions, obtained for the prior-free and GGD methods ftbeobserved data, as com-
pared with the optimal solution calculated by numericaggnation of Eq. (32). Table 4.2
shows the empirical SNR obtained from applying these methodhe observed data, for
the priors discussed, as simulated for various values afenpower. Since the eventual
application we have in mind is in image processing, we pickéi)0 data points in our
simulation, a reasonable number for such applications.

As is to be expected, in the case where the prior actuallyhf@sassumptions of the GGD
model, then the GGD method will outperform the prior-freetinoel, though, it should be
noted, not by very much. In the cases where the assumptidmeqprior is broken in some
simple ways, however, the performance of the GGD methodadkegrconsiderably while
that of the the prior-free method remains surprisingly eltwsideal.

5 Image denoising example

In this section we describe a specific example of this priee-fapproach as applied to
image denoising. The development of multi-scale (wavetgijesentations has led to sub-
stantial improvements in many signal processing appboatiespecially denoising. Typi-
cally, the signal (or image) is decomposed into frequencybat multiple scales, each of
which is independently denoised by applying a pointwisdinear shrinkage function that
suppresses low-amplitude values. The concept was dewktmyginally in the television
engineering literature (where it is known as “coring”[€93.10]), and specific shrinkage



Prior Noise Denoised SNR
Distn. SNR Opt. GGD | Prior-free

Lapl. 1.800 | 4.226 | 4.225 | 4.218
4.800 | 6.298 | 6.297 | 6.291
7.800 | 8.667 | 8.667 | 8.666
10.800| 11.301| 11.301| 11.299

Shifted | 1.800 | 4.219 | 2.049 | 4.209
4.800 | 6.273 | 4.920 | 6.268
7.800 | 8.655 | 7.762 | 8.651
10.800| 11.285| 10.735| 11.284

Bimodal | 1.800 | 4572 | 4.375 | 4.547
4800 | 7.491 | 6.767 | 7.468
7.800 | 10.927| 9.262 | 10.885
10.800| 13.651| 11.776| 13.603

Asym. 1.800 | 7.102 | 6.398 | 7.055
4.800 | 8.944 | 8.170 | 8.915
7.800 | 10.787| 10.044| 10.767
10.800| 12.811| 12.143| 12.791

Table 1: Simulated denoising results.

functions have been derived under a variety of formulatiamduding minimax optimal-
ity under a smoothness condition [11, 12, 13], and Bayestimation with non-Gaussian
priors [e.g. 8, 14, 15, 16, 17, 18, 19, 20]. Note that, althosigch methods denoise each co-
efficient separately, a process which will not generally jpinoal unless the coefficients are
independent (which is impossible for redundant transfaiona), such marginal denoising
methods have proven effective.

As in [8, 17, 21], we begin by decomposing the noisy image gusirsteerable pyramid.
This is a redundant, invertible linear transform that safes the image content into ori-
ented octave-bandwidth frequency subbands. We apply dorr foee estimator to each
subband separately, using the noisy data in a subband térecinan estimator for that
subband. We then apply the subband estimator to the noidfjoieets in the subband in

order to estimate the values of the original, noise-freebanl. After the coefficients of
each subband have been processed, the inverse pyramitbtrans applied in order to

reconstruct the denoised image.

5.1 Reaults

We have applied our prior-free Bayesian estimator to séwerages contaminated with
simulated Gaussian noise. For all examples, the noisenariaas assumed to be known.
The results were compared with two other methods of dermisirhe first method [8],
described in the last section, uses ML to fit the parameteas®@&D prior, Eq. (31), to the
noisy data in the subband. This is justified by the fact that@&D is a parametric form
which is known to provide good fits for the marginal densitidscoefficients in image
subbands [22, 8, 17, 18]. We then use use this parametric farifind the associated
estimator by numerical integration of Eq. (33).
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Fig. 6: Example estimators (coring functions) for two suldbs Prior-free Bayesian esti-
mator (solid), BLS estimator for a GGD (dashed), and optso#l threshold (dash-dotted).
Dotted line indicates the identity function. Noise stambddeviationo is also indicated.

The second estimator is a “soft threshold” function, as usgd]:

Y-t t<Y
#(y)=-4o, —t<Y <t (36)
Y4+t Y <—t.

We make use of the clean, original data to find a soft thresfmictach subband that
minimizes the empirical mean squared error in that subbdris, the performance of
this method should not be interpreted as resulting from silid®denoising algorithm, but
rather as an upper bound on thresholding approaches tositggnorwo example estimators
are shown in Fig. 6.

Figure 7 shows a sample of an image denoised using thesetietbeds. Table 5.1 shows
denoising results for some sample images under several ooiglitions. As can be seen,
the prior-free approach compares favorably to the other tlgspite the fact that it makes
weaker assumptions about the prior than does the gener&iaassian, and doesn’t have
access to the clean data, as does the optimum thresholdiugem shows a histogram of
PSNR improvement of the prior-free algorithm over optintaesholding and generalized
Gaussian approaches for nine images at four different teisés. As we can see, our prior
free method compares favorably with the parametric metiwbébh was based on detailed
empirical knowledge of the statistics of image coefficients
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Fig. 7: Denoising results for the “Feynman” image) ériginal; (b) noisy image (PSNR
= 12.71 dB); €) using optimal thresholding (PSNR = 25.02 dRl) (using generalized
Gaussian (PSNR =24.77 dB))(using prior-free denoising (PSNR = 24.86 dB)



Image

Noise
PSNR

Denoised PSNR

Opt. Thr.

GGD

Prior-free

crowd

15.8783
18.8783
21.8783
24.8783

26.4656
28.0198
29.7355
31.5095

26.2465
27.8368
29.5498
31.37

26.333

27.8779
29.6008
31.3928

feynman

12.7117
15.7117
18.7117
21.7117

25.0311
26.1558
27.4194
28.7006

24.7549
26.051

27.3848
28.7162

24.8574
26.0729
27.3534
28.6775

boats

16.4778
19.4778
22.4778
25.4778

27.1993
28.6465
30.2497
31.9319

27.0371
28.5733
30.2161
31.9379

27.1585
28.6439
30.2799
32.0262

einstein

17.5359
20.5359
23.5359
26.5359

26.6842
28.0678
29.4865
31.0617

26.5818
28.0155
29.4828
31.1044

26.5132
27.955

29.4252
31.0636

lena

16.3128
19.3128
22.3128
25.3128

28.0438
29.513

30.9951
32.6389

27.7634
29.3355
30.8883
32.5864

27.8942
29.3937
30.9357
32.6361

bench

13.9423
16.9423
19.9423
22.9423

20.1491
21.4907
23.1416
25.0898

20.2218
21.5634
23.1816
25.1185

20.1812
21.5328
23.1636
25.1158

brick

16.5785
19.5785
22.5785
25.5785

22.5231
24.0482
25.6705
27.5393

22.4509
24.0604
25.7991
27.7055

22421

24.0453
25.7848
27.6933

bridge

15.4273
18.4273
21.4273
24.4273

23.1067
24.3743
25.7939
27.4841

23.0942
24.3872
25.8256
27.5448

23.0978
24.3676
25.8115
27.5285

Table 2: Simulated denoising results.
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Fig. 8: Improvement in PSNR for prior-free approach comgawriéh the GGD estimator
(left) and optimal thresholding (right). Histograms suntiz& data for 9 images at 4 noise
levels.

6 Discussion

We've discussed a modified formulation of the Bayes leasapuestimator in the case of
additive Gaussian noise. Unlike the traditional form, #s$imator is written in terms of
the distribution of the noisy measurement data, and is thue matural for situations in
which the prior must be learned from the data. We've devalaptcal approximation to
this prior free formulation, which uses adaptive binwidtbgjive improved performance
with an increase in the number of samples drawn from the rdstyibution. We've shown
that as the amount of data is increased, the prior free astimall tend to give perfor-
mance that is near ideal. We've also shown that breaking shenaptions of parametric
models of the prior leads to a drastic reduction in the paréorce of methods based on
such assumptions, while the prior-free method is able tbwigh such changes. Finally,
we've demonstrated the feasibility of this methodology Ipplging it to the problem of
image denoising, demonstrating that it performs as welletielb than estimators based on
marginal prior models found in the literature, which aredshen empirical studies of the
marginal statistics of clean image subbands. Thereforgtuations where the prior distri-
bution of the clean data is unknown, our method can be usetd,ssime confidence that
not too much is lost by not examining and modeling the emaiistatistics of clean data,
which may not even be possible in some situations.

It must be pointed out that the prior-free method requirest afldata to be feasible. Also,
in cases where an accurate model of the prior is availabléhads that make use of this
explicit model may give some improvement. However, if nothis known about the prior,
and there is a lot of data, then the prior-free method shoivd ignprovement over an
ad-hoc assumption about the prior.

In order to obtain image denoising results which are cortipetwith the state of the art,
it is necessary to jointly denoise vectors of coefficientstead of one coefficient at a
time [23, 21]. While Eq. (3) holds for vectors as well as scgléinding neighborhoods
of vectors to use in estimating the logarithmic gradient goat becomes much more
difficult. For higher dimensions the data vectors will tendoe further and further apart
(the "curse” of dimensionality), so great care must be takerhoosing the shape of the
large neighborhoods required to include sufficient numibelata points.
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