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Neurons transmit information with spike trains that differ across repeated measurements. The origin of this
variability is unknown, but it is common to describe spike count distributions as Poisson, despite the fact that
their variance generally exceeds that expected of a Poisson process. This is likely because neurons' firing rates
are also at the mercy of numerous uncontrolled and/or unobserved modulatory factors that alter their gain,
including the influence of recently emitted spikes, locally-generated gain control, top-down signals (e.g.
attention, arousal, motivation), and physiological conditions (e.g. metabolic resource availability). Regardless
of their origin, fluctuations in these signals can confound or bias the inferences that one derives from spiking
responses.

These effects can be captured by a modulated Poisson model, whose rate is the product of a stimulus-driven
response function and an unknown modulatory signal (Goris, Movshon, Simoncelli, 2013). Here, we extend this
model, by including modulatory elements that are known (specifically, spike-history dependence, as in
previous GLM models, Pillow et al, 2008), and by constraining the remaining latent modulatory signals to be
smooth in time. We fit the entire model, including hyperparameters, via evidence optimization (Park & Pillow,
2011), to the responses of ferret auditory midbrain and cortical neurons to complex sounds. Integrating out
the latent modulators yields more readily-interpretable receptive field estimates than a standard Poisson
model. Conversely, integrating out the stimulus dependence yields estimates of the slowly-varying latent
modulators. For example, when applied to array recordings of macaque V1, we find complex spatial patterns
of correlation amongst the latent modulators, including clusters of co-modulated units. In sum, use of the
modulated Poisson model improves inference, and enables the study of signals underlying non-stationarities in
neural responses.

Fig. 1: Graphical model representation of the Modulated-
Poisson model. At every moment in time (t¢), the spike
count (¥,) is drawn from a Poisson distribution with rate
4 . In a classical Poisson model, the rate is a function of
the current stimulus (z,), and a set of parameters (k), via
latent some function p, =v, = f(z,,k) . In the Modulated-Poisson
modulator model (MoP), the firing rate is modulated by a
"""""" multiplicative interaction with a latent (unobserved)
variable g;, via u; =g, -v; . The gain we assume is positive,
by writing g, =exp(a,), and the dynamics on a are
----- soooo- lowpass, via a~N(0,C(6,)) with C(6,) the ALDf prior
despler?\Eeu:ce (Park & Pillow, 2011) with hyperparameters 6, . It is
possible to assume other dynamics on a. We also place
. priors on k with hyperparameters 6, . Inference on 6, ,60,
time — is via evidence optimization, and Laplace-posteriors are
estimated for k£ and a. Inference is by coordinate gradient
descent. For data in Figs. 3-4, we used ALD priors on k.

Figure 2: LNP/GLM version of the Modulated-
Poisson (MoP) model. The stimulus is convolved
9t with a linear filter, &k, and the response passed
through a point nonlinearity (here, an
response exponential). This signal is multiplied by two
distinct modulatory signals: a filtered and
Yt exponentiated copy of the previously emitted
time spike train, and a latent modulatory signal that
is assumed to be temporally smooth. The
resulting product signal provides the
instantaneous rate for a Poisson spike-
generator.
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Figure 3: Comparison of GLM to the MoP model, in explaining responses of an auditory midbrain (IC)
neuron (data from Rabinowitz et al., 2013). (A) Binned spike counts collected over 1 hr of recording time
show a pronounced non-stationarity in firing rate. This could be due to physiological decline, or reduced
spike detectability over time. (B) Estimated GLM parameters. Left: spectrotemporal receptive field. Right:
spike feedback kernel (black line indicates MAP estimate, red lines are samples from posterior). In order
to capture the monotonic decline in firing rate over time, the feedback kernel has a substantial temporal
extent, and an unusual shape. (C) Simulated model spike rate compared to measured spike rate. (D)
Estimated parameters for the Modulated-Poisson model. Left: estimated time-varying (latent) modulatory
signal. Middle/Right: spectrotemporal receptive field and spike feedback kernel (as in GLM model). The
latent modulatory input explains the slow non-stationarity in firing rates, freeing the spike feedback term
to reveal fast modulations of gain. (E) Simulated model spike rate is improved, relative to the GLM model.
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Figure 4: Properties of latent modulators for model fit to array data from anesthetized macaque V1 (data
from Graf et al., 2011). Monkeys were shown a sequence of oriented gratings, over a duration of ~2.5 hrs.
Each grating was shown for 1.28 sec, with 1.28 sec (uniform-contrast) delay between successive stimuli.
Spikes were recorded on Utah arrays over a 4mm x 4mm region of visual cortex; from units isolated on
unique electrodes, we concurrently estimated both orientation tuning curves, and the latent modulators. (A)
Latent modulating signals, for each of the 77 units recorded concurrently. Signals are shown as log(gain)
values, a, (see Fig. 1), normalized (z-scored) for each unit. The time-scale of the gain fluctuations is a
hyperparameter that is learned for each unit. Several units experienced no significant gain modulation, and
were best explained as having constant gain throughout (horizontal lines). Most notably, clear concurrent
patterns are visible, whereby some (but not all) units participate in nearly identical fluctuations in gain. (B)
Cross-correlation between the inferred signals in (A), with cells sorted by a hierarchical clustering algorithm.
There are groups of units which undergo highly-correlated modulation (i.e., they have nearly identical latent
modulators), and others with modulatory signals that are nearly independent of those of other neurons.
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