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Image denoising methods are often based on estimators cho-
sen to minimize mean squared error (MSE) within the sub-
bands of a multi-scal e decomposition. But this does not guar-
antee optimal MSE performance in the image domain, un-
less the decomposition is orthonormal. We prove that de-
spite this suboptimality, the expected image-domain MSE re-
sulting from a representation that is made redundant through
spatial replication of basis functions (e.g., cycle-spinning) is
less than or equal to that resulting from the original non-
redundant representation. We also develop an extension of
Sein’s unbiased risk estimator (SURE) that allows minimiza-
tion of the image-domain MSE for estimators that operate on
subbands of a redundant decomposition. Ve implement an ex-
ample, jointly optimizing the parameters of scalar estimators
applied to each subband of an overcomplete representation,
and demonstrate substantial MSE improvement over the sub-
optimal application of SURE within individual subbands.

Index Terms— denoising, Bayes least squares, SURE, over-

complete, redundant, translation invariance, cycle spmn
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In this paper we extend the SURE methodology to the image-
domain MSE that results from denoising in an overcomplete
basis. We use this to prove that application of a given de-
noising function to a basis made overcomplete through eycle
spinning or elimination of decimation is guaranteed to be no
worse in MSE (and is in practice typically better) than ap-
plying the same function in an orthonormal basis. We also
use this extension of SURE to optimize two example point-
wise estimators, operating on undecimated wavelet sulshand
to minimize MSE in the image domain. We show through
simulations that this can result in significant performaince
provements.

2. STEIN’'S LEMMA FOR OVERCOMPLETE BASES

Given a noisy imagé&’, we wish to compute an estimate of
the form
p(Y) =Y +g(Y)

by selecting; € G that minimizes the expected squared error:

gopr = argmin B {|X — (¥ +(V))}

where X is the original (clean) imagé Stein’s Lemma [1]

Image denoising has undergone dramatic improvement ovénplies that, for additive Gaussian noise, the MSE may be
the past decade, due to both the development of linear decorfewritten without reference t&:

positions that simplify the statistical characteristi€the sig- B . 5 9

nal, and to new estimators that are optimized for those chara Jopt = argmin £ {lgV)F +20°(V-9)(¥V)}. (D)
teristics. A standard methodology proceeds by linearlysra
forming the image, operating on the transform coefficient

with pointwise nonlinear functions, and then applying the i L e ) ; ,
which is (up to an additive constant) Stein’s unbiased risk e

verse linear transformation. If the pointwise nonlingaig _ hi : b lized
chosen from a parametric family, Stein's unbiased risk esimator (SURE) [1]. This result can be generalized to non-

timator (SURE) [1] may be used to select the estimator thapaussian noise, as well as a variety of non-additive caapt
minimizes the mean squared error (MSE) [2]. The most popuprocesses [6].

lar transforms are multi-scale decompositions, and withisn It is common to apply estimators to a linearly transformed
family, empirical evidence indicates that redundant repne  version of the image, in which the statistical properties ar
tations are more effective than orthonormal represemstio simplified. Stein’s Lemma is readily extended to this situa-
[3, 4, 5]. This fact is somewhat mysterious since the estimation. Suppose we have a family of estimatéis+ g, (u) :
tOI’IS are usua”y OptImIZEd for MSE in the transform domain; 1From a frequentist perspectivi, is fixed but unknown, and the expec-
which, for an overcomplete basis, is not the same as the MSE;io, is taken oved”. One may also consider botki andY as random,

in the image domain. taking the expected value over both.

SGiven a single vector-valued samgte(e.g., an image)jopt
can be approximated by minimizing the expression in braces,




gu € Gy} which act onU = WY, a transformed version of spinning or elimination of decimation [4, 5] For didacticrpu
the imageY". HereWW can be a complete or overcomplete lin- poses, we will consider cycle spinning. Hdf an orthonor-
ear transformation (am by n matrix,m > n, wheren isthe  mal wavelet decomposition, the unbiased estimate of tke ris
dimension of image space), that has a left invéise The  given in Eq. (3) may be written

estimate is computed by transforming with, applyingg.,,,
and inverse transforming with’1: SN U +207> e > gi(Uh). 4
k

k i€Sk 1ESK
SY) = wi
Hy) = w (W}T/ +9u(WY)) Theny, are all identically one in this case. Since both terms
= Y4+ Wig,(WY). (2)  are summed over, eachg,, can be independently optimized

o . over the data from the corresponding subbahnd,
To optimize this for MSE, we replacgY’) by Wig,(WY)

in Eq. (1), and after a bit of calculus obtain: Cycle spinning corresponds to replicating each basis foimct

at N translated positions. Each subband will cont&itimes
Gu,opt = as many coefficients, relative to to the orthonormal represe
dgu tation, each reduced by factor @fN. As such, the coef-
(U)>} ficients in each band will have the same marginal statstics
when rescaled by a factor ¢fN. We can thus rewrite Eq. (4),

wheretr(-) indicates the trace of a matrix. As before, thethe unbiased estimator of risk for the orthonormal tramsfor
expression in braces is an unbiased estimate of risk and cafterms of thecycle-spun coefficients ¢

be optimized even over a single sampl&of For simplicity,
in what follows we will assume that the transform is a tightz 1 Z ge(VNU?)? + 202 Z Tk Z g (VNU?). (5)
frame, for whichwt = W7. This includes orthonormal, 5~V &5 NS ’

cycle-spun and undecimated wavelet transforms, as well n?

other overcomplete transforms such as the steerable pyra i?we are usingy;; as the marginal function to denoise the co-

3 efficients in the wavelet representation, the scaling oftcthe

[3]. . : iy
efficients and the assumption that the redundant coeffgient

in a band have the same marginal statistics as the original or

thonormal coefficients implies that

arg min E {|VVTgu(U)2 + 20%tr <VVWt
9u€GU U

3. POINT ESTIMATORS ON SUBBANDS

Suppose now thag, consists of functiong); that operate
pointwise on (i.e., on each element &f) The unbiased risk
estimator becomes

1
hy(u) = \/—Ngk(\/ﬁu)
is the marginal function that should be applied to the coeffi-
W7 g, (U)]? + 202 Z niig, (Us) cients iq the cycle-spun representation. Equation (5) imas t
i be rewritten as:

wheren;; are the diagonal elements Bf W" (the squared SN (U +20%> ng > b (Uf) (6)
norms of the basis functions). Typically, the transformfeoe k i8Sy k i€ Sk,

ficients are_partmongd into sgbban(isk;k - 1’2"'.'K}' . wherenf = ny/N, since the norms of the cycle-spun ba-
corresponding to shifted versions of the same basis fumctio " — .

all of which are are assumed to have the same marginal st§s vectors are a factor af V" less than those of the original
tistical properties. In this case, the same estimator veill p Orthonormal basis.

applied to all coefficients within a subband, and the unlsiaseNow we wish to compare this with the unbiased estimate

risk estimator becomes of the risk in denoising the cycle spun transform, which by
Eq. (3)is
W@ +20> ni > gh(U3) (3)
ko ies (WOTRU)? + 2023 ng 3w (UF). %

wheren,, is the common value af;; for i € S;. For a sin- koo i€Sk

gle transformed imag& = WY, this expression provides a If /¢ is the overcomplete cycle-spun transformation matrix,
criterion for choosing gy, }%_, so as to minimize the MSE in then(1W¢)” is a projection operator. This means that
the image domain.

) (W) uf? < Ju

4. REDUNDANCY IMPROVES PERFORMANCE 2We have taken the view that coefficients of the original, eleiss sub-

band are drawn from a random distribution. If, instead, wepad frequentist

Equation (3) allows us to explain Why the performance 0fviewthatthe image is fixed but unknown, we must assume that stegnam
of coefficient values for an orthonormal subband is a gooda¢mation to

marginal deno_ising in orthonormal wavelet bases can be imMpe histogram for the corresponding subband of the cyciesppresenta-
proved by adding redundancy to the transform through cycleon.
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Fig. 1. Two families of pointwise estimator functiong (y). Left: -D% 0.5 ow
soft threshold. Right: linear basis of “bump” functions. =
2
Orthonormal wavelet Undecimated wavelet
thresh bumps thresh bumps
. . -15 : : : : : : :
subband| im | subband| im 5 10 15 20 25 30 35 40
23.3 23.5 24.2 24.3 241 24.5 Input PSNR (dB)

) ) o Fig. 2. Comparison of denoising results for three estimators. Each
Table 1. Comparison of various denoising methods, expressed ag;oup, of lines (indicated by gray regions) shows results for one esti-

PSNR, applied to the “Barbara” image. In the undecimated casegyator. Each line within a group indicates improvement in PSNR
we subdivide into two cases: one with the estimator |ndependentI(dB) of the denoised image relative to SUREshrink with undeci-
optimized to minimize the MSE of each subband, and the other withy ot wavelets (optimized within subbands[4]), as a function of in-
the estimators jointly optimized to minimize MSE in the image do'put PSNR, for one of eight images. Bottom group: SUREbumps
main. Noisy PSNR is 15.2 dB€44.4). with orthonormal wavelets; middle group: SUREbumps with un-
decimated wavelets, optimized within subbands; top group: SURE-
bumps, with undecimated wavelets, optimized for image-domain

for any vectoru, which in turn implies that MSE.
SO U9 = (W) (U 8
k €Sk

We used Eq. (4) to optimize the selection of soft-thresholds
whereh is the function that appligs;, to each of the bands,,.  for orthonormal wavelet subbands, a method known as SURE-
Comparing Eq. (6) and Eq. (7), we see that the MSE estimatghrink [7]. We used the same equation to optimize estimators
for the orthonormal case is always greater than or equal teonstructed from the bumps basis, a method which we will
that for the cycle-spun case. The result may be extended tefer to as SUREbumps (a similar method, using a different
undecimated wavelets, in which the number of coefficients ifpasis, was used with orthonormal wavelets in [8]). As can be
each band will be multiplied by a different factor. seen in Table 1, SUREbumps gives some improvement over
SUREshrink in an orthonormal basis. Next, we used Eq. (4)
to optimize parameters for the soft-threshold (as in [4]) an
the bumps in an undecimated wavelet transform. The estima-

Equation (3) may be used to jointly optimize a set of estimalO" for each subband was chosen to minimize the MSE for that

tors, gx, to be applied to the subbands. In this section we sgbband, producing {asuboptimal result in the image domain
will discuss two families of estimators, illustrated in Fily (since the tra}nsform 1S oyercpmplete). As expected from the

The first consists of soft thresholding functions: proof of section 4, this gives |mprovem_ent for both methods.
But whereas SUREbumps is the superior method for denois-

—y ly| <6 ing on an orthonormal wavelet decomposition, SUREshrink
90(y) = { —Sél“(y)@ Iyl >0 is superior when optimized on subbands of the redundant ba-

' sis. Finally, we used Eq. (3) to optimize parameters for both

The second is constructed from a basis of “bump” functions:Methods in the image domain. This produces improvement in
both methods, but the improvement for SUREbumps is more

go(y) = Z O1bi(y), (9) substantial, and it now surpasses the thresholding resWles
k note that while optimizing Eq. (3) for bumps in an overcom-
plete basis is a relatively simple least squares probleti, op

5. SIMULATIONS

where mizing for the thresholds is a nonconvex optimization prob-
lem, and so our solution may represent a local minimum. As
bi(y) = y cos? (lsgr(y) log, (|yl/o + 1) — k_ﬂ) ) such, it might be possible to improve the result for optimigi
a 2 thresholding in the image-domain in Table 1.



Figure 2 illustrates the performance of these methods ovexrdapting the dimensionality of the basis both to the noiagl le
a wide range of noise levels and for a humber of imagesand to amount of data in each band. It is also likely that im-
The graph shows the improvement in PSNR of three SUREprovement could come from use of an oriented basis (e.g.,
bumps estimators (applied to orthonormal wavelets, urdecsteerable pyramid [3], complex wavelets [9], curveletq).10
mated wavelets optimized within subbands, and undecimatdeinally, the image-domain SURE methodology that we have
wavelets optimized in the image domain) relative to the SUREleveloped is relevant for any estimator that is applied to a
shrink estimator on the undecimated wavelet optimizediwith transformed version of the data. We are currently pursuing
subbands. We did not include comparisons to thresholdinthe optimization of more complex estimators that operate on
optimized in the image domain because of the uncertainty iclusters of coefficients, [11, 12].
finding the globally optimimum solution, but our experiment
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the case of bumps, we have chosen a fixed number of bumps

for all bands in all simulations. This could be improved by



