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Chapter 1

Contrast Dependent Receptive

Field Size

In this chapter, we will begin by describing a nonlinear phenomenon observed in

the primary visual cortex, that of increasing spatial integration area with decreas-

ing contrast. We will give a possible physiological function of this behavior in

terms of optimal filtering of stochastic processes. Namely, we will show that in

certain cases of spatial stochastic processes, with a certain type of random cor-

ruption, the linear filter which should be applied to the corrupted measurements

in order to optimally estimate the uncorrupted process has the same shape for all

contrasts, with the width decreasing as contrast increases. We will then discuss

the possibility of this variable receptive field size being achieved through positive

feedback that attenuates at high contrast, and we will illustrate two mechanisms

of cortical connectivity that could allow for this type of feedback. Finally, we point

out that the the optimal linear filter can be written without reference to the statis-

tics of the signal to be estimated, but rather entirely in terms of the statistics of
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Fig. 1.1: Stimulus used to test receptive field size. The stimulus in the central
region is a sinusoidal drifting grating with temporal frequency, f = 5Hz and
spatial frequency k = 0.6 cycle/deg.

the corrupted observation, a theme which we will elaborate on in further chapters.

1.1 Contrast Dependent Receptive Field Size

In the work of Sceniak, et al [1], experiments showed a dependency of spatial

summation area on contrast. In one experiment, for example, a cell in the primary

visual cortex (V1) was stimulated by a circular aperture with a drifting sinusoidal

grating inside, as shown in Fig. 1.1. This sinusoid was chosen to have spatial

and temporal frequencies, as well as orientation, which were known, from separate

experiments, to optimally stimulate the cell. Then, for various values of contrast

and aperture radius, the first harmonic amplitude (F1) of the cell’s firing rate

was measured and recorded. When the F1 response was plotted as a function of

the aperture radius, as depicted in the cartoon of Fig. 1.2, it was noted that for

a given cell, the aperture radius that gave the peak F1 response at low contrast

2
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Fig. 1.2: Cartoon depicting F1 response as a function of aperture radius. Dashed
curve is at low contrast, solid curve is at high contrast.

was larger than the aperture that gave the peak F1 response at high contrast. To

give a quantitative measure of this phenomenon, the F1 response as a function of

aperture radius was fit by a Difference of Gaussians (DoG) model:

R(s) = Ke

∫ s
2

− s
2

e−(2y/a)2dy − Ki

∫ s
2

− s
2

e−(2y/b)2dy (1.1)

where R denotes the F1 response, s denotes the aperture radius, a the width of

the central excitatory Gaussian, b the width of the wider inhibitory Gaussian, and

Ke,i are the weights of the excitatory and inhibitory Gaussians, respectively. It was

found that as contrast increased, the area of spatial integration as measured by

the width, a, of the center Gaussian, decreased. This is a nonlinear phenomenon,

and so cannot be explained by a linear model of the visual pathway.
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1.2 Why Contrast Dependent Receptive Field

Size?

Before discussing mechanisms for achieving this nonlinear behavior, we first de-

scribe a possible physiological function of this behavior in terms of optimal filtering.

Imagine that we have a two dimensional stationary process X on a discrete lattice,

and that we observe N , a corrupted version of X. We will assume that Nij, the

elements of N , are independent given X, and that the statistics of each element

Nij are dependent only on Xij, with all elements having the conditional density

P (Nij|Xij). We can express this mathematically as:

P (N |X) =
∏

i,j

P (Nij|Xij). (1.2)

For example one might consider a positive process X, that is used to generate

Poisson variables Nij, which are independent and have rate Xij, respectively. A

continuous version of the Poisson case is discussed in [2].

Suppose that we wish to find the linear operation on N which gives the estimate

of X that minimizes variance of the difference between X and its estimate. We

begin by writing the two dimensional variables X, and N as vectors by concate-

nating the columns. Then an arbitrary linear operator may be written in terms of

some matrix H. Our optimal estimator will then be

X̂(N) = HN (1.3)

4



where H is chosen to minimize

E{|X−HN −(E{X}−HE{N})|2} = E{|(X−E{X})−H(N −E{N})|2} (1.4)

Using the orthogonality principle, this can be solved by insisting that

E
{(

X − E{X} − H(N − E{N})
)(

N − E{N}
)T }

= 0 (1.5)

or equivalently

E{(X − E{X})(N − E{N})T} = HE{(N − E{N})(N − E{N})T} (1.6)

This may also be written as

CXN = HCNN (1.7)

where CXN is the matrix of covariances between elements of X and N , and CNN is

the covariance matrix for the vector N . Eq. (1.7) is a standard result on optimal

linear estimation [3], but is rather general. We will now see what this solution

looks like for the particular corruption model we are assuming.

If we make the assumption that

E{N |X} = X (1.8)

which holds, for example, in the Poisson case, and which implies that

E{N} = E{X}, (1.9)

5



then

CXN = E{(X − E{X})(N − E{N})T}

= E{(X − E{X})(N − E{X})T}

= E{E{(X − E{X})(N − E{X})T
∣∣∣X}}

= E{(X − E{X})(E{N |X} − E{X})T}

= E{(X − E{X})(X − E{X})T}

= CXX (1.10)

where CXX is the covariance matrix of the vector X. Next we have that,

CNN = E{(N − E{N})(N − E{N})T}

= E{(N − E{X})(N − E{X})T} (1.11)

We note that, since for i 6= j Ni and Nj are independent given X

E{NiNj} = E{E{NiNj|X}}

= E{E{Ni|X}E{Nj|X}}

= E{XiXj} (1.12)

Also we have the trivial identity

E{N2
i } = E{X2

i } + (σ2
n − σ2

x) (1.13)

where σ2
x and σ2

n denote the variances of the elements of X and N . This allows us

6



to rewrite Eq. (1.11) as

CNN = E{(X − E{X})(X − E{X})T} + (σ2
n − σ2

x)I

= CXX + (σ2
n − σ2

x)I

= CXX + σ2I (1.14)

where σ2 is the difference between the variance of N and X. In the case of additive

noise corruption, σ2 will be the variance of the additive noise, but this solution

works for any type of corruption which fits our model, including Poisson.

Putting our identities for CXN and CNN into Eq. (1.7) gives

CXX = H(CXX + σ2I) (1.15)

or

H = CXX(CXX + σ2I)−1 (1.16)

In the case of additive Gaussian noise, this is the well known Weiner filter [3]. We

now see that the optimal linear solution for any independent componentwise cor-

ruption process which satisfies E{N |X} = X will have an optimal linear estimator

of the same form.

Since CXX is a covariance matrix, and since we assumed that X was stationary,

it can be diagonalized by the matrix Q that represents the two dimensional Fourier

transform, so that

Q∗HQ = SX(SX + σ2I)−1 (1.17)

where SX is a diagonal matrix with the Power Spectral Density (PSD) of X, Φ

7



along its diagonal. Therefore, in the Fourier representation, H is diagonal, which

means that the optimal linear operation is a shift invariant filter. We also see that

the Fourier transform of the optimal filter for estimating X from N is given by:

ĥopt(ω) =
Φ(ω)

σ2 + Φ(ω)
(1.18)

where σ2 is a constant that depends on the second order statistics of the Ni’s and

the Xi’s.

In our problem we will view the true firing rates of the retinal ganglion cells as

the stationary process X and the number of spikes generated by the retinal ganglion

cells as being a stochastic process with the property described in Eq. (1.2). We will

further assume that the firing rates scale with contrast of the stimulus. This will

be the case, for example, if the retinal firing rates are well modeled using linear

operations and rectifications, since both these operations posses the property that

if the input is scaled by a positive value, the output is scaled by the same value.

Also, we will ignore the fact that a true optimal filter would also have a causal,

temporal part, which filters in time. According to [2], ignoring temporal filtering

does not qualitatively change the problem.

Since the firing rate X, scales with c, its PSD must scale with c2. Including

the dependence on c explicitly in Eq. (1.18) gives

ĥopt =
c2Φ0

σ2 + c2Φ0

(1.19)

where Φ0 is the PSD of the stimulus at unit contrast.

8



If Φ0 takes the the particular form

Φ0 =
k0

1 + |aω|α (1.20)

for constants k0, α and a, then the optimal filter will have Fourier transform

ĥopt(ω) =
c2k0

σ2(1 + |aω|α) + c2k0

=
c2

(σ2 + c2k0)
(

k0

(1 + |aω/((1 + c2k0

σ2 )1/α)|α
)

=
c2

(σ2 + c2k0)
Φ0(

ω

β
) (1.21)

where

β = (1 +
c2k0

σ2
)

1
α (1.22)

Using the scaling properties of the Fourier transform and the fact that we are

dealing with a two dimensional space, we get an optimal filter with spatial profile

hopt(x) =
c2β2

(σ2 + c2k0)
φ0(βx)

=
c2

σ2
(1 +

c2k0

σ2
)

2
α
−1φ0(βx) (1.23)

This shows that the optimal filter for any contrast is just a scaled version of some

fixed filter, which gets narrower as contrast increases. We note that a commonly

assumed value of α for natural images is 2, which further simplifies the form of

this equation and gives

hopt(x) =
c2

σ2
φ0(βx) (1.24)

9



Since β increases with increasing contrast, the effective width of the optimal

filter, proportional to 1
β
, decreases with increasing contrast. The choice of optimal

filter is a tradeoff between two opposing limitations. A wider filter would have low

variances, since it is averaging the responses of many neurons, but such a filter

would also have more bias, because these cells will have different firing rates. At

higher firing rates, there is less of a need to average over many cells to decrease

the variance. Therefore, the optimal filter will have smaller field size so that it

may reduce bias. At lower firing rates, however, it is the variance problem which

dominates, and so we use a larger receptive field, trading off increased bias for a

reduction in variance.

1.3 Increased Receptive Field Size through Pos-

itive Feedback

Physiological studies show that spatial summation areas of V1 cells at low contrast

are wider than can be accounted for by the feedforward connectivity that these

cells receive from the LGN [4]. Therefore, we are looking for a mechanism that will

expand these receptive field sizes at low contrast (as opposed to shrinking them

at high contrast, for example). In this section we will discuss how this might be

achieved through a positive feedback mechanism. We will begin the discussion of

the proposed mechanism for contrast dependent receptive field size by discussing

the intuition which leads to the conclusion that positive feedback does indeed

increase receptive field size. We then consider a heuristic example which makes

this more quantitatively concrete.

Consider the cartoon shown in Fig. 1.3. In this figure we have a number of

10



Fig. 1.3: Positive feedback loop

excitatory cells with excitatory lateral connections. Indicated is the feedforward

receptive fields of these cells, each one receiving input from three points of stimulus

space. Also indicated is the fact that through the lateral excitatory connections,

the cells ”talk” to a reference cell, colored black. This means that even though

a position in stimulus space may not be in the feedforward receptive field of the

reference neuron, it may be in the receptive field of another neuron which in turn

”talks” to the reference neuron. So, although the position in stimulus space is not

in the feedforward receptive field, it is in the receptive field of the reference neuron

when it is part of the network.

For a more quantitative heuristic example of such a system, consider the feed-

back loop shown in Fig. 1.4. Here, we have a positive feedback loop with feedfor-

ward system having spatial frequency response function (the Fourier transform of

its impulse response function) G and a feedback system having frequency response

function K. A basic result in control systems theory tells us that the overall system

will have frequency response function given by

H =
G

1 − KG
(1.25)
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Fig. 1.4: Positive feedback loop

We now examine what happens if the feedforward connectivity has a form

similar to that in Eq. (1.20)

G(ω) =
1

1 + |bω|α (1.26)

This happens, for example, in one dimension, if the feedforward connectivity has

a Laplacian impulse response function with width b:

g(x) =
1

2b
e−|x/b| (1.27)

which has Fourier transform

1

1 + b2ω2
(1.28)

corresponding to α = 2. We will also assume that K is just multiplication by a

constant 0 < k < 1. In this situation the effective frequency response function of

the entire system is

H =
1

1 + |bω|α − k

=
1

(1 − k)

1

| b

(1−k)
1
α
ω|α + 1

(1.29)
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which is proportional to the Fourier transform of the feedforward impulse response

function stretched by a factor (1 − k)−
1
α . Since 0 < k < 1, this factor will be

greater than one. Thus, the positive feedback yields a larger effective receptive

field size.

In particular, if we allow k to depend on c

k = k(c)

and try to make the frequency response in Eq. (1.29) proportional to the ideal

response in Eq. (1.21), we will pick k(c) to satisfy

bα

1 − k(c)
=

aα

1 + c2k0

σ2

(1.30)

This gives

k(c) = 1 − (1 + c2k0

σ2 )bα

aα
(1.31)

Since this function decreases with increases in c, we either have positive feedback

(k(c) > 0) whose magnitude decreases with increasing c, or negative feedback

(k(c) < 0) whose magnitude increases with increasing c. As mentioned earlier, for

physiological reasons, we restrict ourselves to positive feedback values. To do this,

we can require that if 0 ≤ c ≤ cmax then

(1 +
c2
maxk0

σ2
) ≤ (

a

b
)α (1.32)

or equivalently

b ≤ a(1 +
c2
maxk0

σ2
)−

1
α (1.33)
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Thus we see that positive feedback that decreases at high contrast would allow for

an effective receptive field predicted by optimal filtering theory.

1.4 Mechanisms for Positive Feedback

In this section we discuss two possible neural mechanisms for achieving positive

feedback whose gain naturally decreases with increasing contrast. The first mecha-

nism involves lateral excitatory cortical connections, which are effectively weakened

at high contrast through synaptic depression. The second mechanism is based on

the model of [5], in which excitatory cells receive antiphase inhibition as in the

model of [6], and in which there is feedback to the LGN that is negative on bal-

ance. We will show that the antiphase inhibition can turn this negative feedback

to the LGN into a positive feedback loop which disappears at high contrast.

1.4.1 Synaptic Depression

The first mechanism is rather straightforward. The positive feedback comes from

lateral excitatory connections between excitatory cells. Although this has been

called ”lateral” the effects are much the same as ”feedback”. At low contrast this

mechanism will increase the size of the effective receptive field from that of the

feedforward connectivity. In this model, the mechanism which reduces this effect

at high contrast is that of synaptic depression. Whenever a cell provides synaptic

input to another cell, there will be a depletion of synaptic resources, lessening the

chance that this presynaptic cell will successfully transmit again. These resources

recover, and the likelihood of transmission increases correspondingly, until the

cell sends another synaptic transmission. Thus, this synaptic depression will be

14



activated at high firing rates, and will decrease the efficacy of synaptic transmission.

In order to quantify this, we used a model described in [7], in which cells having

higher firing rates have a lower probability of synaptic transmission. Because cells

will tend to have higher firing rates at higher contrast, the effects of synaptic

depression will be more severe. The result is that the strength of connectivity

between the cells is diminished at high contrast, reducing the strength of the

positive feedback, and thus shrinking the receptive field.

1.4.2 Antiphase Inhibition and Feedback to LGN

The second mechanism is based on the model of [5]. In this model, excitatory

cells receive strong inhibition from inhibitory cortical cells with opposite phase, or

antiphase, preference (as in the model of [6]). Also, this model includes feedback

from the excitatory cortical cells to the LGN which is negative on balance. The an-

tiphase nature of the inhibitory connectivity means that when the excitatory input

from the LGN input to cortical cells is in its sinusoidal ”upswing” the inhibitory

input will be in its ”downswing”. Because of this, the strength of the inhibition

may be made quite strong without the cell shutting off. This strong inhibition was

introduced in the models of [5] and [6] to achieve contrast invariant orientation

tuning width.

In Fig. (1.5), a plot of one model cell’s cortical response, its excitatory genicu-

late input, and the inhibitory cortical input to the cell (in this case proportional to

the antiphase inhibitory cell’s firing rate) are reproduced for a single contrast with

and without feedback to the LGN in place. As can be seen, although the feedback

to the LGN is negative, and causes the LGN response to drop, the overall effect on

the cortical firing rate is a positive one, raising the cortical firing rate. The reason

15



for this can also seen in the concurrent drop in inhibitory input, which also results

from the drop of LGN input to the inhibitory cortical cells. Since the inhibition

is given so much weight, the cell operates at a point where a drop in LGN input

which leads to a corresponding drop in inhibitory input leads to an overall increase

in the cortical cell firing rate. Viewed in linear terms, this changes the negative

feedback loop to a positive one.

As can be seen from the figure, it is only the behavior in the ”downswing” of

the inhibitory input which has any effect. In the ”upswing” the cortical cell is

just turned off. At very high contrast, the inhibitory input during the downswing

is clipped at zero, and cannot be made to decrease any further. Because of this,

the circuit no longer possesses positive feedback and the receptive field size will be

that of the feedforward connectivity.

1.5 Computational Models

As mentioned above, in the expanding aperture experiments of [1], the orientation

of the stimulus was fixed, and the only parameter which was altered was the

aperture radius. Thus, the experiments did not depend on the two dimensional

structure of the stimulus. Furthermore, our theoretical development does not rely

on the two dimensional structure of the stimulus or cortical connectivity, and

would be equally valid in a model with one dimensional stimulus and cortical

connectivity, as long as the model has the correct feedback structure. Hence,

for computational and conceptual simplicity, we will study two one-dimensional

models with the feedback mechanisms we have described. The first model will have

lateral excitation and synaptic depression. The second model will have feedback
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Fig. 1.5: responses of the cortical cell at the center of the circular window (Fig. 1.1)
(- is without feedback - - is with) (a) cortical excitatory cell (b) excitatory genic-
ulate input (c) inhibitory input
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to the LGN and antiphase inhibition of excitatory cortical cells.

The structure of the models, as well as the modeling of cellular behavior will

be based on the model developed in [5]. Although we do not discuss it here, we

have implemented a fully two dimensional version of the model with LGN feedback

and antiphase inhibition, and this model was able to produce contrast dependent

receptive field size similar to the one dimensional model, while maintaining the

two-dimensional characteristics studied in [5, 6], namely, contrast independent ori-

entation preference and sensitivity to orientation discontinuity.

1.5.1 Elements Common to both Models

The basic structure of both models is a one dimensional lattice of retinal ganglion

cells (RGC) which spatially pool and temporally process the one dimensional stim-

ulus, followed by a lattice of LGN cells which receive input from these RGCs and

which in turn excite lattices of both excitatory and inhibitory cortical cells (See

Fig. 1.6 for a cartoon summarizing the general structure). In this model, stimu-

lus space is represented as a one dimensional lattice of points. Model RGCs are

located on a lattice subsampled from the stimulus space lattice, with both an ON

and OFF RGC located at each position on the sublattice. For this reason, cells

at different positions may be indexed by referencing their associated position in

stimulus space, x. The ON and OFF cells are excited or inhibited, respectively,

by a light stimulus presented in the center of the receptive field.

The first stage of processing in the model is a linear spatial pooling mechanism

for the RGCs, which represents their receptive field properties. This spatially

pooled data is given by the convolution of the stimulus S(x, t) with the receptive
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Fig. 1.6: General structure common to both models

field H:

Spool(x, t) = H(x) ⋆ S(x, t) (1.34)

where ⋆ is the spatial convolution operator for fixed t, and where the receptive field,

H, is modeled by a DoG. The spatial convolution is computed by multiplying the

fast Fourier transforms (FFT) of the data and the receptive field and computing

the inverse FFT. The convolution used is therefore the circular convolution, which

can be interpreted as implying a periodic structure on the stimulus space or on

the neuronal sublattice, or as implying long range connectivity between cells at

the edges. However, in all of the experiments we will discuss, it is the response of

the center cell that is measured, and since the connections between the center cell

and cells at the edge are weak in this model, the measured response will not be

much altered by boundary effects.

After the spatial pooling, the pooled stimulus is downsampled, and this signal,

s(x, t), is given on the retinal sublattice, with x referring to the cells at position x.

Next, s(x, t) is used as the input for the temporal model used in [8]. This model
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is described by four temporal equations:

xlo(t) =

∫ ∞

0

s(t − t′)

NL!
(

t′

TL

)NL−1e−t′/TLdt′ (1.35)

TS(t)ẋhi(t) = −xhi(t) + TS(t)ẋlo(t) + (1 − HS)xlo(t) (1.36)

TS(t) =
T0

1 + c(t)
c 1
2

(1.37)

TC ċ(t) = |xhi(t)| − c(t) (1.38)

The spatial indexing in these equations is omitted, since the calculation for each

spatial index is carried out separably for all time. The calculation in Eq. (1.35) is

carried out by writing xlo(t) as the solution of the system of first order differential

equations

xi + TL
dxi

dt
= xi−1for i=1,...NL (1.39)

where x0 is the stimulus, s(t), and the output, xlo(t), is identified as xNL
. In [5]

a simpler model for RGC firing rates is used, which does not have a temporal

component. However, this model does not account for saturation effects that are

found experimentally, and so multiplication by a nonlinear function of contrast is

introduced. The retinal model which we use gives more saturation then the model

of [5] without making explicit use of the contrast stimulus parameter. It is unlikely,

however, that differences in the models of individual RGC cells would have much

impact on phenomena like receptive field sizes, which are more heavily determined

by interactions between cortical and LGN cells.

The output of each model retinal cell is then put through a nonlinearity of the

form

rout =
rmaxxhi

r 1
2

+ |xhi|
(1.40)
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where, again, the spatial and temporal indexes are omitted, since the operation is

performed on each value of xhi(x, y, t) separately. The purpose of this nonlinearity

is to introduce more saturation into the LGN response, and the parameters rmax

and r 1
2

are chosen so that the F1 component of rout in response to a drifting grating

at various contrasts matches that of the model of [5].

Next, the firing rate of the retinal ganglion cell, rR(x, t) is computed from

rR(x, t) = [r0 ± rout(x, t)]+ (1.41)

where the “+” and “-” in the brackets are for ON and OFF cells, respectively, and

where the [·]+ operation is rectification.

The next stage in the model is a set of LGN ON and OFF cells, with one of each

located at every position on the retinal sublattice. The model LGN cell at location

x receives input from the corresponding RGC with the same location x and same

ON/OFF label as the LGN cell, at rate νR→L
e (x, t), which is proportional to the

RGC’s firing rate. There will also be a background firing rate input ν0
e , which is

stimulus independent. In the model which contains feedback from the cortex to

LGN there will also be input from the cortex at with excitatory rate νC→L
e (x, t)

and inhibitory rate νC→L
i (x, t). As in [5], the model used for cells in the LGN and

cortex was a conductance based rate model, in which a quasi-stationary assumption

on the conductance allows for the modeling of the evolution of the conductance

and conversion of the conductance to instantaneous firing rate via a nonlinearity.

If a model cell receives excitatory input at rates νk
e and inhibitory input at rates

νk
i , and if ge and gi are the excitatory and inhibitory conductances, respectively,

21



of the cell, the conductances evolve according to

∂ge

∂t
= −ge

τe

+
∑

k

γk
e νk

e

∂gi

∂t
= −gi

τi

+
∑

γk
i νk

i (1.42)

for appropriate time constants τe and τi and connectivity constants γk
i and γk

i . The

firing rate is then modeled as an instantaneous function of the conductances

r =
1

τref − τf(V )
(1.43)

where

τ = τm/(1 + ge + gi) (1.44)

for appropriate time constants τm and τref and where

V = (geEe + giEi)/(1 + ge + gi). (1.45)

Here Ee and Ei are, respectively, the excitatory and inhibitory equilibrium poten-

tials measured relative to rest, and normalized by the firing threshold potential.

We use a nonlinearity of the form

f(v) =
c

σ exp(− (v−vth)2

2σ2 ) + (v − vth)erfc(−v−vth

σ
)

(1.46)

which is equal to

1

E([V − vth]+)
(1.47)

where V is N(v, σ2). This functional form is based on an alteration of the neuronal
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model of [7], which models the firing rate as the expectation of a Gaussian random

variable which has mean equal to a voltage variable. The parameters vth, σ and c

are chosen to fit the function






− ln[1 − 1
v
], v > 1

0, v ≤ 1

which is the function used in [5], based on an integrate and fire neuron. The

nonlinearity we use is therefore nothing more than a smoothed version of that for

the integrate and fire neuron. This smoother nonlinearity allows for a smoother

onset of firing, which in turn allows for more stable behavior of the network, and

also allows for low firing rates in the model.

The next stage in the model is the layer 6 cortical cells, which are also located

on the retinal sublattice. At every location on the sublattice there is a single

model excitatory cell and a single model inhibitory cell for each phase preference

φ, (φ = 0◦, 180◦). The rate of excitatory input from the LGN to cortical cells at

position x with phase preference φ is related to the one dimensional Gabor function

G(x, φ) = exp(−[
x2

σw
2
]) × cos[2πk′(x) + φ] (1.48)

where σw = 0.9◦ and k′ = 0.6 cyc/deg. The excitatory input rate from the LGN is

given by

νL→C
e (x, t, φ) =

∑

i

([G(x − xi, φ)]+ × rL
ON(xi, t − td)

− [G(x − xi, φ)]− × rL
OFF (xi, t − td)) (1.49)
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here ”-” means the negative part, and ”+” as before is the positive part. The delay

time td simply models synaptic delay. Excitatory cells also receive inhibitory input

from the inhibitory cortical cells at a rate νC→C
i , which will be modeled differently

for the two models, and which will be described for each model in later subsections.

In the model which uses the mechanism of synaptic depression, there will also be

lateral excitatory input at rate νC→C
e .

The inhibitory cell receives excitatory input from the LGN, using the same

type of connectivity as for the input to the excitatory cells. The evolution of

the excitatory and inhibitory firing rates in terms of their input rates is given

by the same equations which govern the evolution of the geniculate firing rates,

Eq. (1.42)-Eq. (1.46).

1.5.2 Synaptic Depression

In the model which used the mechanism of synaptic depression, the model also

includes excitatory to excitatory connectivity which gives heavier weights to cells

which are located nearby, and which gives equal weights to cells of both phase

preference. Also, the firing rates of the inhibitory cells are pooled across phase

preference to provide inhibitory input to the excitatory cells that has no phase

preference (see Fig. 1.7 for a cartoon). Although pooling lateral excitatory and

feedforward inhibitory input across phase preferences may not be necessary, we

want to illustrate that this connectivity does not require the antiphase connectivity

of [6], since there are models which do not use this connectivity [9].

The rate of lateral excitation to a cell at position x, νC→C
e (x, t) is determined
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Fig. 1.7: Structure of model using synaptic depression mechanism

by

νC→C
e (x, t) =

∑

φ

Ce→e(x) ⋆
(
rC
e (x, t, φ)p(x, t, φ)

)
(1.50)

where rC
e (x, t, φ) is the firing rate at time t of the excitatory cell at location x

with phase preference φ, p represents the probability of synaptic transmission for

this cell, to be discussed shortly, and where Ce→e represents the lateral excitatory

connectivity (In our model we use a Gaussian with standard deviation of one

degree). Similarly, the excitatory cells receive inhibitory input, νC→C
i (x, t), from

the inhibitory cells, at rate

νC→C
i (x, t) =

∑

φ

Ci→e(x) ⋆x rC
i (x, t, φ) (1.51)

where rC
i (x, t, φ) is the firing rate at time t of the inhibitory cell at location x with

phase preference φ. We do not spatially pool inhibitory input, so Ci→e is just a

delta function in space.

As mentioned earlier, the mechanism for attenuating the excitatory input is to

include the effects of synaptic depression in this connectivity. In order to model
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this synaptic depression we use the simplified model cited in [7]

dp

dt
=

u − p

τR

− uprC
e (1.52)

where p is the probability of synaptic transmission rC
e is the presynaptic firing rate

of an excitatory cell and u is a utilization parameter and where we have left out

indexing for simplicity. In our model, the excitatory firing rates are multiplied by

these probabilities in order to determine the lateral excitatory input. In order to

see how this affects the input we solve for the steady state solution of this equation,

with constant firing rate f

p∞ =
u

1 + τRuf
(1.53)

As we can see, the probability decreases with the presynaptic firing rate, as ex-

pected. Thus, at higher contrasts the higher firing rates cause the lateral excitatory

input to have less of an effect.

1.5.3 Antiphase Inhibition and Feedback to LGN

In this model the LGN stage not only receives spatially pooled input from the

retina, but also receives feedback input from the excitatory cortical cells which

is pooled spatially and across phase preference. The excitatory cortical neurons

provide excitatory feedback through interneurons to the LGN cell at position x

at a rate νC→L
e (x, t). At the same time, the excitatory cortical cells stimulate

perigeniculate neurons, which in turn provide inhibitory input to the LGN cell at
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position x at a rate νC→L
i (x, t). These signals are given by:

νC→L
e/i (x, t) =

2∑

m=1

∑

n

Pe/i(x − xn) × rC
e (xn, t − tde/i, φm) (1.54)

where rC
e (x, t, φ) is the firing rate of an excitatory cortical cell with preferred spatial

phase φ, φ1 = 0, φ2 = π, and tde/i is the net delay for excitation/inhibition, set

to mimic transmission through interneurons or perigeniculate neurons. Pe/i(x)

is a Gaussian function describing the synaptic footprint of excitatory/inhibitory

cortical feedback:

Pe/i(x) = exp
(
− [x2/σ2

We/i
]
)

(1.55)

For excitatory cortical feedback, the characteristic width of the two Gaussians for

the synaptic footprint (Eq. 1.55) that we use are σWe = 0.2 and σWi
= 0.32.

Also, in this model, the inhibitory input to the excitatory neurons is antiphase,

with inhibitory neurons of one phase preference inhibiting excitatory neurons of

opposite preference. The excitatory cell at position x with phase preference φ

receives inhibitory input from inhibitory neurons at a rate νC→C
i (x, t, φ), where

νC→C
i (x, t, φ) = rC

i (x, t, φ + π) (1.56)

As described, this strong antiphase inhibition has the effect of turning the negative

feedback to the LGN into a positive feedback loop (see Fig. 1.8 for a cartoon of

this connectivity).

27



I

RGCstim LGN

E

(antiphase)

Fig. 1.8: Structure of model using feedback to LGN mechanism

1.6 Simulations

In this section we will describe the results of simulations performed with the de-

scribed models. The simulation for each model was done using a drifting one

dimensional sinusoid which was inside of an interval (−s, s), and the F1 response

of the excitatory cortical cell located at the center of the aperture was recorded.

This experiment was performed for various values of the contrast of the sinusoid.

As we have discussed, for real cortical cells, the aperture radius which gives the

peak or saturating response, tends to decrease with an increase in contrast. This

can be measured quantitatively, by fitting the F1 response as a function of s by a

DoG model.

1.6.1 Results for synaptic depression

In Fig. 1.9 , F1 as a function of aperture size is plotted for stimuli at various

contrasts. Curves having higher firing rates corresponding to higher contrast. As

can be seen in this figure, the effective receptive field size at low contrast is larger
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Fig. 1.9: Responses of the cortical cell at the center of the circular window
(Fig. 1.1). - is without lateral excitation and – is with lateral excitation and
suppression

than at high contrast for the neural circuit which makes use of the mechanism of

lateral excitation with synaptic depression. Curves for two high contrast values

are shown, to show that the curve at high contrast is not peaking at lower radius

because its response is saturating. For comparison purposes, 1.9 also shows the

result when lateral excitatory connectivity is removed. As can be seen, the differ-

ence in receptive field sizes is not as pronounced. It should be noted that removing

lateral excitation significantly alters the operating point of the circuit, and so this

comparison is not necessarily a fair one. However, it does serve to illustrate that

it is the feedback mechanism which is causing this phenomenon.

Figure 1.10 shows a weighted least squares fit using a difference of Gaussians

(DoG) fit as in [1], and the ratio of high contrast to low contrast excitatory width

with and without feedback. This further illustrates that the positive feedback is

giving us a larger receptive field size at low contrast. While the increased receptive

field size at low contrast is not as pronounced as that using the model with feedback
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Fig. 1.10: Fit of responses with DoG; left is without lateral excitation, right is
with lateral excitation and synaptic depression

to the LGN, which we will discuss shortly, this model does have the benefit of using

a more physiologically plausible mechanism, which does not rely on antiphase

inhibition.

1.6.2 Results for model with feedback to LGN

Figure 1.11, shows the plot of F1 response as a function of aperture size for the

model that uses feedback to the LGN and antiphase inhibition. As can be seen,

this mechanism gives a pronounced increase in effective receptive field size at low

contrast. Figure 1.12 shows the DoG fit for this model, with the ratio of high

contrast to low contrast excitatory width with and without feedback. Note that,

because the response does not asymptote within the region tested, the ratio for

the case with feedback is larger that it should be. Also note that in this case,

responses with and without feedback may be more fairly compared since they have

firing rates of the same order of magnitude. The results serve to illustrate that we
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Fig. 1.11: responses of the cortical cell at the center of the circular window(
Fig. 1.1) - is without feedback to LGN in place – is with

are getting an increase in receptive field size by using the mechanism of positive

feedback.

1.7 Discussion

In this chapter, we have shown that optimal filtering theory provides a heuristic

framework for understanding the physiological purpose behind an increase in re-

ceptive field at low contrast. We have also shown that this effect may be achieved

either through positive feedback which decreases in strength with increasing con-

trast, or through negative feedback which increases in strength with increasing

contrast. For physiological reasons, we have concentrated on the former mecha-

nism. We have introduced two possible neural mechanisms for achieving positive

feedback which attenuates at high contrast. The first is through lateral excitation

which is weakened by synaptic depression. The second is through feedback to the

LGN which is negative on balance, coupled with antiphase inhibition. Finally we
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Fig. 1.12: Fit of responses with DoG left is without feedback to LGN right is with
feedback

have performed experiments with models based on these connectivities and shown

that these models do exhibit contrast dependent receptive field sizes.

As noted, the model which uses feedback to the LGN with antiphase inhibition

provides a more pronounced increase in receptive field size at low contrast that the

model which utilizes the mechanism of lateral excitation. Furthermore it should be

noted that the mechanism which involved lateral excitation is naturally prone to

instability because of this excitation, and so parameters had to be carefully chosen

to provide stable circuit behavior. It might be feasible to stabilize this model using

inhibition which receives excitatory input from the excitatory neurons. However,

this would then introduce a negative feedback loop, and so the connectivities must

be carefully chosen in order to stabilize the model while preserving overall lateral

excitation.

Despite these problems, the mechanism of lateral excitation provides a more

physiologically reasonable mechanism for positive feedback, since it is local to the
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cortex and does not involve antiphase connectivity. In order to see which if either

of these mechanisms are responsible for the increase in receptive field size at low

contrast, it would seemingly be necessary to perform experiments in which feedback

to the LGN is removed. However, this cannot be done by freezing cortical cells,

since it is their response which we need to measure.

1.8 Prelude to Prior Free

As a prelude to the next chapter, we recall some facts about the optimal linear

filter for the model of corruption discussed in Section 1.2. Recall that in this model,

the components of the underlying signal, X, were corrupted by independent and

identical corruption processes, and that we made the assumption that

E{N |X} = X

We also assumed in Section 1.2 that X was stationary, an assumption which we

shall drop in this section. Proceeding along the same lines as in this section, we

can show that in this case as well the optimal linear estimator

X̂(N) = HN

is determined by

CXN = HCNN

As in that section, we may also show that

CXN = CXX
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However, we must now slightly alter the equation for CNN to be

CNN = CXX + Dσ (1.57)

where Dσ is a diagonal matrix whose ith diagonal element is equal to

(Dσ)ii = V ar(Ni) − V ar(Xi) (1.58)

In the stationary case, all diagonal elements are the same, so Dσ reduces to multiple

of the identity.

We can therefore write the optimal linear operator in a form very similar to

that used in Section 1.2

H = CXX(CXX + Dσ)−1 (1.59)

Even if X is not stationary, it still may happen that Dσ is a multiple of the identity.

In that case there will be a unitary matrix, Q which diagonalizes CXX

Q∗CXXQ = SX (1.60)

where SX is a diagonal matrix, so that

Q∗HQ = SX(SX + σI)−1 (1.61)

This is just as in Section 1.2, except that the unitary operator need not be the

Fourier transform. Note that this form of the optimal linear solution makes it clear

that the optimal linear solution is a contraction towards the origin. We will return

to this theme in Chapter 2.
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A possible criticism of using Eq. (1.59) as a basis for explaining physiological

behavior is its reliance on knowledge of the statistics of X. Considering that the

system only observes corrupted measurements, N , it does not seem possible for

such a system to ”learn” the statistics of X. However, in this situation, it is easy

to see that this problem may be easily overcome by writing the optimal filter in

its equivalent form

H = (CNN − Dσ)(CNN)−1 (1.62)

In this equation, the only possible involvement of the statistics of X is through

the matrix Dσ. For many corruption processes, however, Dσ does not depend on

X. For example, if the corruption process is additive noise with known variance

σ2, then Dσ will be σ2I. In the case of corruption by Poisson noise (where each

element of N is Poisson with rate equal to the corresponding element of X), it is

easily shown that, since E{Ni} = E{Xi}

var{Ni} − var{Xi}

= E{N2
i } − E{X2

i }

= E{Ni} (1.63)

In such cases, it is therefore possible to write the difference between the variance

of the observed process and that of the underlying process without reference to the

statistics of the underlying process. In this way, we are able to write the optimal

linear operator without referring to the statistics of the underlying process, but,

rather, entirely in terms of the statistics of the observed process. In the next chap-

ter, we shall show that this phenomenon occurs for many other types of corruption
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processes, and discuss ways of using this to obtain optimal estimators without

needing to use the statistics of the underlying signals, which are unavailable to the

system which is trying to do the estimating.

In our particular case, we are interested in finding the covariance of the observed

data, CNN . We may do this by either using an ensemble of images to estimate the

covariance between any two elements of the observed vector, as in [2]. Alternatively,

if the observed vector is assumed to be wide sense stationary (which would be true

if the underlying signal was wide sense stationary), then the covariance between

any two elements will depend only on the displacement between them. Thus, we

may calculate the covariance for a given displacement by averaging the product

between all pairs of elements of the observed vector with that displacement.
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Chapter 2

Prior-Free Estimation

In the previous chapter we discussed the variance minimizing linear estimator

which estimates an underlying signal from a corrupted or observed version of that

signal. We pointed out that under certain circumstances, if we know the observa-

tion process, it is possible to write this optimal solution without reference to the

statistics of the underlying signal, but, rather, entirely in terms of the statistics of

the observed signal. In this chapter we will generalize these results significantly.

We will begin by showing that in many cases the optimal estimator (not necessar-

ily linear) can be formulated without reference to the statistics of the underlying

signal. We will also show that for a wide range of observation processes, if we have

a family of estimators (which does not necessarily contain the optimal estimator)

we can pick the optimal member of the family using the statistics of the underlying

signal. This generalizes the result of the last chapter, which was for a particular

set of corruption processes and for a particular family of estimators, namely linear

ones.
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2.1 BLS Estimators

While it was natural, in the physiological setting of the previous chapter, to mini-

mize the variance of the error, in this chapter we will concentrate on minimizing the

more commonly used Mean Squared Error (MSE) of the estimate for which the re-

sults of the previous chapter would be very similar. The estimator which minimizes

the MSE is known as the Bayesian Least Squares (BLS) estimator because, as we

shall see, it is often formulated using Bayes’ rule. This estimator is also commonly

referred to as the regression function. Bayesian methods are widely used through-

out engineering for estimating quantities from corrupted measurements, with the

BLS estimators being particularly widespread. These estimators are commonly

derived by assuming explicit knowledge of the observation process (expressed as

the conditional density of the observation given the underlying signal), and the

distribution of the underlying signal, known as the prior distribution. Despite its

appeal, this approach is often criticized for this reliance on knowledge of the prior

distribution, since the true prior is usually not known, and in many cases one does

not have data drawn from this distribution with which to approximate it. In this

case, it must be learned from the same observed measurements that are available

in the estimation problem. In general, learning the prior distribution from the ob-

served data presents a difficult, if not impossible task, even when the observation

process is known. In the commonly used ”Empirical Bayesian” approach [10], one

assumes a parametric family of prior densities and then chooses the parametric

prior which, together with the known corruption model, gives the best fit to the

observed data data. This prior is then used to derive a Bayes estimator that may

be applied to the data. If the true prior is not a member of the assumed parametric
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family, however, such estimators can perform quite poorly.

An estimator may also be obtained in a supervised setting, in which one is

provided with many pairs containing a corrupted observation along with the true

value of the quantity to be estimated. In this case, selecting an estimator is a

classic regression problem: find a function that best maps the observations to the

correct values, in a least squares sense. Given a large enough number of training

samples, this function will approach the BLS estimate, and should perform well on

new samples drawn from the same distribution as the training samples. In many

real-world situations, however, one does not have access to such training data.

In this chapter, we examine the BLS estimation problem in a setting that lies

between the two cases described above. Specifically, we assume the observation

process (but not the prior) is known, and we assume unsupervised training data,

consisting only of corrupted observations (without the correct values). We show

that for many observation processes, the BLS estimator may be written directly in

terms of the density of the corrupted observations. The precise form of the estima-

tor depends on the observation process, and the examples we derive here provide an

illustration of the diversity of such formulations. We also show a dual formulation,

in which the BLS estimator may be obtained by minimizing an expression for the

mean squared error that is written only in terms of the observation density. There

are a few special cases of the first formulation in the Empirical Bayes literature

[11], and of the second formulation in another branch of the statistical literature

concerned with improvement of estimators [12, 13, 14]. Our work serves to unify

these methods within a linear algebraic framework, and to generalize them to a

wider range of cases. We develop practical examples of nonparametric approxima-

tions for several different observation processes, demonstrating empirically that the
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resulting estimators converge to the Bayes least squares estimator as the amount of

observed data increases. We also develop a parametric family of estimators for use

in the additive Gaussian case, and examine their empirical convergence properties.

We expect such BLS estimators, constructed from corrupted observations with-

out explicit knowledge of, assumptions about, or samples from the prior, to prove

useful in a variety real-world estimation problems faced by machine or biological

systems that must learn from examples.

2.2 Common Formulations of BLS Estimators

Suppose we make an observation, Y , that depends on a hidden variable X, where

X and Y may be scalars or vectors. Given this observation, the BLS estimate of

X is simply the conditional expectation of the posterior density, E{X|Y = y}. If

the prior distribution on X is PX , and the likelihood function is PY |X then this

can be written using Bayes’ rule as

E{X|Y = y} =

∫
xPX|Y (x|y) dx

=

∫
xPY |X(y|x) PX(x) dx

/
PY (y) , (2.1)

where the denominator is the distribution of the observed data:

PY (y) =

∫
PY |X(y|x) PX(x) dx . (2.2)

If we know PX and PY |X , we can calculate this explicitly.

Alternatively, if we do not know PX or PY |X , but are given independent iden-

tically distributed (i.i.d.) samples (Xn, Yn) drawn from the joint distribution of
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(X,Y ), then we can solve for the estimator f(y) = E{X|Y = y} nonparametri-

cally, or we could choose a parametric family of estimators {fθ}, and choose θ to

minimize the empirical squared error:

θ̂ = arg min
θ

1

N

N∑

n=1

|fθ(Yn) − Xn|2. (2.3)

However, in many situations, one does not have access to PX , or to samples drawn

from PX .

2.3 Prior-free reformulation of the BLS estima-

tor

In many cases, the BLS estimate may be written without explicit reference to the

prior distribution. We begin by noting that in Eq. (2.1), the prior appears only in

the numerator

N(y) =

∫
PY |X(y|x)xPX(x) dx. (2.4)

This equation may be viewed as a composition of linear transformations of the

function PX(x)

N(y) = (A ◦ X){PX}(y),

where

X{f}(x) = xf(x),

and the operator A computes an inner product with the likelihood function

A{f}(y) =

∫
PY |X(y|x) f(x) dx.
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Similarly, Eq. (2.2) may be viewed as the linear transformation A applied to PX(x).

If the linear transformation A is 1-1, and we restrict PY to lie in the range of

A, then we can then write the numerator as a linear transformation on PY alone,

without explicit reference to PX :

N(y) = (A ◦ X ◦ A−1){PY }(y)

= L{PY }(y). (2.5)

In the definition of the operator L, A−1 effectively inverts the observation process,

recovering PX from PY . We will refer to the observation process where A is one to

one as invertible observation processes. This allows us to write the BLS estimator

as

E{X|Y = y} =
L{PY }(y)

PY (y)
. (2.6)

In the discrete case, PY (y) and N(y) are each vectors, A is a matrix containing

PY |X , X is a diagonal matrix containing values of x, and ◦ is matrix multiplication.

L will then be a matrix. As we will see, Eq. (2.6) serves to generalize and unify

some specific results which appear in the Empirical Bayes literature [15, 16, 11].

Note that if we wished to calculate E{Xn|Y }, then Eq. (2.5) would be replaced

by (A ◦ Xn ◦ A−1){PY } = (A ◦ X ◦ A−1)n{PY } = Ln{PY } . By linearity of the

conditional expectation, we may extend this to any polynomial function (and thus

to any function that can be approximated with a polynomial):

E {f(X)|Y = y} =
f(L){PY }(y)

PY (y)
. (2.7)
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with

f(x) =
M∑

k=−N

ckx
k (2.8)

Thus, our linear algebraic framework allows us to find the linear operator for the

estimator of a function of the hidden variable by taking the same function of the

linear operator. In particular this implies that

E {f(X)} = E

{
f(L){PY }(Y )

PY (Y )

}
. (2.9)

which allows us to obtain the statistics of X from those of Y . This shows that,

while practically unfeasible, it is theoretically possible to calculate all the moments

of X using corresponding statistics of Y . For invertible observation processes this

will uniquely determine the prior density, PX . However, as we shall see, for some

noninvertible observation processes, we may still be able to define an appropriate

operator, L, that allows for prior free estimators. In this situation, we will still be

able to compute the moments of X in terms of statistics of Y , but these moments

will not uniquely define the distribution PX .

More generally, we may wish to find

E

{
M{PX}(X)

PX(X)
|Y = y

}
(2.10)

for some linear operator M. Of course, a special case of a linear operator is

multiplication by a function of X, which we have just covered. Another case of

interest is if X is in turn a corrupted observation of another hidden variable Z,

where M is the linear operator associated with the prior free estimator of Z in
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terms of X. In this case we may write

E{Z|Y = y} = E{E{Z|X}|Y = y}

= E

{
M{PX}(X)

PX(X)
|Y = y

}
(2.11)

as desired. If we try to calculate the linear operator for estimating Z from Y

directly using a calculation similar to Eq. (2.5), we would get

E{Z|Y = y} =
(A ◦ M ◦ A−1){PY }(y)

PY (y)
(2.12)

which involves knowing the operator A. Instead, we show that we may write this

estimator without having to do this inversion.

To calculate Eq. (2.10), we may write

∫
M{PX}(x)

PX(x)
PX(x)PY |X(y|x)dx

=

∫
M{PX}(x)PY |X(y|x)dx

=

∫
PX(x)M∗

x{PY |X(y|x)}dx

=

∫
PX(x)PY |X(y|x)

M∗
x{PY |X(y|x)}
PY |X(y|x)

dx (2.13)

where M∗
x is the dual operator of M, with the subscript reminding us that this

operates on PY |X(y|x) as a function of x. We therefore have that

E

{
M{PX}(X)

PX(X)

∣∣∣Y = y

}
= E

{
M∗

x{PY |X}(y|X)

PY |X(y|X)

∣∣∣Y = y

}
(2.14)

Since we are assuming that PY |X is known, this reduces to the previously discussed
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situation of find the conditional mean of a function of X given Y = y.

If instead of finding the BLS estimator of X given Y we may wish to find the

estimator of X using Z where

r(Z) = Y (2.15)

for an invertible, differentiable, function r. Using known properties of change of

variables for densities we have

E{X|Z = z} = E{X|Y = r(z)}

=
L{PY }(r(z))

PY (r(z))

=
J(z)L{PZ(r−1(y))

J(r−1(y))
}(y)

∣∣∣
y=r(z))

PZ(z)

(2.16)

where J(z) is the Jacobian of the transformation.

Obviously, our derivation of the operator is valid even if A is not invertible for

all observed densities, as long as there is a unique prior which gives rise to the

particular observed density we are dealing with. In such a situation, the prior is

sometimes said to be identifiable in the observed density. See Chapter 2 of [11] for

a further discussion of identifiability. In some situations, however, A may not be

one to one and the prior density may not be identifiable, and so it is impossible to

uniquely define its inverse. In some of these noninvertible cases, it is still possible

to define an operator L which will give us a prior free estimator, while in other

cases we must place restrictions on the set of allowable priors in order to define L

for this restricted family. Examination of the definition of L in the case where A

is invertible shows that, if we want to define L when A is not invertible we must
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insist that for any two prior densities P1(x), P2(x) such that

A {P1} (y) = A {P2} (y) (2.17)

we must have

(A ◦ X) {P1} (y) = (A ◦ X) {P2} (y) (2.18)

If this is already the case for all priors, then we may still define the operator L

without restricting the set of possible priors. If it is not the case, then we must

restrict the prior distribution so that we can define L for use with this restricted

family of priors. One way of doing this is to restrict the set of priors so that A is

one to one. However, this may be unnecessarily restrictive. For example, we may

restrict our prior to lie in the subspace

P = ((N (A ◦ X)c) ∩N (A))⊥ (2.19)

where N denotes the nullspace of an operator, c denotes set complement and ⊥

denotes the orthogonal complement of a subspace. If we make this restriction, then

if Eq. (2.17) holds for two priors in this subspace then we have

A {f} = 0 (2.20)

with

f = P1 − P2 ∈ P (2.21)

since P is a subspace. Since f is in N (A), yet must be orthogonal to ((N (A ◦ X)c) ∩N (A))

we get that f ∈ N (A ◦ X), as desired.
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Even in cases where A is invertible its inverse may not be well-behaved. For

example, in the case of additive Gaussian noise, A−1 is a deconvolution operation

which is inherently unstable for high frequencies. The usefulness of Eq. (2.6) comes

from the fact that in many cases, the composite operation L may be written explic-

itly, even when the inverse operation is poorly defined or unstable. In section 2.4,

we develop examples of operators L for a variety of observation processes.

2.4 Example estimators

We will now discuss some specific cases and how to find appropriate operators. As

mentioned earlier, in general, it can be difficult to obtain the operator L directly

from the definition in Eq. (2.5), because inversion of the operator A could be

unstable or undefined. In those cases where the operator L exists, however, it is

not necessary to actually invert A to find it. Instead, a solution may often be

obtained by noting that the definition implies that

L ◦ A = A ◦ X,

or, equivalently

L{PY |X(y|x)} = xPY |X(y|x).

This is an eigenfunction equation: for each value of x, the conditional density

PY |X(y|x) must be an eigenfunction (eigenvector, for discrete variables) of operator

L, with associated eigenvalue x. We may therefore try to find such an operator by

inspection of PY |X .
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2.4.1 Additive noise

Consider a standard example, in which the variable of interest is corrupted by

independent additive noise: Y = X + W . The conditional density is

PY |X(y|x) = PW (y − x).

We wish to find an operator which when applied to this conditional density (viewed

as a function of y) will give

L{PW (y − x)} = xPW (y − x). (2.22)

Subtracting y PW (y − x) from both sides gives

M {PW (y − x)} = −(y − x) PW (y − x), (2.23)

where

M {f} (y) = L{f}(y) − y f(y)

is a linear shift-invariant operator (acting in y).

Taking Fourier transforms and using the convolution and differentiation prop-

erties gives:

M̂(ω)P̂W (ω) = −(̂yPW )(ω)

= −i∇ωP̂W (ω), (2.24)
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so that

M̂(ω) = −i
∇ωP̂W (ω)

P̂W (ω)

= −i∇ω ln
(
P̂W (ω)

)
. (2.25)

This gives us the linear operator

L{f}(y) = y f(y) −F−1
{

i∇ω ln
(
P̂W (ω)

)
f̂(ω)

}
(y), (2.26)

where F−1 denotes the inverse Fourier transform. Note that throughout this dis-

cussion X and W played symmetric roles. Thus, in cases with known prior density

and unknown additive noise density, one can formulate the estimator entirely in

terms of the prior.

If the additive noise is such that the corruption process is not invertible, i.e.

if the Fourier transform of PW is bandlimited, the proof of Eq. (2.26) shows that

this equation is still valid as long as we define

∇ω ln
(
P̂W (ω)

)
= 0 (2.27)

whenever P̂W (ω) = 0. In this case we will have an observation process which is not

one to one. To see this, consider a density P0 which has finite moments of all order

and is bandlimited, which therefore has a Fourier transform which is infinitely

differentiable and has compact support. (To see that such a density exists, we

can start with any function in the Fourier domain which is infinitely differentiable

with compact support. Since the Fourier transform converts multiplication into

convolution, convolving this function with itself gives an infinitely differentiable
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function with compact support, whose inverse transform is positive. We may then

normalize this inverse transform to get P0.) If we then consider

P1(x) = P0(x)(1 + cos(whx)) (2.28)

a simple argument using the Fourier modulation theorem tells us that, for wh high

enough, the Fourier transforms of P0 and P1 will be identical over the support

of the Fourier transform of PW . Therefore, both these prior densities will give

rise to the same observed density, PY . We therefore have a situation where the

observation process is not invertible, yet we still have an operator L which gives

us a prior free formulation of our estimator without having to restrict our set

of allowable priors. Again, this is because any information lost in the observation

process is not required in calculating the BLS estimator. We may also use Eq. (2.9)

to calculate all the moments of the prior density, but as we mentioned in discussing

this equation, this will not uniquely determine the prior. Any two priors which have

the same observed density (e.g. P0 and P1 above), will have Fourier transforms

which are the same for low frequencies. Since the moments of a density can be

calculated by taking the derivatives of the Fourier transform at 0 frequency [3],

any two such densities will have equal moments of all orders.

Gaussian case. The most commonly used additive noise model is Gaussian:

PW (x) =
1

(2π|Λ|)n/2
e−

1
2
(x−µ)T Λ−1(x−µ) (2.29)
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with covariance matrix Λ, and mean vector µ. In this case, the Fourier transform

of the density is:

P̂W (ω) = e−iω·µ− 1
2
ωT Λω (2.30)

which, upon substitution into Eq. (2.25) yields:

M̂(ω) = [iΛω − µ] P̂Y (ω) (2.31)

Finally, computing the inverse Fourier transform and substituting into Eq. (2.26)

yields

E{X|Y } = y − µ +
Λ∇yPY (y)

PY (y))

= y − µ + Λ∇yln(PY (y)) (2.32)

This formulation for the case of additive Gaussian noise was described by [16]. It

implies that, assuming one has sufficient data to compute an approximation of the

gradient of the log of the observation density PY , one can compute Bayesian least

squares estimates without knowing the prior PX . In Chapter 3 we will describe in

detail a particular method for doing this.

Laplacian case. When the noise, W , is drawn from a Laplacian distribution,

we have

PW (x) =
1

2α
e−|x/α| (2.33)

The Fourier transform of the noise density will be

P̂W (ω) =
1

1 + (αω)2
(2.34)
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which gives

M̂(ω) = 2iα2ωP̂W (ω) (2.35)

This gives us the BLS estimator

E{X|Y } = y +
2α2P ′

W (x) ⋆ PY (y)

PY (y)
(2.36)

where ⋆ denotes convolution and

P ′
W (x) = −(

1

α
)sgn(x) PW (x) (2.37)

with

sgn(x) =






−1, x < 0

0, x = 0

1, x > 0

(2.38)

This formulation of the BLS estimator involves a convolutional operator, as

compared to the differential operator found in the Gaussian case. There are a

variety of noise densities (for example, the family of generalized Gaussian distri-

butions) for which the operator will be a convolution with some known kernel, K,

that depends on the form of the noise. In such instances, the kernel may be used

directly to approximate the convolutional operator from observations {Yi}:

K ⋆ PY (y) ≈ 1

N

N∑

i=1

K(y − Yi) (2.39)

It is interesting to note that kernel estimators such as those in Eq. (2.39), with

positive kernels which integrate to one, are commonly used as density estimators.
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While such density estimators are generally biased [17], in our situation this ap-

proximation is unbiased and converges to the desired convolution K ⋆ PY as the

amount of data (N) increases, since

E{ 1

N

N∑

i=1

K(y − Yi)} =

∫
K(y − ỹ)PY (ỹ)dỹ (2.40)

The denominator of Eq. (2.36) may be approximated by any of the myriad density

estimators (see [17] for a review and further references).

2.4.2 Mixture of Uniform

The next case we will discuss is a mixture of uniform densities

PY |X(y|x) =






1
2x

, |y| ≤ x

0, |y| > x
(2.41)

where x ≥ 0. We note that

∫ ∞

|y|
PY |X(ỹ|x)dỹ =






1
2x

(x − |y|), |y| ≤ x

0, |y| > x

= (x − |y|)PY |X(y|x) (2.42)

so that the operator we want in this case is

L{f}(y) =

∫ ∞

|y|
f(ỹ)dỹ + |y|f(y) (2.43)
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giving

E{X|Y = y} = |y| +
∫ ∞
|y| PY (ỹ)dỹ

PY (y)

= |y| + Pr{Y > |y|}
PY (y)

= |y| + 1 − Pr{Y ≤ |y|}
PY (y)

(2.44)

2.4.3 Multiplicative Lognormal Noise

The next case we will discuss is that of multiplicative lognormal noise, where

Y = XeW (2.45)

where W is independent Gaussian noise with N(0, σ2) distribution. In this case,

taking logarithms gives

ln(Y ) = ln(X) + W (2.46)

which is an additive Gaussian noise model. Thus, using the prior free operator for

additive Gaussian noise, we have, with Z = ln(Y )

E{ln(X)|Z = z} =
(z + σ2Dz){PZ}(z)

PZ(z)
(2.47)

where Dz represents the derivative operator with respect to z. However, we wish to

find E{X|Y } so we need to use the change of variables formulas we have derived.

Firstly, since X = eln(X), we have

E{X|Z = z} =
e(z+σ2Dz){PZ}(z)

PZ(z)
(2.48)

54



By the Baker-Campbell-Hausdorff formula [18] we have that

e(z+σ2Dz){f}(z) = ez+ 1
2
σ2

(eσ2Dz{f}(z))

= ez+ 1
2
σ2

f(z + σ2) (2.49)

so that

E{X|Z = z} =
ez+ 1

2
σ2

PZ(z + σ2)

PZ(z)
(2.50)

If we wish to check this formula, we may see directly that, since

PZ| ln(X)(z| ln(x)) =
1√

2πσ2
e−

(z−ln(x))2

2σ2 (2.51)

ez+ 1
2
σ2

PZ| ln(X)(z + σ2| ln(x)) = ez+ 1
2
σ2 1√

2πσ2
e−

(z−ln(x)+σ2)2

2σ2

= eln(x) 1√
2πσ2

e−
(z−ln(x))2

2σ2

= x
1√

2πσ2
e−

(z−ln(x))2

2σ2 (2.52)

Next, using the fact that ln(Y ) = Z, we have by the change of variables formula

PY (y) =
PZ(ln(y))

y
(2.53)

so that

E{X|Y = y} =
e

3
2
σ2

PY (eσ2
y)

PY (y)
y (2.54)

This formula may also be shown by directly using the change of variables for-
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mula to find PY |X and applying the linear operator

L{f}(y) = e
3
2
σ2

y f(eσ2

y) (2.55)

to show that

L{PY |X}(y|x) = xPY |X(y|x)

2.4.4 Power of Fixed Density

An interesting family of observation processes are those for which

P̂Y |X(ω) = [P̂W (ω)]X (2.56)

for some density PW . This occurs, for example, when X takes on integer values,

and Y is a sum of X i.i.d. random variables with distribution PW :

Y =
X∑

n=1

Wn

Three other special cases of this are of particular interest. The first occurs

when X is a positive variable and Y is a Poisson random variable with rate X. In

this case Eq. (2.56) will hold for

P̂W (ω) = e(e−iω−1) (2.57)

The second example arises when X is a positive random variable and Y is a

zero mean Gaussian with variance X, a case known as the Gaussian Scale Mixture
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(GSM) [19]. In this case Eq. (2.56) will hold for

P̂W (ω) = e−
1
2
ω2

(2.58)

The third special case is when X is a random positive value, W is an indepen-

dent variable drawn from an α-stable distribution with Fourier transform

P̂W (ω) = e−|ω|α (2.59)

and

Y = X
1
α W (2.60)

Generally, if PW is an infinitely divisible distribution and X is an arbitrary

positive real number, then the right side of Eq.(2.56) will be the Fourier transform

of some density, which can be used as the observation process.

All of these cases can be written in prior-free form. Taking the derivative of

Eq. (2.56) gives

P̂Y |X
′
(ω) = P̂W

′
(ω) x P̂W (ω)x−1

=
P̂W

′
(ω)

P̂W (ω)
x P̂W (ω)x

=
d

dω
ln(P̂W (ω)) x P̂Y |X(ω) (2.61)
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Rearranging this equality gives

x P̂Y |X(ω) =
1

d
dω

ln(P̂W (ω))
P̂Y |X

′
(ω)

=
1

i d
dω

ln(P̂W (ω))
ŷPY |X(ω) (2.62)

Thus, the linear operation first multiplies PY by y and then applies the linear

shift-invariant transform:

M̂(ω) =
1

i d
dω

ln(P̂W (ω))
(2.63)

In the cause of Poisson with random rates this will be

M̂(ω) = eiω (2.64)

Substituting this into Eq. (2.62), taking the inverse Fourier transform and substi-

tuting into Eq. (2.1), gives

E{X|Y = n} =
(n + 1)PY (n + 1)

PY (n)
(2.65)

a fact which can be verified by direct calculation.

In the case of the GSM the operator will be

M̂(ω) =
−1

iω
(2.66)

which gives

E{X|Y = y} =
−(H(y) − 1

2
) ⋆ (yPY (y))

PY (y)
(2.67)
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where H is the Heavyside function. Since yPY (y) is odd this is equal to

E{X|Y = y} =
−(H(y)) ⋆ (yPY (y))

PY (y)

=
−

∫ y

−∞ ỹPY (ỹ)dỹ

PY (y)

=
−EY {Y ; Y < y}

PY (y)
(2.68)

where the numerator is now the mean of the density to the left of y and may be

approximated in an unbiased way by the sum of data less than y divided by the

total number of data points.

2.4.5 Exponential Families

Another important case in which the linear operator may be solved for explicitly

is for exponential families of distributions.

Discrete Exponential The first case we discuss is discrete exponential families

of the form

Pr{Y = n|X = x} = h(x)g(n)xn (2.69)

where h is chosen so that summing over n gives one. This case includes the Poisson

case discussed in the previous section among others (see [11]). In this case it may

be shown that

E{X|Y = n} =
g(n)PY (n + 1)

g(n + 1)PY (n)
(2.70)

Also we note from Eq. (2.7) that

E{ 1

X
|Y = n} =

g(n)PY (n − 1)

g(n − 1)PY (n)
(2.71)
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Continuous Exponential The next case we discuss is continuous families of

the form

PY |X(y|x) = h(x)g(y)eT (y)x (2.72)

where we assume that T is differentiable, a case which includes the GSM discussed

in the previous section. In this case

E{X|Y = y} =
g(y) d

dy
{PY (y)

g(y)
}

T ′(y)PY (y)

=
1

T ′(y)

d

dy
ln(

PY (y)

g(y)
) (2.73)

Also

E{ 1

X
|Y = y} =

g(y)
∫ y

−∞
T ′(ỹ)
g(ỹ)

PY (ỹ)dỹ

PY (y)
(2.74)

Our prior-free estimator methodology is quite general, and can often be applied

to more complicated observation processes. In order to give some sense of the

diversity of forms that can arise, Table 2.1 provides additional examples. In this

table, functions written with hats or in terms of ω represent multiplication in the

Fourier Domain, and n replaces y for discrete distributions. References for the

specific cases that we have found in the statistics literature are provided in table.

2.4.6 Noninvertible Observation Processes

In all the cases we have discussed so far, we have been able to define an operator

L regardless of whether the observation process was invertible. In some cases,

however, the noninvertiblity of an observation process will prevent us from writing
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the optimal estimator entirely in terms of PY , unless we put some restriction on

the prior PX . In this section we will discuss such an example, and illustrate the

kind of restrictions that will be put on the prior.

Suppose we randomly choose a coin with probability of heads X, 0 ≤ X ≤ 1,

the density of X being PX . We then perform a binomial trial of flipping the chosen

coin n times and observing the number of heads, so that

Pr{Y = k|X = x} =

(
n

k

)
xk(1 − x)n−k (2.75)

which gives the observed probability

Pr(Y = k) =

(
n

k

) ∫ 1

0

PX(x)xk(1 − x)n−kdx (2.76)

Here, we have gone from the infinite set of prior densities, PX , on the interval [0, 1]

to the finite set of observed probabilities {Pr(Y = k)}n
k=0 on the set {0, ..., n}, so a

simple dimensionality argument tells us that this process is not invertible. We will

now show that this prevents us from writing the BLS estimator entirely in terms

of PY unless further restriction is placed on PX .

For each value of k, xk(1 − x)n−k is a polynomial of degree n, and Pr(Y = k)

gives us the dot product of PX with these polynomials. In order to obtain the BLS

estimator of X, however, we need to know the numerator in Eq. (2.4), which in

our case is

N(k) =

(
n

k

) ∫
PX(x)xk+1(1 − x)n−kdx (2.77)

which is the dot product of PX with a polynomial of degree n + 1, for k = 0, ..., n.

In order to be able to write the estimator entirely in terms of Pr(Y = k), then,
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we need to be able to write the dot product of PX with a polynomial of degree

n + 1, in terms of the dot products of PX with polynomials of degree n. This is

obviously impossible to do for general PX . However, since the set of polynomials

{xk(1−x)n−k}n
k=0 forms a linearly independent set (look at the lowest order terms),

knowing Pr(Y = k) for all k allows us to find the dot product of PX with any

polynomial of degree less than or equal to n. Therefore, restricting PX to be

orthogonal to the (n+1)st degree polynomial in a Gram-Schmidt orthogonal basis

of polynomials on the interval, or equivalently, requiring the expected value of this

polynomial applied to X to be zero, allows us to write the numerator in terms of PY

alone. This does not make the observation process invertible, but, rather, requires

that two priors in the restricted set of priors with the same observed density also

have the same BLS estimator. This is less restrictive than requiring the observation

process to be invertible, which could be accomplished by requiring PX to lie in the

space of polynomials of degree less than or equal to n, or equivalently, requiring

moments of order higher than n to be zero.

This behavior is tied to the parametrization used. If, for example, we choose

X ∈ [0,∞) with density PX and then perform the Bernoulli experiment with

probability of heads X
X+1

then

Pr(Y = k) =

(
n

k

) ∫
PX(x)

x

x + 1

k

(
1

x + 1
)n−kdx

=

(
n

k

) ∫
PX(x)xk(

1

x + 1
)ndx (2.78)

In order to obtain the BLS estimator of X we need to know

N(k) =

(
n

k

) ∫
PX(x)xk+1(

1

x + 1
)ndx (2.79)
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Now it is easy to see that for k < n

N(k) =

(
n
k

)
(

n
k+1

)Pr(Y = k + 1) (2.80)

Knowing Pr(Y = k) gives the dot product of PX , using weighting function ( 1
x+1

)n,

with all polynomials up to degree n. However, in order to know N(n), we need

to know the dot product of PX with xn+1. Therefore, in general we cannot solve

for N(n). Again, we can get around this by limiting the prior distribution in an

appropriate way.

If instead of performing a Bernoulli experiment with the randomly weighted

coin, we performed a geometric experiment with probability of heads X, observing

the number of tosses before we get a tail, then

Pr(Y = k) =

∫
PX(x)xk(1 − x)dx, k = 0, 1, 2, ... (2.81)

a special case of the discrete exponential family in Eq. (2.69). Here the number of

possible observations is countably infinite, and gives the dot product of PX with

all polynomials (we already know the integral of PX is one). In this case we want

N(k) =

∫
PX(x)xk+1(1 − x)dx (2.82)

which is easily seen to be Pr(Y=k+1). Therefore our estimator will be

E{X|Y = k}Pr(Y = k + 1)

Pr(Y = k)
(2.83)

which agrees with our formula in Table 2.1.
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2.5 Prior-free reformulation of the mean squared

error

In some cases, developing a stable nonparametric approximation of the ratio in

Eq. (2.6) may be difficult. However, the linear operator formulation of the BLS

estimator also leads to a dual expression for the mean squared error that does

not depend explicitly on the prior, and this may be used to select an optimal

estimator from a parametric family of estimators. Specifically, for any estimator

fθ(Y ) parameterized by θ, the mean squared error may be expanded as

E
{
|fθ(Y ) − X|2

}
= E

{
|fθ(Y )|2 − 2X · fθ(Y )

}
+ E

{
|X|2

}

= E
{
|fθ(Y )|2 − 2E{X|Y } · fθ(Y )

}
+ E

{
|X|2

}

(2.84)

Since E{|X|2} does not depend on fθ, it is irrelevant for optimizing θ. Using

the prior-free formulation of the previous sections, the second component of the

expectation may be written as

E {fθ(Y )E(X|Y )} = E

{
fθ(Y )

L{PY }(Y )

PY (Y )

}

=

∫
fθ(y)

L{PY }(y)

PY (y)
PY (y)dy

=

∫
fθ(y) L{PY }(y)dy

=

∫
L∗{fθ}(y)PY (y)dy

= E {L∗{fθ}(Y )} ,
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where L∗ is the dual operator of L (in the discrete case, L∗ is the matrix transpose

of L). Combining all of the above, we have:

E
{
|fθ(Y ) − X|2

}
= E

{
|fθ(Y )|2 − 2L∗{fθ}(Y )

}
+ const. (2.85)

where the constant, E{|X|2}, does not depend on θ.

Some special examples of this type of formulation have appeared in the liter-

ature in the context of improving estimators[12, 13, 14] (see also Table 2.1). Our

approach serves to unify and generalize them, and to tie them to the prior free

formulation of the BLS estimator. It should be noted that these papers work in

a framework where X is not random, but rather fixed and unknown. However,

such formulas may be easily derived from our context by fixing the prior to be

degenerate at this fixed and unknown value, in which case all expectations become

expectations conditioned on X. Conversely, if such a formulation is written in the

case of a fixed and unknown X, all expectations will be written in terms of condi-

tional densities. It is then easy to convert formulas written in terms of conditional

densities into our framework by taking expectations with respect to X.

The way these formulations of the MSE are most often used is in the context

of improving estimators. For example, if X is a fixed but unknown vector of

dimension d > 2 and Y is N(X, Id), we may show as in [12] that

Y − d − 2

|Y |2 Y (2.86)

has lower MSE than the MSE we would get by using Y to estimate X.

In this case

L∗ = y −∇· (2.87)
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It turns out that it is easier to represent the estimator as

f(y) = y + g(y). (2.88)

Substituting into Eq. (2.85) gives

E{|f(Y ) − X|2} = E{|g(Y )|2 + 2∇ · g(Y )} + const., (2.89)

where the constant does not depend on g. Examining the case where g = 0 (or

equivalently f(y) = y) shows that the constant must be equal to d so that

MSE = E{|g(Y )|2 + 2∇ · g(Y )} + d (2.90)

Letting

g(y) = −d − 2

|y|2 y (2.91)

gives

∇ · g(y) = −(d − 2)2

|y|2 (2.92)

so that

|g(y)|2 + 2∇ · g(Y ) = −(d − 2)2

|y|2 < 0 (2.93)

which tells us that the MSE using this value of g gives us a MSE smaller than

d, which is the value of the MSE in using Y to estimate X. This fact, known as

Stein’s Paradox [20, 21], says that for all fixed X, shrinking the observed vector,

Y , towards zero gives a better estimate of X than using Y . In our context we may

extend this statement to random X for all possible prior densities on X.

We may gain some insight to this paradox by comparing this estimator to the
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Weiner estimator. Recall that this estimator may be defined as the linear estimator

which minimizes the MSE. In our case, this implies that the associated function g

in Eq. (2.88) may be written as

g(y) = Gy (2.94)

for some matrix G. Some tedious but straightforward calculation then gives that

Eq. (2.89) is minimized by choosing

G = −R−1
Y Y (2.95)

where

RY Y = E{Y T Y } (2.96)

is the correlation matrix of Y . The associated estimator is then

(I − R−1
Y Y )y = (RY Y − I)R−1

Y Y y (2.97)

This is the same result derived at the end of Chapter 1, except that, since we

are minimizing MSE, this result uses the autocorrelation matrix, RY Y instead of

the covariance matrix, CY Y . By diagonalizing RY Y in Eq. (2.97), it is easy to see

that the optimal linear estimator is a shrinkage estimator as well. For example,

restricting ourselves to one dimension, this estimator may be written as ay with

a =
E{Y 2} − 1

E{Y 2} (2.98)

so that a < 1. Thus, we see that for linear operators, shrinkage (a < 1) gives
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improved performance over the identity (a = 1), regardless of the true value of the

unknown mean X. For the linear estimator, this may be explained heuristically

by noticing that this estimator moves an observed y by a distance

y − ay = (1 − a)y (2.99)

which is proportional to y, This in turn implies that larger values move by greater

distances than smaller values, so that while all values shrink towards the origin,

they also can have an overall contraction towards another value as well. The

particular choice of a made by the Weiner estimator allows an overall contraction

towards the unknown mean X.

For the general corruption process, we may try to show that one estimator, fθ1 ,

is better than another, fθ2 , for all possible priors (or more particularly for all fixed

values of X) by showing that

|fθ1(y)|2 − 2L∗{fθ1}(y) < |fθ2(y)|2 − 2L∗{fθ2}(y) (2.100)

for all values of y. Combining this with Eq. (2.85) shows that the MSE for fθ1 is

smaller than that for fθ2 .

Instead of just trying to use these prior free formulations of the MSE to show

that one estimator is better than another for all priors, we may use these formulas

in a data adaptive way to try and choose the best estimator out of a family of

estimators, as we did for the family of linear estimators. In this approach, we note

that

arg min
θ

E
{
|fθ(Y ) − X|2

}
= arg min

θ
E

{
|fθ(Y )|2 − 2L∗{fθ}(Y )

}
. (2.101)
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where the expectation on the right is over the observation variable, Y . In practice,

we can solve for an optimal θ by minimizing the sample mean of this quantity:

θ̂ = arg min
θ

1

N

N∑

n=1

{
|fθ(Yn)|2 − 2L∗{fθ}(Yn)

}
. (2.102)

where {Yn} is a set of observed data. We can than apply the estimator fθ̂ to the

same data that we used to pick θ̂. Again this does not require any knowledge

of, or samples drawn from, the prior PX . This is the unsupervised counterpart of

Eq. (2.3). In the supervised situation, we train on observed data for which we are

given the corresponding hidden values, and then apply the trained estimator to

new samples for which we do not have the corresponding hidden values. In our

situation, however, we are never given the underlying values, and so it does not

make sense to set aside any particular data as training data. Instead we train on

the same data to which we want to apply the estimator. In some situations, we

may wish to use cross validation (CV) or some other resampling method, but there

is no reason to set aside any particular data values in this process, all data has

equal status. This implies that as we apply our estimator to more observations,

the estimator should be able to improve by using this new data to further train

the estimator. This cannot be said of the supervised situation, in which case all

training takes place on the training data. Another implication is that if the prior

distribution of the underlying values changes over time, our estimator should be

able to adapt to these changes using the new observations. Again, this cannot be

said of the supervised situation, where, if the distribution of the underlying values

changes from that during the training phase, the estimator will not be able to adapt

without retraining on new supervised data drawn from the new distribution. We
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also note that it is quite easy to extend our methodology to a semi-supervised

setting, in which we are given some pairs {(Xi, Yi)}i∈S of clean samples together

with their corrupted observations, and some samples {Yi}i∈U for which we only

have corrupted observations. Since we know that both

|fθ(Y )|2 − 2L{fθ}(Y ) (2.103)

and

|fθ(Y ) − X| = |fθ(Y )|2 − 2X · fθ(Y ) + |X|2 (2.104)

are both unbiased estimator of MSE, we can try and minimize

∑

i∈S∪U
|fθ(Yi)|2 − 2

∑

i∈U
L{fθ}(Yi) − 2

∑

i∈S
Xi · fθ(Yi) (2.105)

In the unsupervised one dimensional additive Gaussian case, letting

gθ(y) = fθ(y) − y

we get

θ̂ = arg min
θ

1

N

N∑

n=1

{
|g θ(Yn)|2 + 2σ2g′

θ(Yn)
}

. (2.106)

SUREShrink [22] uses this equation to find the optimal threshold for denoising

data corrupted by additive Gaussian noise. In [23, 24] something similar is done

for additive Gaussian noise and a linear family of estimators. As far as we are

aware, [24] is the only work which suggests this approach for non-Gaussian noise.
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Recently [25], an expression similar to Eq. (2.106), with

gθ =
d

dy
ln Pθ(y) (2.107)

was used as a criterion for choosing a density estimate from a family Pθ in cases

where the normalizing constant, or partition function, is difficult to obtain. The

prior-free approach we are discussing provides a justification and interpretation

for this procedure: the optimal density is the one which, when converted into

an estimator using the formula in Table 2.1 for the additive Gaussian case, gives

the best MSE. We might have tried, as in the commonly used Empirical Bayes

procedure [10, 26], to pick this density using a more widely used criterion such as

Maximum Likelihood (ML), and then convert the density to an estimator. The

problem is that the quantity we are eventually trying to optimize is the MSE, and

the ML does not minimize this criteria (it actually minimizes the Kullback-Leibler

divergence between the true density and the parametric density [20]). Instead,

we are now able to directly choose the estimator which optimizes the criteria we

really wish to optimize, namely the MSE. This density estimation procedure may

be extended to any of the linear operators in Table 2.1. We can pick the parametric

density Pθ which minimizes Eq. (2.85) with

fθ(y) =
L{Pθ}(y)

Pθ

(2.108)

being the estimator associated with the density Pθ(y), and where L is the appro-

priate operator form Table 2.1.

When using this formulation in the context of density estimation, it is more

natural to parametrize the observed density which may then be converted into the
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corresponding estimator using the appropriate linear operator. In the estimation

framework, however, it is more natural to parametrize the estimator. This leads

to the general question of whether, given the BLS estimator

X̂(y) =
L{PY }(y)

PY (y)

it is possible to recover the density PY (y). While it is difficult to formulate a

general solution to this problem, in the continuous and discrete exponential cases,

we may come up with a general expression of the density in terms of the estimator.

For example, in the discrete exponential case (see Table 2.1), recall that we

have

X̂(n) =
g(n)PY (n + 1)

g(n + 1)PY (n)
(2.109)

so that

ln PY (n + 1) − ln PY (n) = ln X̂(n) + ln g(n + 1) − ln g(n) (2.110)

Equivalently, we write this as

∆ ln PY = ln X̂(n) + ∆ ln g (2.111)

where ∆ represents the difference operator. The solution to this equation is

ln PY (n) =
n−1∑

k=0

ln X̂(k) + ln g(n) + const. (2.112)

where the constant is such that PY (n) sums to one. It is interesting to note that
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in this situation

ln PY |X(n|x) = ln h(x) + ln g(n) + n ln x (2.113)

so that

∆n ln PY |X = ∆ ln g + ln x (2.114)

where the subscript on the ∆n is to remind us that we are taking the difference

with respect to n. We therefore have that

ln PY (n) =
n−1∑

k=0

{
∆n ln PY |X

}
(k|X̂(k)) + const. (2.115)

which is the desired expression for PY in terms of X̂(y).

Similarly, for the continuous exponential case (see Table 2.1), we have

X̂(y) =
g(y)

T ′(y)PY (y)

d

dy

(
Py(y)

g(y)

)

=
1

T ′(y)

d

dy
ln

(
Py(y)

g(y)

)

(2.116)

so that

d

dy
ln PY (y) = T ′(y)X̂(y) +

d

dy
ln g(y) (2.117)

The solution to this equation is

ln PY (y) =

∫
T ′(ỹ) X̂(ỹ) dỹ + ln g(y) + const. (2.118)
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where, again, the constant is such that PY (y) integrates to one. In this situation

ln PY |X(y|x) = ln h(x) + ln g(y) + T (y)x (2.119)

so that

d

dy
ln PY |X(y|x) =

d

dy
ln g(y) + T ′(y)x (2.120)

We therefore have that

ln PY (y) =

∫ {
d

dy
ln PY |X

} (
ỹ

∣∣∣ X̂(ỹ)
)

dỹ + const. (2.121)

We have shown how to go from a prior free expression for the BLS estimator

as might appear in [11, 15, 16, 24] to a prior free expression for the MSE, as might

appear in [12, 13, 14, 24]. For completeness, we show that it is possible to go

from the prior free formulation of MSE to the prior free formulation of the BLS

estimator. To see this suppose that for a particular observation process, and for

every estimator f , we have

E
{
|f(Y ) − X|2

}
= E

{
|f(Y )|2 − 2hf (Y )

}
+ c. (2.122)

for a constant c which does not depend on f , and a function hf which depends on

f , but does not depend on the statistics of X. Then, expanding the left side of

this equation, we see that we must have

E {X · f(Y )} = E {hf (Y )} . (2.123)
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It is then obvious that if this holds for all f , then hf must be linear in f ,

hf (y) = M{f}(y) (2.124)

so that

E {E{X|Y } · f(Y )} = E {X · f(Y )}

= E {M{f}(Y )}

=

∫
M{f}(y)PY (y)dy

=

∫
f(y)M∗{PY }(y)dy

=

∫
f(y)

M∗{PY }(y)

PY (y)
PY (y)dy

= E

{
f(Y )

M∗{PY }(Y )

PY (Y )

}
(2.125)

Since this is true for arbitrary f we have that

E{X|Y = y} =
M∗{PY }(y)

PY (y)
(2.126)

as desired.

We will illustrate another method of proof which provides insight. Since the

MSE may be written as

E
{
|f(Y ) − X|2

}
= E

{
|f(Y )|2 − 2M{f}(Y )

}
+ c. (2.127)
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this functional is minimized at

f0(y) = E
{

X
∣∣∣Y = y

}

This means that for an arbitrary function f1, the functional

J(ǫ) = E
{
|f0(Y ) + ǫf1(Y ) − X|2

}

= E
{
|f0(Y ) + ǫf1(Y )|2 − 2M{f0 + ǫf1}(Y )

}
+ c. (2.128)

is minimized at ǫ = 0. Setting the derivative of this functional with respect to ǫ

equal to zero at ǫ = 0 gives

E {f0(Y ) · f1(Y )} = E {M{f1}(Y )} (2.129)

As before we show that

E {M{f1}(Y )} = E

{
f1(Y )

M∗{PY }(Y )

PY (Y )

}
(2.130)

so that we have

E {f0(Y ) · f1(Y )} = E

{
f1(Y )

M∗{PY }(Y )

PY (Y )

}
(2.131)

for arbitrary f1. This gives us

f0(y) =
M∗{PY }(y)

PY (y)
(2.132)

as desired.
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2.6 Simulations

2.6.1 Prior Free BLS Estimators

Since each of the prior-free BLS estimators discussed above relies on approximating

values from the observed data, the behavior of such estimators should approach

the BLS estimator as the number of data samples grows. In Fig. 2.1, we examine

the behavior of three non-parametric prior-free estimators based on Eq. (2.6). The

first case corresponds to data drawn independently from a binary source, which

are observed through a process in which bits are switched with probability 1
4
. The

estimator does not know the binary distribution of the source (which was a “fair

coin” for our simulation), but does know the bit-switching probability. For this

estimator we use the observations to approximate PY using a simple histogram,

and then use the matrix version of the linear operator in Eq. (2.5) to construct the

estimator. We then apply the constructed estimator to the same observed data to

estimate the uncorrupted value associated with each observation. We measure the

behavior of the estimator, X̂, using the the empirical MSE,

1

N

N∑

k=1

(X̂i − Xi)
2 (2.133)

where {Xi} are the underlying values and {X̂i} are the corresponding estimates

based on the observations. We characterize the behavior of this estimator as a

function of the number of data points, N , by running many Monte Carlo simula-

tions for each N , constructing the estimator using the N observations, applying

the constructed estimator to these observations and recording the empirical MSE.

Figure 2.1 indicates the mean improvement in empirical MSE (measured by the

77



10
0

10
2

10
4

−0.2

0

0.2

#samples

M
S

E
 im

pr
ov

e.

10
2

10
40

1

2

3

#samples

S
N

R
 im

pr
ov

e.

10
2

10
4

10
6

−2

0

2

4

#samples

S
N

R
 im

pr
ov

e.

(a) (b) (c)

Fig. 2.1: Empirical convergence of prior-free estimator to optimal BLS solution,
as a function number of observed samples of Y . For each number of observations,
each estimator is simulated many times. Black dashed lines show the improve-
ment of the prior-free estimator, averaged over simulations, relative to the ML
estimator. White line shows the mean improvement using the conventional BLS
solution, E{X|Y = y}, assuming the prior density is known. Gray regions denote
± one standard deviation. (a) Binary noise (10,000 simulations for each number
of observations); (b) additive Gaussian noise (1,000 simulations); (c) Poisson noise
(1,000 simulations).

increase in empirical MSE compared with using the ML estimator, which, in this

case, is the identity function) over the Monte Carlo simulations, the mean improve-

ment using the conventional BLS estimation function, E{X|Y = y} assuming the

prior density is known, and the standard deviations of the improvements taken over

our simulations. Note that the variance in the BLS estimator for small numbers

of data points comes from the fact that we are using empirical MSE.

Figure 2.1b shows similar results for additive Gaussian noise, with the empirical

MSE being replaced by the empirical Signal to Noise Ratio (SNR), which is defined

as

SNR(dB) = 20 log10(

∑N
k=1 X2

k∑N
k=1(X̂k − Xk)2

) (2.134)

Signal density is a generalized Gaussian with exponent 0.5, and the noisy SNR is

4.8 dB. In this case, we compute Eq. (2.6) using a more sophisticated approxima-

tion method, as described in [27], which we will also describe in Chapter 3. We
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fit a local exponential model similar to that used in [28] to the data in bins, with

binwidth adaptively selected so that the product of the number of points in the bin

and the squared binwidth is constant. This binwidth selection procedure, analo-

gous to adaptive binning procedures developed in the density estimation literature

[17], provides a reasonable tradeoff between bias and variance, and converges to

the correct answer for any well-behaved density [27]. Note that in this case, con-

vergence is substantially slower than for the binary case, as might be expected

given that we are dealing with a continuous density rather than a single scalar

probability. But the variance of the estimates is very low.

Figure 2.1c shows the case of estimating a randomly varying rate parameter

that governs an inhomogeneous Poisson process. The prior on the rate (unknown

to the estimator) is exponential. The observed values Y are the (integer) values

drawn from the Poisson process. In this case the histogram of observed data was

used to obtain a naive approximation of PY (n), the appropriate operator from

Table 2.1 was used to convert this into an estimator, and this estimator was then

applied to the observed data. It should be noted that improved performance for

this estimator is expected if we were to use a more sophisticated approximation of

the ratio of densities.

2.6.2 Parametric examples

In this section we discuss the empirical behavior of the parametric approach applied

to the additive Gaussian case. Recall from Eq. (2.87) that in this case we have

L∗ = y − σ2 d

dy
.
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Fig. 2.2: Example bump functions, used for linear parameterization of estimators
in Figs. 2.3(a) and 2.3(b).

We also have, from Eq. (2.89)

E{|f(Y ) − X|2} = E{|g(Y )|2 + σ2g′(Y )} + const,

with

f(y) = y + g(y).

where the constant does not depend on g. Therefore, if we have a parametric

family {gθ} of such g, and are given data {Yn} we can try and pick θ to minimize

1

N

N∑

n=1

{|gθ(Yn)|2 + σ2g′
θ(Yn)}. (2.135)

This expression, known as Stein’s unbiased risk estimator (SURE) [12], favors

estimators gθ that have small amplitude, and highly negative derivatives at the

data values. This is intuitively sensible: the resulting estimators will “shrink” the

data toward regions of high probability.

As an example, we parametrize g as a linear combination of nonlinear “bump”

functions

gθ(y) =
∑

k

θkgk(y) (2.136)

80



10
2

10
40

1

2

3

#samples

S
N

R
 im

pr
ov

e.

10
2

10
40

1

2

3

#samples

S
N

R
 im

pr
ov

e.

10
2

10
40

1

2

3

#samples

S
N

R
 im

pr
ov

e.

(a) (b) (c)

Fig. 2.3: Empirical convergence of parametric prior-free method to optimal BLS
solution, as a function number of data observations, for three different parame-
terized estimators. (a)3 bump; (b)15 bumps; (c) Soft thresholding. All cases use
a generalized Gaussian prior (exponent 0.5), and additive Gaussian noise. Noisy
SNR is 4.8 dB.

where the functions gk are of the form

gk(y) = y cos2

(
1

α
sgn(y) log2 (|y|/σ + 1) − kπ

2

)
,

as illustrated in Fig. 2.2. Recently, linear parameterizations have been used in

conjunction with Eq. (2.135) for image denoising in the wavelet domain [23].

We can substitute Eq. (2.136) into Eq. (2.135) and pick coefficients {θk} to min-

imize this criteria, which is a quadratic function of the coefficients. We then apply

the resulting estimator the observations and measure the empirical SNR. For our

simulations, we used a generalized Gaussian prior, with exponent 0.5. The noisy

SNR was 4.8 dB. Figure 2.3 shows the empirical behavior of these “SURE-bump”

estimators when using three bumps ( Fig. 2.3a) and fifteen bumps (Fig. 2.3b), il-

lustrating the bias-variance tradeoff inherent in the fixed parameterization. Three

bumps behaves fairly well for small amounts of data, though the asymptotic behav-

ior for large amounts of data is biased and thus falls short of ideal. Fifteen bumps

asymptotes correctly but has very large variance for small amounts of data (over-
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fitting). A more sophisticated method might use cross validation or some other

resampling method to appropriately set the number of bumps to try and minimize

both these effects. For comparison purposes, we have included the behavior of

SUREShrink [29], in which Eq. (2.6.2) is used to choose an optimal threshold, θ,

for the function

fθ(y) = sgn(y)(|y| − θ)+.

As can be seen, SURE thresholding shows significant asymptotic bias although the

variance behavior is nearly ideal.

2.7 Discussion

We have reformulated the Bayes least squares estimation problem for a setting in

which one knows the observation process, and has access to many observations. We

do not assume the prior density is known, nor do we assume access to samples from

the prior. Our formulation thus acts as a bridge between a conventional Bayesian

setting in which one derives the optimal estimator from known prior and likelihood

functions, and a data-oriented regression setting in which one learns the optimal

estimator from samples of the prior paired with corrupted observations of those

samples. In many cases, the prior-free estimator can be written explicitly, and we

have shown a number of examples to illustrate the diversity of estimators that can

arise under different observation processes. For three simple cases, we developed

implementations and demonstrated that these converge to optimal BLS estimators

as the amount of data grows. We also have derived a prior-free formulation of the

MSE, which allows selection of an estimator from a parametric family. We have

shown simulations for a linear family of estimators in the additive Gaussian case.
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These simulations serve to demonstrate the potential of this approach, which

holds particular appeal for real-world systems (machine or biological) that must

learn the priors from environmental observations. Both methods can be enhanced

by using data-adaptive parameterizations or fitting procedures in order to properly

trade off bias and variance (as we will see, for example in Chapter 3, see also [27]).

Included in this would be resampling techniques such as CV, which would allow

appropriate choice of parameters for the different methods in a data adaptive way.

Such methods will naturally be more computationally intensive. It is of particular

interest to develop incremental implementations, which would update the estimator

based on incoming observations. This would further enhance the applicability of

this approach for systems that must learn to do optimal estimation from corrupted

observations.
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Obs. process Obs. density: PY |X(y|x) Numerator: N(y) = L{PY }(y)

Discrete A (A ◦ X ◦ A−1)PY (y)

Gen. Add. PW (y − x)
yPY

−F−1
{

i∇ω ln
(
P̂W (ω)

)
P̂Y (ω)

}

Add. Gaus-
sian [16]/[12]*

exp− 1
2
(y−x−µ)T Λ−1(y−x−µ)√

|2πΛ|
(y − µ)PY (y) + Λ∇yPY (y)

Add. Poisson
∑

λke−λ

k!
δ(y − x − ks) yPY (y) − λsPY (y − s)

Add. Lapla-
cian

1
2α

e−|(y−x)/α| yPY (y) + 2α2{P ′
W ⋆ PY }(y)

Add. Cauchy 1
π
( α

(α(y−x))2+1
) yPY (y) − { 1

2παy
⋆ PY }(y)

Add. Uniform

{
1
2a

, |y − x| ≤ a
0, |y − x| > a

yPY (y) + a
∑

sgn(k)PY (y − ak)
−1

2

∫
PY (ỹ)sgn(y − ỹ)dỹ

Add. Random
# of Compo-
nents

PW (y − x), where:

W ∼ ∑K
k=0 Wk,

Wk i.i.d. (Pc),
K ∼ Poiss(λ)

yPY (y) − λ{(yPc) ⋆ PY }(y)

Discr. Exp.
[11]/[14]*

h(x)g(n)xn g(n)
g(n+1)

PY (n + 1)

Discr. Exp.
(inv.) [14]*

h(x)g(n)x−n g(n)
g(n−1)

PY (n − 1)

Cont. Exp.
[11]/[13]*

h(x)g(y)eT (y)x g(y)
T ′(y)

d
dy
{PY (y)

g(y)
}

Cont. Exp.
(inv) [13]*

h(x)g(y)eT (y)/x g(y)
∫ y

−∞
T ′(ỹ)
g(ỹ)

PY (ỹ)dỹ

Poisson
[15]/[14]*

xne−x

n!
(n + 1)PY (n + 1)

GSM 1√
2πx

e−
y2

2x −EY {Y ; Y < y}

Laplacian
Scale Mixture

1
x
e−

y
x ; x, y > 0 PY {Y > y}

Table 2.1: Prior-free estimation formulas. Functions written with hats or in terms
of ω represent multiplication in the Fourier Domain. n replaces y for discrete
distributions. Bracketed numbers are references for operators L, with * denoting
references for the parametric (dual) operator, L∗.
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Chapter 3

Nonparametric Denoising of

Additive Gaussian Noise

In Chapter 2, we illustrated two approaches for prior-free estimation. In the first

method, we were able to write the BLS estimator using a linear operator derived

from the known corruption process

E{X|Y = y} =
L{PY }(y)

PY (y)
(3.1)

In this approach, we would like to find a nonparametric estimator of this quantity

which is based on samples {Yi} drawn from PY , which we would then apply to

those samples to estimate the corresponding hidden values. We would also like

this estimator to adapt to the data in a way such that, as the amount of data

increases, the estimator comes closer to the ideal BLS estimator. In this section,

we will illustrate such an estimator for the particular case of additive Gaussian

noise.
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3.1 Prior-free formulation of BLS estimator for

Additive Gaussian Noise

In the case of additive Gaussian noise with zero mean and covariance matrix Λ,

we have from Chapter 2 [16] that

E{X|Y = y} = y +
Λ∇yPY (y)

PY (y))
(3.2)

= y + Λ∇yln(PY (y)), (3.3)

where Λ is the covariance matrix of the noise. In the Chapter 2, we derived this as a

special case of the general additive noise case. Since, in this chapter, we we will be

focusing on the additive Gaussian case, we will re-derive this result more directly,

using a more straightforward proof. First, we write the observation equation for

additive Gaussian noise contamination:

PY |X(y|x) =
1

(2π)n/2|Λ|1/2
e−

1
2
(y−x)T Λ−1(y−x) (3.4)

Next, note that this expression implies that

∇yPY |X(y|x) = Λ−1PY |X(y|x)(x − y) . (3.5)

Taking the gradient of

PY (y) =

∫
PY |X(y|x)PX(x)dx (3.6)
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with respect to y, dividing by PY (y), and substituting Eq. (3.5) yields:

∇yPY (y)

PY (y)
=

∫
PX(x)∇yPY |X(y|x) dx

PY (y)

=
Λ−1

∫
PX(x) PY |X(y|x) (x − y) dx

PY (y)

= Λ−1

∫
PX|Y (x|y) (x − y) dx

= Λ−1 [E{X|Y = y} − y] . (3.7)

Finally, rearranging the terms gives Eq. (3.2). In what follows, we will restrict

ourselves to discussing the case of scalar data.

3.2 Learning the estimator function from data

The prior-free formulation of the BLS estimator shifts the problem from one of

approximating the prior, a distribution from which samples are generally not

available, to one of approximating the noisy distribution, from which samples are

available. But simple histograms will not suffice for this approximation, because

Eq.(3.2) requires us to find the logarithmic derivative of the distribution.

3.2.1 Approximating local logarithmic derivative

A natural solution for this problem is to approximate the logarithmic derivative of

the density at the observation Yk = y as being constant over some interval (x0, x1)

containing y. This will be a good approximation if the density is approximately

exponential in the interval:

PY (y) ≈ ce−ay, x0 < y < x1 (3.8)
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where a is the estimate of the logarithmic derivative in the interval (x0, x1). Note

that, in our problem, it is the a’s which are to be used for the estimator, while the

c’s are irrelevant. For this reason, we look instead at the conditional density of y

given that y is in the interval (x0, x1)

PY |Y ∈(x0,x1)(y) =
e−ay

∫ x1

x0
e−aydy

I(x0,x1)

=
a
2
e−a(y−x̄)

sinh(a
2
∆x)

I(x0,x1) (3.9)

where I(x0,x1) denotes the indicator function of (x0, x1), x̄ = x0+x1

2
and ∆x = x1−x0.

Comparing this with Eq. (3.8), we see that the conditional density is also an

exponential function of y over the interval (x0, x1), with the same exponent a, but

is normalized so that c no longer appears, and so that it integrates to one over the

interval. If we then have observations Yn drawn from PY (y), and keep only data

which fall in (x0, x1), these data will have distribution PY |Y ∈(x0,x1)(y), so we can

use this to estimate the parameter a.

One very popular estimator used for such type of problems is the Maximum

Likelihood (ML) estimator. Assuming that Eq.(3.9) is a good approximation of

the conditional density on (x0, x1), this estimator can be written

â = arg max
a

∑

{n:Yn∈(x0,x1)}
ln(PY |Y ∈(x0,x1)(Yn))

= arg max
a

{ln(a) − a(Ȳ − x̄) − ln(sinh(
a

2
∆x))} (3.10)

where

Ȳ
def
=

1

#{Yn ∈ (x0, x1)}
∑

Yn∈(x0,x1)

Yn (3.11)
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is the average of the data that fall into (x0, x1). Setting the derivative of Eq. (3.10)

with respect to a equal to zero yields

1

â
− (Ȳ − x̄) − coth(

â

2
∆x)

∆x

2
= 0 (3.12)

or

1
â∆x

2

− coth(
â∆x

2
) =

Ȳ − x̄
∆x
2

(3.13)

Solving this for â gives

â =
2

∆x
f−1(

Ȳ − x̄
∆x
2

) (3.14)

where

f(y) =
1

y
− coth(y) (3.15)

This local exponential approximation is similar to that used in [28] except that,

since we are approximating the local conditional density, c disappears from the

equation for â. This has the benefit that we only need to invert a scalar function

of one variable, f , to calculate the estimate at all points, instead of inverting a two

dimensional vector function of two variables, as in the other method.

Obviously, it is Ȳ , the local mean, which requires the most calculation, but,

since most of this calculation comes from adding up the value of data which fall

in the interval, this may be done in an iterative way, subtracting or adding from

a running sum. This method is efficient enough that it may be calculated at each

data point, instead of on a grid with interpolation.
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3.2.2 Choice of binwidth

In order to calculate Eq. (3.14) for a particular y, it is necessary to choose the

interval (x0, x1), or, equivalently, to choose the binwidth h = x1 − x0. In order

to say what we mean by an optimal binwidth, we must choose a measure of how

”good” an estimate is. Once again, we will use the MSE of the estimate, which

may be separated into a variance term and a bias term

E{(â − a)2} = E{((â − E{â}) + (E{â} − a))2}

= E{(â − E{â})2} + (E{â} − a)2

= V ar{â} + (E{â} − a))2 (3.16)

where â is the data-dependent estimate of the true value a. The first term is

the variance of the estimator, â and will decrease as the binwidth of the interval is

increased, since more data will fall into the interval, giving a more reliable estimate.

The second term is the squared bias, which will conversely increase as the interval

is increased, since the exponential fit of the density over the interval will in general

become worse, which means that the estimate â will not give a good estimate of

the true value of the logarithmic derivative, a. This is known as the bias-variance

tradeoff.

In order to choose an optimal binwidth, we must analyze how Eq. (3.16) behaves

as a function of the binwidth, h. For large amounts of data, we expect h to be

small, and so we may use small h approximations for the bias and variance. In

general, the variance in estimating the parameter, a, for the interval (x0, x1) will

depend inversely on the amount of data which falls in the interval. If there are N

total data points, we will approximate the number falling in the interval (x0, x1)
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as

n ≈ PY (y)Nh (3.17)

Hence, we will assume that

V ar{â} ≈ C

PY (y)Nh
(3.18)

for an appropriate constant, C.

On the other hand, the squared bias will generally depend only on how well

the exponential fits the true density over the interval. As h → 0 the bias for the

interval will decrease to zero. For small h we will therefore assume that

(E{â} − a)2 ≈ Dhm (3.19)

where D = D(PY , y) depends only on the shape of PY in the interval, but not on

the actual value PY (y) (see [28]). In what follows, we will assume that the density

is smooth enough that we may ignore the dependence of D on shape, and treat D

as constant for all values of y. Since, in our case, PY comes from convolving PX

with a Gaussian, PY will be at least as smooth as PX , and will become smoother

as the noise variance increases. Therefore, this approximation will become better

as the amount of noise increases.

Assuming that the approximation of the true logarithmic derivative of the

density by a constant is of first order in h leads to the result that the squared bias

will be of order h2, which gives m = 2. This may be justified by the use of Taylor

series when h is very small.
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Putting everything together than yields the approximation

E{(â − a)2} ≈ C

PY (y)Nh
+ Dhm (3.20)

Setting the derivative of this equation with respect to h equal to zero yields

Dmhm+1 − C

PY (y)N
= 0 (3.21)

or

h = (
C

DmPY (y)N
)

1
m+1 (3.22)

which verifies our assumption that h → 0 as the amount of data increases. Sub-

stituting this into Eq. (3.20) gives

(
(DmCm)

1
m+1

(PY (y)
m

m+1 )
+ D

1
m+1 (

C

mPY (y)
)

m
m+1

)
1

N
m

m+1

(3.23)

which also shows that both the squared bias and variance, and hence the MSE, go

to zero as N → ∞. Using Eq. (3.17) to approximate PY in Eq. (3.22) gives

h ≈ (
Ch

Dmn
)

1
m+1 (3.24)

Rearranging this equation gives

nhm =
C

Dm
(3.25)

which says that the optimal binwidth is chosen such that the product of the number

of points which fall in the interval times some power of the binwidth of the interval
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is constant.

3.2.3 Choice of power

To determine the binwidth, it is necessary to determine the constant m. If m = 0,

then n, the number of data points in the neighborhood, will be constant for all data

points, a method known as k nearest neighbors (KNN). In the limit as m → ∞,

the binwidth will be fixed at a constant value for all data points. As discussed, a

first order assumption of the fit will lead to m = 2, in which case there will be an

interplay between the binwidth and number of points in the interval.

In this section we compare the empirical behavior of these three methods of

binwidth selection to see how they behave for two different distributions. To put

all three methods on the same footing, the constant product for each is chosen so

that the average binwidth across data points is the same for all three methods.

Thus, we are looking at how well the three methods allocate this average binwidth.

The first density we examine is the Cauchy distribution.

PY (y) ∝ 1

1 + 0.5y2
(3.26)

so that

d

dy
ln(PY (y)) =

y

1 + 0.5y2
(3.27)

Figure 3.1 shows the behavior of the estimate of the logarithmic derivative for

the three different methods of binwidth selection for a sample of 9, 000 points

drawn from the Cauchy distribution. As can be seen, the KNN method (m = 0)

has a systematic bias in the tails, the fixed binwidth (m → ∞) method has larger

variance in the tails, while the m = 2 method has reduced the bias seen in the KNN
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(a) (b)

(c)

Fig. 3.1: Estimate of logarithmic derivative of Cauchy (dashed line is actual value)
(a) using KNN (m = 0); (b)using fixed binwidth (m = ∞; (c)
using m = 2 to select binwidth

method without introducing the variance present in the fixed binwidth method.

The second density we will look at will be the Laplacian distribution.

PY (y) ∝ e−|x| (3.28)

which gives

d

dy
ln(PY (y)) = sgn(x) (3.29)

Figure 3.2 shows the behavior of the estimate of the logarithmic derivative for

the three different methods of binwidth selection on 9, 000 points drawn from the

Laplacian distribution. Notice that in this case, since the logarithmic derivative is

constant away from the origin, there won’t be any bias problem. As can be seen

in this case, the KNN method has more of a variance problem near the origin, the
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(a) (b)

(c)

Fig. 3.2: Estimate of logarithmic derivative of Laplacian (dashed line is actual
value) (a) using KNN (m = 0); (b)using fixed binwidth (m = ∞; (c)
using m = 2 to select binwidth

fixed binwidth method has larger variance in the tails, while the m = 2 method

has reduced the variance near the origin without introducing variance in the tails.

Based on this analysis, in what follows we will restrict ourselves to using the m = 2

method.

The next question is how to choose what the average binwidth should be.

Equivalently, we are trying to determine what the constant value of the product

in Eq. (3.25) should be. In the examples that follow, we will choose the constant

so that the average binwidth across the data is proportional to the σY N− 1
m+1 ,

where σY is the standard deviation of the observed data Y . The dependence on

σY stems from the intuition that if the data are multiplied by some constant the

density will simply be stretched out by that factor, and so the binwidth should get

proportionally wider to include the same data and exponential fit. The behavior
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as a function of N is read off Eq. (3.22).

Now that we have a method of binwidth selection, Ȳ ,x̄ and ∆x, can all be calcu-

lated, then Eq. (3.14) applied to obtain the estimate of the logarithmic derivative,

which is then used in Eq. (3.2) to obtain the BLS estimator.

3.3 Approach to ideal BLS estimator with in-

crease in data

Since each binwidth shrinks and the amount of data in each bin increases with

increasing amounts of data, our BLS estimator will approach the ideal BLS es-

timator as the amount of data increases. In Fig. 3.3, (which also appears as a

sub-figure of Fig. 2.1 in Chapter 2) we illustrate this behavior. For this figure, the

density of the prior signal is a generalized Gaussian distribution (GGD)

PX(x) ∝ e−|x/s|p . (3.30)

with s = 1, and exponent p = 0.5. As described in Chapter 2, we characterize the

behavior of this estimator as a function of the number of data points, N , by running

many Monte Carlo simulations for each N and indicating the mean improvement

in empirical SNR (as measured by increase in empirical SNR compared to the

ML estimator, which is the identity function), the mean improvement using the
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Fig. 3.3: Empirical convergence of prior-free estimator to optimal BLS solution, as
a function number of observed samples of Y . For each number of observations, each
estimator is simulated many times. Black dashed lines show the improvement of
the prior-free estimator, averaged over simulations, relative to the ML estimator.
White line shows the mean improvement using the conventional BLS solution,
E{X|Y = y}, assuming the prior density is known. Gray regions denote ± one
standard deviation.

conventional BLS estimation function,

E{X|Y = y} =

∫
xPX(x)PY |X(y|x)dx∫
PX(x)PY |X(y|x)dx

=

∫
xPX(x)e

−(y−x)2

2σ2 dx
∫

PX(x)e
−(y−x)2

2σ2 dx
, (3.31)

and the standard deviations of the improvements taken over our simulations.

As can be seen, our estimator does approach the behavior of the ideal BLS

estimator as the amount of data increases. It does this without making any as-

sumption about the prior density of the data, instead adapting to the data it does

observe. As can also be seen, the variance of this estimator is quite low, for even
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moderate amounts of data.

3.4 Comparison with Empirical Bayes

As we have discussed, our prior free estimator will adapt to the observed data, and,

given enough data, will give behavior that is near ideal, regardless of the form of

the prior distribution. If, instead, we were to assume a particular parametric form

for the prior distribution, as in the commonly used Empirical Bayes method[10],

and the true prior did not fall into this parametric family, then the behavior of

this estimator would likely be compromised. Thus, our estimator gives a potential

advantage over methods which use parametric forms for estimators, since it makes

no assumptions about the prior distribution. In exchange, it may require more

data than a parametric method. In this section, we will compare the empirical

behavior of our estimator with that of a parametric estimator under conditions

where the assumptions of the parametric estimator are valid and under conditions

where these assumptions are false.

For our simulations, the Empirical Bayes estimator, based on [26], assumes a

GGD form for the prior, as in Eq. (3.30). The parameters, p and s, are fit to the

noisy observation by maximizing the likelihood of the noisy data, and the estimator

is computed by numerical integration of

X̂GGD(y) =

∫
xe−|x/s|pe

−(y−x)2

2σ2 dx
∫

e−|x/s|pe
−(y−x)2

2σ2 dx
(3.32)

and this estimator is then applied to the noisy observations.
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3.4.1 Prior Distributions

Since the eventual application we have in mind is in image processing, we picked

9, 000 data points in our simulation, a reasonable number for such applications.

The priors we will deal with are shown in Fig. 3.4. The first is the Laplacian prior

(a special case of the GGD), the second is a Laplacian prior with shifted mean,

the third is a bimodal Laplacian

PX(x) ∝ 1

2
e−|x−m| +

1

2
e−|x+m| (3.33)

and the fourth is an asymmetric GGD:

PX(x) ∝






e
−| x

s1
|p1

, x ≤ 0

e
−| x

s2
|p2

, x > 0

(3.34)

where the constants are chosen such that the distribution still has zero mean.

Thus, the first distribution fits the model assumed by the Empirical Bayes method,

whereas the last three break it in some simple ways.

3.4.2 Results

In these cases, since the prior is known the optimal solution may be calculated

directly numerically integrating Eq. (3.31). Figure 3.5 shows the estimators, also

known as coring functions, obtained for the prior-free and GGD methods from

the observed data, as compared with the optimal solution calculated by numerical

integration of Eq. (3.31). Table 3.4.2 shows the empirical SNR obtained from

applying these methods to the observed data, for the priors discussed, as simulated
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(a) (b)

(c) (d)

Fig. 3.4: Other Priors: (a) Laplacian (b) shifted Laplacian (c) bimodal Laplacian
(d) asymmetric GGD

for various values of noise power.

As is to be expected, in the case where the prior actually fits the assumptions

of the GGD model, then the GGD method will outperform the prior-free method,

though, it should be noted, not by very much. In the cases where the assumption

on the prior is broken in some simple ways, however, the performance of the GGD

method degrades considerably while that of the the prior-free method remains

surprisingly close to ideal.

3.5 Image denoising example

In this section we describe a specific example of this prior-free approach as ap-

plied to image denoising. The development of multi-scale (wavelet) representa-
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Fig. 3.5: Coring Functions for: (a) Laplacian (b) shifted Laplacian (c) bimodal
Laplacian (d) asymmetric GGD prior distributions. In all figures, the dotted line
denotes the identity function for reference.
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Prior Noise Denoised SNR

Distn. SNR Opt. GGD Prior-free

Lapl. 1.800 4.226 4.225 4.218
4.800 6.298 6.297 6.291
7.800 8.667 8.667 8.666
10.800 11.301 11.301 11.299

Shifted 1.800 4.219 2.049 4.209
4.800 6.273 4.920 6.268
7.800 8.655 7.762 8.651
10.800 11.285 10.735 11.284

Bimodal 1.800 4.572 4.375 4.547
4.800 7.491 6.767 7.468
7.800 10.927 9.262 10.885
10.800 13.651 11.776 13.603

Asym. 1.800 7.102 6.398 7.055
4.800 8.944 8.170 8.915
7.800 10.787 10.044 10.767
10.800 12.811 12.143 12.791

Table 3.1: Simulated denoising results.
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tions has led to substantial improvements in many signal processing applications,

especially denoising. Typically, the signal (or image) is decomposed into frequency

bands at multiple scales, each of which is independently denoised by applying a

pointwise nonlinear shrinkage function that suppresses low-amplitude values. The

concept was developed originally in the television engineering literature (where it

is known as “coring”[30, 31, e.g. ]), and specific shrinkage functions have been

derived under a variety of formulations, including minimax optimality under a

smoothness condition [32, 33, 34], and Bayesian estimation with non-Gaussian pri-

ors [26, 35, 36, 37, 38, 39, 40, 41, e.g. ]. Note that, although such methods denoise

each coefficient separately, a process which will not generally be optimal unless the

coefficients are independent (which is impossible for redundant transformations.

for example), such marginal denoising methods have proven effective. This must

be because the statistics of the coefficients, while not independent, are sufficiently

”close” to independent for this method to give improvement.

As in [26, 38, 42], we begin by decomposing the noisy image using a steerable

pyramid. This is a redundant, invertible linear transform that separates the image

content into oriented octave-bandwidth frequency subbands. We apply our prior

free estimator to each subband separately, using the noisy data in a subband to

construct an estimator for that subband. We then apply the subband estimator to

the noisy coefficients in the subband in order to estimate the values of the original,

noise-free subband. After the coefficients of each subband have been processed, the

inverse pyramid transform is applied in order to reconstruct the denoised image.
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Fig. 3.6: Example estimators (coring functions) for the two subbands: Prior-free
Bayesian estimator (solid), BLS estimator for a GGD (dashed), and optimal soft
threshold (dash-dotted). Dotted line indicates the identity function. Noise stan-
dard deviation σ is also indicated.

3.5.1 Results

We have applied our prior-free Bayesian estimator to several images contaminated

with simulated Gaussian noise. For all examples, the noise variance was assumed

to be known. The results were compared with two other methods of denoising.

The first method [26], described in the last section, uses ML to fit the parameters

of a GGD prior, Eq. (3.30), to the noisy data in the subband. This is justified by

the fact that the GGD is a parametric form which is known to provide good fits for

the marginal densities of coefficients in image subbands [26, 38, 39]. We then use

use this parametric prior to find the associated estimator by numerical integration

of Eq. (3.32).

The second estimator is a “soft threshold” function[32]:

x̂(Y ) =






Y − t, t ≤ Y

0, −t < Y < t

Y + t, Y ≤ −t .

(3.35)
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We make use of the clean, original data to find a soft threshold for each subband

that minimizes the empirical mean squared error in that subband. Thus, the

performance of this method should not be interpreted as resulting from a feasible

denoising algorithm, but rather as an upper bound on thresholding approaches to

denoising. Two example estimators are shown in Fig. 3.6.

Figure 3.7 shows a sample of an image denoised using these three methods.

Table 3.5.1 shows denoising results for some sample images under several noise

conditions. As can be seen, the prior-free approach compares favorably to the

other two, despite the fact that it makes weaker assumptions about the prior than

does the generalized Gaussian, and doesn’t have access to the clean data, as does

the optimum thresholding. Figure 3.8 shows a histogram of SNR improvement

of the prior-free algorithm over optimal thresholding and generalized Gaussian

approaches for nine images at four different noise levels. As we can see, our prior

free method compares favorably with the parametric method, which was based on

detailed empirical knowledge of the statistics of image coefficients.

3.6 Discussion

We’ve developed a modified formulation of the Bayes least squares estimator in

the case of additive Gaussian noise. Unlike the traditional form, this estimator is

written in terms of the distribution of the noisy measurement data, and is thus

more natural for situations in which the prior must be learned from the data.

We’ve shown that as the amount of data is increased, the prior free estimator will

tend to give performance that is near ideal. We’ve also shown that breaking the

assumptions of parametric models of the prior leads to a drastic reduction in the
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Fig. 3.7: Denoising results for the “Feynman” image. (a) original; (b) noisy image
(SNR = 1.8 dB); (c) using optimal thresholding (SNR = 14.11 dB) (d) using
generalized Gaussian (SNR = 13.86 dB) (e) using prior-free denoising (SNR =
13.95 dB)
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Fig. 3.8: Improvement in SNR for prior-free approach compared with the GGD
estimator (left) and optimal thresholding (right). Histograms summarize data for
9 images at 4 noise levels.
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Image Noise Denoised SNR

SNR Opt. Thr. GGD Prior-free

crowd 1.8000 12.3873 12.1682 12.2547
4.8000 13.9415 13.7585 13.7996
7.8000 15.6572 15.4715 15.5225
10.8000 17.4312 17.2917 17.3145

feynman 1.8000 14.1194 13.8432 13.9457
4.8000 15.2441 15.1393 15.1612
7.8000 16.5077 16.4731 16.4417
10.8000 17.7889 17.8045 17.7658

boats 1.8000 12.5215 12.3593 12.4807
4.8000 13.9687 13.8955 13.9661
7.8000 15.5719 15.5383 15.6021
10.8000 17.2541 17.2601 17.3484

einstein 1.8000 10.9483 10.8459 10.7773
4.8000 12.3319 12.2796 12.2191
7.8000 13.7506 13.7469 13.6893
10.8000 15.3258 15.3685 15.3277

lena 1.8000 13.5310 13.2506 13.3814
4.8000 15.0002 14.8227 14.8809
7.8000 16.4823 16.3755 16.4229
10.8000 18.1261 18.0736 18.1233

bench 1.8000 8.0068 8.0795 8.0389
4.8000 9.3484 9.4211 9.3905
7.8000 10.9993 11.0393 11.0213
10.8000 12.9475 12.9762 12.9735

brick 1.8000 7.7446 7.6724 7.6425
4.8000 9.2697 9.2819 9.2668
7.8000 10.8920 11.0206 11.0063
10.8000 12.7608 12.9270 12.9148

bridge 1.8000 9.4794 9.4669 9.4705
4.8000 10.7470 10.7599 10.7403
7.8000 12.1666 12.1983 12.1842
10.8000 13.8568 13.9175 13.9012

Table 3.2: Simulated denoising results.

107



performance of methods based on such assumptions, while the prior-free method is

able to deal with such changes. Finally, we’ve demonstrated the feasibility of this

methodology by applying it to the problem of image denoising, demonstrating that

it performs as well or better than estimators based on marginal prior models found

in the literature, which are based on empirical studies of the marginal statistics of

clean image subbands. Therefore, in situations where the prior distribution of the

clean data is unknown, our method can be used, with some confidence that not

too much is lost by not studying the empirical statistics of clean data, which may

not even be possible in some situations.

It must be pointed out that the prior-free method is restricted in that it requires

a lot of data to be feasible. Also, in cases where an accurate model of the prior is

available, methods that make use of this explicit model will give some improvement,

although we have seen some situations where this is not by much. If nothing is

known about the prior, and there is a lot of data, then the prior-free method should

give improvement over an ad-hoc assumption about the prior.

In order to obtain image denoising results which are competitive with the state

of the art, it is necessary to jointly denoise vectors of coefficients, instead of one

coefficient at a time [42]. While it is true that Eq. (3.2) holds for vectors as well

as scalars, finding neighborhoods of vectors to use in estimating the logarithmic

gradient at a point becomes much more difficult. For higher dimensions the vectors

will tend to be further and further apart (the ”curse” of dimensionality), so great

care must be taken in choosing the shape of the large neighborhoods required to

include sufficient number of data points.
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Chapter 4

Optimal Denoising in Redundant

Bases

As discussed in Chapter 3, image denoising has undergone dramatic improvement

over the past decade, due to both the development of linear decompositions that

simplify the statistical characteristics of the signal, and to new estimators that are

optimized for those characteristics. A standard methodology proceeds by linearly

transforming the image, operating on the transform coefficients with pointwise

nonlinear functions, and then applying the inverse linear transformation. If the

pointwise nonlinearity is chosen from a parametric family, Stein’s unbiased risk es-

timator (SURE) [12], introduced in Chapter 2, may be used to select the estimator

that minimizes the MSE [22]. The most popular transforms are multi-scale decom-

positions, and within this family, empirical evidence indicates that redundant, or

overcomplete, representations are more effective than orthogonal representations

[43, 44, 38]. This fact is somewhat mysterious since the estimators are usually cho-

sen to minimize MSE within each subband of the the transform domain, which, for
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an overcomplete basis, is not the same as the choosing the functions to minimize

MSE in the image domain.

In this chapter we extend the SURE methodology to approximate the image-

domain MSE that results from denoising in an overcomplete basis. We use this to

prove that application of a given denoising function to a basis made overcomplete

through the method known as cycle-spinning or through elimination of decima-

tion is guaranteed to be no worse in MSE than applying the same function in an

orthonormal basis. We also use this extension of SURE to optimize two example

pointwise estimators, operating on undecimated wavelet subbands, to minimize

MSE in the image domain. We show through simulations that this can result in

significant performance improvements.

4.1 Stein’s Lemma for overcomplete bases

Recall from Chapter 2 that if X is a random vector which is corrupted by Additive

White Gaussian Noise (AWGN), Y is the observed, noisy vector and our estimator

is of the form

X̂(Y ) = Y + g(Y )

for g in some family, G, of vector functions, then the MSE, otherwise known as

risk, may be written in a prior free way using Stein’s Lemma:

E
{
|X − (Y + g(Y ))|2

}
= E

{
|g(Y )|2 + 2σ2(∇ · g)(Y )

}
+ σ2d (4.1)
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where d is the dimension of X. Noting that σ2 is a constant, we can write the

optimal estimator as

gopt = arg min
g∈G

E
{
|g(Y )|2 + 2σ2(∇ · g)(Y )

}
. (4.2)

We now think of a clean image as a single vector-valued sample, X, which is

corrupted by AWGN, to form the noisy image Y , which is also a single vector

valued sample. Given Y , gopt can be approximated by minimizing the expression

in braces, which is (up to an additive constant) SURE [12].

It is common to apply estimators to a linearly transformed version of the im-

age, in which the statistical properties are simplified, and in which the form of the

estimators are simpler. Stein’s Lemma is readily extended to this situation. Sup-

pose we have a family of estimators {u + gu(u) : gu ∈ GU} which act on U = WY ,

a transformed version of the image Y . Here W is an m by n matrix representing

a linear transformation which can be complete (m = n) or overcomplete(m > n),

and which has a left inverse W †. The estimate is computed by taking the trans-

form of the sample vector using W , applying gu, and taking the inverse transform

using W †:

X̂(Y ) = W †(WY + gu(WY ))

= Y + W †gu(WY ). (4.3)

To optimize this for MSE, we replace g(Y ) by W †gu(WY ) in Eq. (4.2), and
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after a bit of calculus obtain:

gu,opt =

arg min
gu∈GU

E

{
|W †gu(U)|2 + 2σ2tr

(
WW †∂gu

∂u
(U)

)}
(4.4)

where tr(·) indicates the trace of the matrix. As before, the expression in braces

is an unbiased estimate of MSE, and can be optimized for the single sample of Y .

For simplicity, in what follows we will assume that the transform is a tight frame,

defined as one for which W † = W T .

4.2 Point Estimators

Suppose now that gu operates by applying the scalar function gi to the ith element

of U (the transformed version of Y ). The unbiased risk estimator then becomes

|W T gu(U)|2 + 2σ2
∑

i

niig
′
i(Ui)

where

nij =
(
WW T

)
ij

so that nii are the diagonal elements of (WW T ) (the squared norms of the basis

functions). Often, the transform coefficients are separated into subbands {Sk; k =

1, 2, . . . K}, where each subband contains coefficients which are calculated by tak-

ing the dot product of the image with shifted versions of the same basis function.

If the image has shift invariant statistics, the coefficients in a particular subband

will have the same marginal statistical properties. In this case, the same estimator
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gi will be applied to all coefficients within a band, Si. The unbiased risk estimator

now becomes

|W T gu(U)|2 + 2σ2
∑

k

nk

∑

i∈Sk

g′
k(Ui) (4.5)

where nk is the common value of nii for i ∈ Sk. For a single transformed image U =

WY , this expression provides a criterion for choosing {gk}K
k=1 from an appropriate

family so as to minimize the MSE in the image domain.

4.3 Optimal nonlinearity

It is of theoretical interest to find an equation for the optimal nonlinearities that

one can use for denoising in an overcomplete basis. Suppose that we denoise by

applying gk to the kth band. Then, from Eq.(4.5), the unbiased estimator of risk

will be
∑

k,l

∑

i∈Sk
j∈Sl

gk(Ui)nijgl(Uj) + 2σ2
∑

k

nk

∑

i∈Sk

g′
k(Ui) (4.6)

If the MSE is minimized by the pointwise nonlinearities {gk0}, then

E
{∑

k,l

∑

i∈Sk
j∈Sl

(gk0(Ui) + ǫkgk1(Ui))nij(gl0(Uj) + ǫlgl1(Uj))

+2σ2
∑

k

nk

∑

i∈Sk

(g′
k0(Ui) + ǫkg

′
k1(Ui))

}
(4.7)
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will be minimized at ~ǫ = 0. Setting the gradient with respect to ~ǫ equal to zero at

~ǫ = 0 gives

E
{∑

l

∑

i∈Sk
j∈Sl

gk1(Ui)nijgl0(Uj) + σ2nk

∑

i∈Sk

g′
k1(Ui)

}
= 0 (4.8)

for every 1 ≤ k ≤ K, and for arbitrary gk1.

Writing the expectations out explicitly gives

∫ ∫ ∑

l

∑

i∈Sk
j∈Sl

gk1(u)nijgl0(v)PUi,Uj
(u, v)dudv

= −σ2nk

∫ ∑

i∈Sk

g′
k1(u)PUi

(u)du

= σ2nk

∫ ∑

i∈Sk

gk1(u)P ′
Ui

(u)du (4.9)

where the last step uses integration by parts. We therefore have that

∫
gk1(u)




∑

l

∑

i∈Sk
j∈Sl

nij

∫
gl0(v)PUi,Uj

(u, v)dv


 du

=

∫
gk1(u)

(
σ2nk

∑

i∈Sk

P ′
Ui

(u)

)
du (4.10)

Since this is true for arbitrary gk1 we get

∑

l

∑

i∈Sk
j∈Sl

nij

∫
gl0(v)PUi,Uj

(u, v)dv = σ2nk

∑

i∈Sk

P ′
Ui

(u) (4.11)
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for all k and u. Separating out the term where i = j in the sum we have

∑

i∈Sk

nkgk0(u)PUi
(u) +

∑

l

∑

i∈Sk
j∈Sl
i6=j

nij

∫
gl0(v)PUi,Uj

(u, v)dv

= σ2nk

∑

i∈Sk

P ′
Ui

(u) (4.12)

Since the marginal statistics in a band are all the same we have

gk0(u)NknkPk(u) +
∑

l

∑

i∈Sk
j∈Sl
i6=j

nij

∫
gl0(v)PUi,Uj

(u, v)dv

= σ2nkNkP
′
k(u) (4.13)

where Nk is the number of elements in the kth band, and Pk denotes the marginal

distribution of coefficients in that band. This can be rewritten

gk0(u) +
1

Nknk

∑

l

∑

i∈Sk
j∈Sl
i6=j

nij

∫
gl0(v)

PUi,Uj
(u, v)

Pk(u)
dv

= gk0(u) +
1

Nknk

∑

n

∑

i∈Sk
j∈Sl
i6=j

nijE{gl0(Uj)|Ui = u}

= σ2P ′
k(u)

Pk(u)
(4.14)

We can also write this as a fixed point equation

gk0(u)

= σ2P ′
k(u)

Pk(u)
− 1

Nknk

∑

l

∑

i∈Sk
j∈Sl
i6=j

nijE{gl0(Uj)|Ui = u} (4.15)
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Thus, in general, we see that the optimal nonlinearity will depend on the pairwise

statistics of coefficients. Since we are dealing with AWGN, this dependency can

only be introduced through the redundancy of the transform or through depen-

dencies introduced by the statistics of the underlying signal, X. If the basis is a

complete one, i.e. if nij = δij, then this equation reduces to

gk0(u) = σ2P ′
k(u)

Pk(u)
(4.16)

which is same result as would be obtained by assuming that the coefficients in

a subband are iid(since MSE in the transform domain is the same as MSE in

the image domain in this case), as in Eq. (3.2). Recall however, that we made

no assumption about the statistics of the underlying vector signal, X. We see

that even if the coefficients have dependencies introduced by the statistics of X,

the optimal marginal denoiser for an complete decomposition is not affected by

these dependencies, and, instead, only depends on the marginal statistics of the

coefficients.

4.4 Redundancy improves performance

Eq. (4.5) allows us to explain the empirically observed fact [44, 38] that the per-

formance of marginal denoising in orthogonal wavelet bases can be improved by

adding redundancy to the transform through cycle spinning or elimination of dec-

imation. We begin by describing these methods of adding redundancy.

In an orthogonal wavelet decomposition W , subbands are calculated by taking

the dot product of an image with shifts of a basis vector and then subsampling,
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or decimating, the subbands so that the transform of the image has the same

dimension as the image, and so that the transform is unitary:

W T W = WW T = I (4.17)

One method of introducing redundancy to the transform is to remove the deci-

mation, which gives an undecimated wavelet transform represented by the matrix

W ud. Each subband of this transform of the image will be the same size as the

original image, which is therefore redundant by the subsampling factor. If we nor-

malize the basis vectors for each subband by the square root of the redundancy of

that subband, then the undecimated transform will continue to be a tight frame

(W ud)T W ud = I (4.18)

The dimension of transform domain will be equal to the product of the dimension

of the image domain and the number of subbands.

A cycle-spun decomposition [44], W c, on the other hand, acts by taking wavelet

decompositions of all possible shifts of the image, and dividing by the square root

of the dimension of the image domain. To reconstruct, the coefficients are again

divided by the square root of the dimension of the image domain, the inverse

wavelet transforms are computed for each shift, and the corresponding images

are shifted back and added. Note that applying the transform and then inverse

transforming is equivalent to taking the wavelet transform of all shifts, inverse

transforming these, shifting back and then averaging, which does indeed give back

the original image. The dimension of the transform domain will be the square

of the dimension of the original image domain, so that this transform is very
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overcomplete. Note that the transform, besides being overcomplete, will also have

repetition of some coefficients. Instead of shifting the image and calculating the

wavelet transform, we may equivalently use a redundant basis comprised of all

possible shifts of the wavelet basis vectors. We can therefore view the transform,

W c, as a single overcomplete transform. Because each wavelet transform is unitary

and we have appropriately normalized the coefficients, the cycle-spun transform

will also be a tight frame

(W c)T W c = I (4.19)

For didactic purposes we will show that using a cycle spun decomposition can give

MSE no worse than using the associated orthogonal wavelet decomposition. The

result for the undecimated wavelet is very similar.

For W an orthogonal wavelet decomposition, the risk may be written using the

unbiased estimate given in Eq. (4.5)

E

{
∑

k

∑

i∈Sk

gk(Ui)
2 + 2σ2

∑

k

nk

∑

i∈Sk

g′
k(Ui)

}
. (4.20)

The nk are all identically one in this case, but we leave them in nonetheless. Since

both terms are summed over k, each gk can be independently optimized over the

data from the corresponding subband, Sk.

Cycle spinning corresponds to replicating each basis function at N translated

positions. Each subband will therefore contain N times as many coefficients, and

their magnitudes will be reduced by factor of
√

N , in order to insure that the

overcomplete transform is still unitary. As such, the coefficients in each band of

the overcomplete transform will have the same marginal statistics as those in the

corresponding band of the complete transform, when rescaled by a factor of
√

N .
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An unbiased estimate of the MSE for the complete decomposition in Eq. (4.20),

may therefore be re-written instead in terms of the cycle-spun coefficients as

E

{
∑

k

1

N

∑

i∈Sk

gk(
√

NU c
i )

2 + 2σ2
∑

k

nk

N

∑

i∈Sk

g′
k(
√

NU c
i )

}
(4.21)

where the c superscript denotes the cycle-spun coefficients. Defining hk(u) =

1√
N

gk(
√

Nu), and noting that the norms of the cycle-spun basis vectors are a factor

of
√

N less than those of the original orthogonal basis, we can write Eq. (4.21) as

the expected value of

∑

k

∑

i∈Sk

hk(U
c
i )

2 + 2σ2
∑

k

nc
k

∑

i∈Sk

h′
k(U

c
i ) (4.22)

where nc
k = nk/N . Note that if we are using gk as the marginal function to denoise

the coefficients in the wavelet representation, the scaling of the coefficients and the

fact that new coefficients in a band have the same marginal statistics, implies that

hk is the marginal function we would apply to the coefficients in the cycle-spun

representation.

Last, if W c is the overcomplete cycle-spun transformation matrix, then (W c)T

is a projection operator and |(W c)T u|2 ≤ |u|2 for any vector u. This implies that

∑

k

∑

i∈Sk

hk(U
c
i )

2 ≥ |(W c)T h(U c)|2 (4.23)

where h is the function that applies hk to each of the bands Sk. Putting this all

together, the MSE estimate for the orthogonal case, given by Eq. (4.22), is greater
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θ

Fig. 4.1: Two families of pointwise estimator functions, gθ(y). Left: soft threshold.
Right: linear basis of “bump” functions.

than or equal to

|(W c)T h(U c)|2 + 2σ2
∑

k

nc
k

∑

i∈Sk

h′
k(U

c
i ). (4.24)

Comparing this to Eq. (4.5), we see that it is just the unbiased estimator of the

error in using the cycle-spun decomposition to denoise, thus concluding the proof.

The result may be extended to undecimated wavelets, in which the number of

coefficients in each band will be multiplied by a different factor.

4.5 Simulations

Equation (4.5) may be used to jointly optimize a set of estimators, gk, to be

applied to the subbands Sk. In this section we demonstrate this for two families of

estimators, illustrated in Fig. 4.1. The first consists of soft thresholding functions,
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Orthonormal wavelet Undecimated wavelet

SUREShrink SUREBumps SUREShrink SUREBumps

subband im subband im

23.3 23.5 24.2 24.3 24.1 24.5

Table 4.1: Comparison of various denoising methods, expressed as PSNR, applied
to the “Barbara” image. In the undecimated cases, we subdivide into cases where
the estimator for each subband was optimized separately, and those where the
estimators are jointly optimized to minimize MSE in the image domain. Noisy
PSNR is 15.2 dB (σ=44.4).

first introduced in Chapter 2. For these functions

gθ(y) =






−y, |y| ≤ θ

−sgn(y)θ, |y| > θ

The second is constructed from the ”bump” basis of Chapter 2:

gθ(y) =
∑

k

θkbk(y), (4.25)

where

bk(y) = y cos2

(
1

α
sgn(y) log2 (|y|/σ + 1) − kπ

2

)
.

We use Eq. (4.20) to optimize the selection of thresholds for orthogonal wavelet

subbands, a method known as SUREShrink [29]. We use the same equation to

optimize subband estimators constructed from the bumps basis, a method which

we will refer to as SUREBumps [24] (a similar method, using a different basis, was

used with orthogonal wavelets in [23]). As can be seen in Table 4.1, SUREBumps

gives some improvement over SUREShrink. Note that in this table, instead of
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(a) (b)

(c) (d)

Fig. 4.2: Denoising results corresponding to Table 4.1. (a) original (cropped); (b)
noisy; (c) Thresholding, optimized for each subband of an undecimated wavelet;
(f) Bumps, jointly optimized to minimize MSE in the image domain. All PSNRs
are listed in Table4.1

using SNR to measure performance, we use PSNR, defined as

SNR(dB) = 20 log10(
2552

∑N
k=1(X̂k − Xk)2

) (4.26)

Comparing this with Eq. (2.134), we see that, for a given image, PSNR differs from

SNR by a constant. Therefore differences between two PSNRs are equal to the

differences between the corresponding SNRs. Next, we use Eq. (4.20) to optimize

parameters for the soft-threshold (as in [44]) and the bumps in the bands of an un-

decimated wavelet transform. Note that the estimator for each subband is chosen

122



to minimize the MSE for that subband, which is suboptimal in the image domain

since the transform is overcomplete. This gives improvement for both methods, as

expected from the proof of section 4.4. But whereas SUREBumps seemed the supe-

rior method for denoising on an orthonormal wavelet decomposition, SUREShrink

appears to be superior when applied in the redundant basis. However, if we now use

Eq. (4.5) to optimize in the image domain, we see that SUREBumps in the image

domain shows significant improvement over SUREBumps optimized for subbands,

surpassing the result with thresholding. The PSNR improvements are consistent

with visual appearance, as can be seen in example images shown in Fig. 4.2.

We note that while optimizing Eq. (4.5) for bumps in an overcomplete basis is a

relatively simple least squares problem, optimizing for the thresholds is a noncon-

vex optimization problem, and attempts to solve it may get stuck in local minima.

As such, it might be possible to improve the result for optimizing thresholding in

the image-domain in Table 4.1.

We have examined the behavior of SUREBumps with orthonormal wavelets and

undecimated wavelets, over a wide range of noise levels and for a number of images.

We did not include thresholding in these comparisons because of the difficulty in

optimizing for thresholding in the image domain, and because our experiments in-

dicate that SUREBumps consistently outperforms SUREShrink in an orthonormal

wavelet basis. Figure 4.3 shows the improvement in PSNR relative to SUREShrink

on the undecimated wavelet, optimized on subbands. As mentioned above (but

not shown in the figure), SUREBumps generally outperforms thresholding on an

orthonormal wavelet. Using SUREBumps on an undecimated wavelet improves

its performance, but as can be seen, this performance generally falls short of the

behavior of SUREShrink optimized within subbands of the undecimated wavelet.
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However, if we now optimize for image domain MSE, the behavior of SUREBumps

on undecimated wavelets significantly outperforms SUREShrink on undecimated

wavelets.

4.6 Discussion

We have generalized Stein’s Lemma to examine overcomplete representations of

the signal, and used this to prove that the expected MSE for marginal denoising

in a representation that is made redundant through spatial replication of basis

functions (e.g. cycle-spinning, undecimated wavelets) is never larger than in the

original non-redundant representation. We have used this extended SURE to de-

sign estimators that are applied to subbands of an overcomplete representation,

but that are optimized for MSE in the image domain. We have shown simula-

tions demonstrating that optimization of the estimator in the image domain leads

to substantial improvement over the suboptimal application of SURE in each the

subbands.

The results demonstrate the importance of distinguishing between the method

of denoising (e.g., thresholding or bumps), the decomposition to which it is ap-

plied (e.g., orthogonal vs. redundant), and the domain in which it is optimized

(subbands vs. image). If we were to compare, say, SUREBumps on an orthonor-

mal wavelet and SUREShrink on an undecimated wavelet, we might come to the

erroneous conclusion that thresholding is superior to bumps, when in fact the ad-

vantage is entirely derived from the overcompleteness of the basis. In addition,

while one method of marginal denoising may be superior to another on an orthog-

onal basis, this benefit may be lost when applying the method to a redundant
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basis. In future studies, we plan to elaborate on the interaction of the choice of

basis with the complexity of denoising method.

The denoising results shown here are meant to illustrate the use of Stein’s

lemma in the overcomplete case. The methodology is simple, and one can imagine

many improvements. In the case of bumps, we have chosen a fixed number of

bumps for all bands in all simulations. This could be improved by adapting the

dimensionality of the basis both to the noise level and to amount of data in each

band. It is also likely that improvement could come from use of an oriented basis

(e.g., steerable pyramid [45], complex wavelets [46], curvelets [47]). Finally, the

image-domain SURE methodology that we have developed applies to any sort

of denoiser that is applied to a transformed version of the data. This can be

used to optimize more complex estimators that operate on clusters of coefficients,

[48, 42, 23].
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Fig. 4.3: Comparison of denoising results for three estimators. Each group of
lines (indicated by gray regions) shows results for one estimator. Each line within
a group indicates improvement in PSNR (dB) of the denoised image relative to
SUREShrink with undecimated wavelets (optimized within subbands), as a func-
tion of input PSNR, for one of eight images. Bottom group: SUREBumps with
orthogonal wavelets; middle group: SUREBumps with undecimated wavelets, op-
timized within subbands; top group: SUREBumps, with undecimated wavelets,
optimized for image-domain MSE.
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