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Abstract

We present a statistical characterization of texture images in the context of an over-
complete complex wavelet transform. The characterization is based on empirical observa-
tions of statistical regularities in such images, and parameterized by (1) the local auto-
correlation of the coeÆcients in each subband; (2) both the local auto-correlation and
cross-correlation of coeÆcient magnitudes at other orientations and spatial scales; and (3)
the �rst few moments of the image pixel histogram. We develop an eÆcient algorithm
for synthesizing random images subject to these constraints using alternated projections,
and demonstrate its e�ectiveness on a wide range of synthetic and natural textures. In
particular, we show that many important structural elements in textures (e.g., edges, re-
peated patterns or alternated patches of simpler texture), can be captured through joint
second order statistics of the coeÆcient magnitudes. We also show the 
exibility of the
representation, by applying to a variety of tasks which can be viewed as constrained image
synthesis problems, such as spatial and spectral extrapolation.
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Vision is arguably our most important sensory system, judging from both the ubiquity
of visual forms of communication, and the large proportion of the human brain devoted to
visual processing. Nevertheless, it has proven diÆcult to establish a good mathematical
de�nition (in the form of a statistical model) for visual images. The set of visual images is
enormous, and yet only a small fraction of these are likely to be encountered in a natural
setting [43, 25, 19, 54]. Thus, a statistical prior model, even one that partially captures
these variations in likelihood, can substantially bene�t image processing and arti�cial
vision systems. In addition, many authors have proposed that biological visual systems
have evolved to take advantage of the statistical properties of the signals to which they
are exposed [e.g., 3, 4, 2], thus suggesting a direct link between image statistics and visual
processing.

In order to characterize visual images statistically, one must make some sort of restric-
tion on the probability model. The most common assumptions are locality (the charac-
terization is speci�ed on local spatial neighborhoods), stationarity (the statistics depend
only on relative spatial position within the image), and a parametric form for the density
(e.g., Gaussian). The subclass of images that we commonly call \visual texture" seems
most consistent with local stationary density models. Traditional de�nitions of texture can
be classi�ed into \structural" and \statistical" [34], the �rst consisting of a set of repeated
deterministic features, and the second corresponding to a sample drawn from a probability
density. Such a distinction has turned out to be somewhat arti�cial: For example, Zhu et

al. [69] have demonstrated that is possible to capture and reproduce structural elements
in texture using purely statistical models. Furthermore, many real-world textures seem
to incorporate both aspects, in that they can be described as a set of repeating structural
elements subject to some randomness in their location, size, color, orientation, etc. This
observation leads us to seek a single method of representing textures. In this paper, we
develop a fully statistical description, and demonstrate that it is also able to capture and
reproduce a wide variety of structural elements.

Julesz pioneered the statistical characterization of textures by hypothesizing that the
Nth-order joint empirical densities (for some unspeci�ed N) of neighborhoods of image
pixels, could be used to partition textures into classes that are indistinguishable to a human
observer [40]. This work thus established the use of both the locality and stationarity
assumptions, the goal of determining a minimal set of statistical constraints, and the
validation of texture models using human observers. Since then, researchers have explored
a wide variety of approaches for texture characterization and synthesis.

One of the most basic distinctions between the various approaches is the choice of
representation. Starting with Julesz, many authors have worked directly on the statistical
attributes of local spatial neighborhoods of pixels, typically in the form of a Markov
random �eld [e.g., 35, 42, 17]. But most others attempt to simplify the description of
the density by �rst processing with a set of linear �lters, such as Gabor �lters or a multi-
scale basis. The use of localized multi-scale multi-orientation sets of bandpass �lters is
inspired by what is known of biological visual processing, and justi�ed by recent studies
of the higher-order statistical properties of such representations (we discuss this further in
section 1). These �lters may be held �xed, or chosen adaptively depending on the image
statistics [e.g., 10, 26, 22, 59, 51].

Assuming a preconditioning subband decomposition, most texture characterizations

2



are de�ned by a set of statistical measurements that are used to constrain the model. The
majority are based only on marginal statistics. In particular, much of the work on texture
segmentation is based on estimates of variances of a set of subbands [e.g., 60, 6, 7, 63]. The
use of variance constraints implicitly assumes an underlying Gaussian marginal density,
but there is abundant evidence that bandpass �ltered natural images have highly non-
Gaussian marginals [e.g., 25, 18, 45]. Speci�cally, the densities tend to have sharp peaks
at zero, and longer tails than a Gaussian. In addition, a number of researchers have
shown that Gaussian statistics are not suÆcient to constrain the appearance of visual
textures [52, 24]. For purposes of synthesis, some authors have utilized �ltered non-
Gaussian white noise [e.g., 24, 14] which have provided good results when based on a
multi-scale representation [e.g. 15]. Two recent highly successful algorithms (described
below) are based on marginal densities of linear �lter outputs [36, 69].

Joint densities are more diÆcult to characterize, even when limited to pairwise (N = 2)
interactions. The models discussed above capture joint statistics implicitly through the
preconditioning linear transformation. Some authors have used covariance (or correlation)
matrices to characterize the joint densities of local neighborhoods of subband coeÆcients
for purposes of classi�cation or segmentation [e.g., 16, 8]. In the pixel domain, many
authors have utilized the pairwise joint histograms (also known as \co-occurrence ma-
trices") [e.g., 35, 17, 29, 31, 23]. Popat and Picard [50] have developed a clustering
approach for representing densities of local pixel neighborhoods. They have applied this
to compression, classi�cation and restoration, and have demonstrated impressive synthesis
results [49].

A �nal distinguishing aspect of previous texture synthesis work is the algorithm used
to sample from the model. If the model is Gaussian, one can simply draw samples of
white Gaussian noise, and linearly transform these to achieve the desired covariance rela-
tionships. This technique may also be used for models based on non-Gaussian marginals
along a linearly independent set of axes. But if the model is based on marginals of an over-
complete basis or on a density that does not factorize along a set of linear axes, a direct
sampling technique is not possible. Many authors use so-called \synthesis-by-analysis"
techniques [14, 38], in which the synthesized is adjusted to match a desired set of statisti-
cal measurements taken from an example texture. Monte Carlo sampling techniques, such
as the Metropolis algorithm [17] or Gibbs sampling [21], fall into this category.

Our approach shares common features with those of four recent successful models.
Portilla et al. [51] constrain the auto-correlation of Gabor subbands, in which the �lter
bandwidths are adaptively chosen for each texture. Their technique captures the dom-
inant scales and orientations, and is e�ective for representing both highly random and
quasi-periodic textures, but fails to capture local structures. Heeger and Bergen [36] con-
strain the marginal statistics of coeÆcients in a �xed overcomplete basis. They developed
a heuristic synthesis-by-analysis algorithm, in which they iteratively alternate between
matching the subband histograms, and matching the pixel histogram. This method cap-
tures and reproduces the richness of random features of some natural textures, but fails
to reproduce texture having straight lines, quasi-periodicity or well-de�ned structural
elements. Zhu et al. [69] used Gibbs sampling to draw from the maximal-entropy dis-
tribution with coeÆcient marginals matched to those estimated from an example image.
In [68], they propose a minimal entropy criterion for adaptively choosing the �lters used
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to compute the coeÆcients. This technique may be used with both linear and non-linear
operators and it provides good results on a variety of textures (including highly struc-
tured and quasi-periodic ones), but it is extremely expensive computationally. Debonet
and Viola [20] developed an eÆcient coarse-to-�ne algorithm, in which they sample from
the empirical conditional density over scale (i.e., they use a type of statistical bootstrap).
This method is very successful at capturing repetitive structural elements, but may not
be as well suited to many natural textures, which have a strong random component. We
discuss these previous results in section 5.

Our goal in this paper is to develop a texture model based on a set of statistical de-
scriptors that are both necessary and suÆcient for representing a wide variety of visual
textures. As a test of the model, we estimate the descriptors from individual texture
images, and use these descriptors to synthesize new samples whose visual appearance may
then be compared with the original texture. We work within a �xed overcomplete multi-
scale wavelet representation, and choose a set of statistical measurements that includes
the central samples of the auto-correlation of the subbands. In addition, we have recently
observed that the pairwise joint densities of coeÆcients at di�erent spatial locations, orien-
tations and scales exhibit striking dependencies that are not captured by simple variance
or correlation measures [13, 56]. Thus, unlike previous techniques, we also include the
cross-correlations of coeÆcient magnitudes. We develop an eÆcient synthesis-by-analysis
algorithm for synthesizing images subject to these constraints, which utilizes iterative pro-
jections onto solution sets. Finally, we show a large set of examples of texture synthesis
and constrained texture synthesis, demonstrating the power and 
exibility of the model.
Portions of this work have been more brie
y described in [56, 55].

1 Multi-Scale Oriented Image Decomposition

Our texture representation is based on a linear decomposition whose basis functions are s-
patially localized, oriented, and roughly one octave in bandwidth. Such decompositions are
inspired by what is known of biological visual processing [e.g., 32], both from human psy-
chophysical experiments, and electro-physiological measurements from neurons in primary
visual cortex (i.e., area V1) of mammals. The importance of choosing a representation
inspired by human vision has been demonstrated in texture synthesis comparisons [51, 46].
These decompositions are also widely used in computer vision, have been quite success-
ful for texture representation and synthesis, and are justi�ed by recent studies of their
higher-order statistical properties [e.g., 25, 64, 18, 67, 56]. Especially relevant are recent
results on choosing bases to optimize statistical criterion, which suggest that a basis of
localized oriented operators at multiple scales is optimal for image representation [47, 5].
A conceptually similar proposal by Zhu et al. is that the set of �lters should be selected
according to a minimum-entropy criterion [70].

In addition, we wanted our basis functions to be translations, rotations and dilations
of a common function. We chose to use a \steerable pyramid" [27, 58, 33, 57], since this
transform has nice reconstruction properties (speci�cally, it is a tight frame), in addition to
properties of translation-invariance and rotation-invariance. Similar representations have
been used by Watson for coding [64] and Unser for texture segmentation [61]. For this
paper, we have extended the original steerable pyramid representation to include complex
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Figure 1. Fourier spectra of complex-analytic �lters of a complex steerable pyramid with
four orientations and three scales. Bottom two images correspond to highpass and lowpass
residual �lters. Vertical and horizontal frequency axes cover the range [��; �] radians.

analytic (i.e., \quadrature pair") �lters. That is, the real and imaginary parts of each
�lter form a Hilbert transform pair. This allows us to utilize measures of local phase
and energy in some of our texture descriptors. Such measures have proved important
throughout computer vision [e.g., 44, 48], and are again motivated by what is known of
biological vision [e.g., 32].

Figure 1 shows the Fourier magnitudes of the subband �lters used in this transforma-
tion. The oriented �lters are polar-separable in the Fourier domain, and may be written
as:

Fn;k(r; �) = Bn(r)Gk(�); n 2 [0; N ]; k 2 [0;K � 1]; (1)

where
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0, otherwise
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where r; � are polar frequency coordinates. Subbands are subsampled by a factor of 2n

along both axes. This does not produce aliasing artifacts, as the support of each �lter
obeys the Nyquist sampling criterion.

In addition, one must retain (non-oriented) highpass and lowpass residual bands, which
are computed using the following �lters:
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Figure 2. A 3-scale, 4-orientation complex steerable pyramid representation of a disk
image. Shown are the oriented bandpass images at each scale and the �nal lowpass image.
Left: real parts. Right: imaginary parts.
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We used K = 4 orientation bands, and N = 4 pyramid levels for our examples. The
transform is implemented directly in the Fourier domain. This set of functions forms a
tight frame, and thus the transformation may be inverted by convolving each complex sub-
band with its associated complex-conjugated �lter and adding the results. Alternatively,
one may reconstruct from either the real or imaginary portions alone. Figure 2 shows an
example image decomposition.

2 Statistical Characterization

In this section, we describe a set of statistical measurements which are suÆcient to pa-
rameterize a wide variety of textures. We describe these measurements sequentially, from
simplest to most complex. For each type of measurement, we illustrate the information
captured by that measurement by synthesizing images that match that statistic. We show
four images, chosen as exemplars of di�erent types of visual texture. The �rst, an arti�cial
\Texton" [41] image, contains randomly located structured elements. The second, a pho-
tograph of tree bark, is fairly random, but still contains important features. The third,
a photograph of a brick wall, is quasi-periodic. The last, a photograph of herringbone
fabric, contains alternating strips of oriented \staircases".

2.1 Pixel Statistics

The statistics of gray-level texture pixels express the relative amount of each intensity in
the texture. Many texture models make direct use of the pixel histogram to characterize
this distribution (e.g. [28, 36, 69]). Figure 3 shows four pairs of images with matching
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Figure 3. Inadequacy of pixel marginal statistics. Shown are four pairs of original and
synthesized texture images. For each pair, the histograms of the pixels are identical.

pixel histograms. That is, each synthesized image contains white noise drawn from the
appropriate density. Clearly, this measurement characterizes only the most rudimentary
aspect of the visual appearance of these textures.

In previous work [51] we used a subsampled version (after low-pass �ltering) of the
original 256-bin histogram. In our current model we have used, instead, the �rst four
normalized sample moments, i.e., mean, variance, skewness and kurtosis, together with
the range (minimum and maximum values) to characterize the �rst order statistics. This
solution yields histograms that are closely matched to the original ones in the synthesis
examples.

2.2 Subband Variance Statistics

The subband variances describe the total amount of spectral power in each region of the
frequency domain. Natural image spectra are known to have a power-law form [54, 62],
but texture images are often less generic. Figure 4 shows four pairs of images with match-
ing subband variances (within a steerable pyramid decomposition). These are synthesized
directly, by injecting Gaussian white noise into each subband and inverting the transfor-
m. Although the resulting synthetic images capture more structure than the raw pixel
marginals, these are clearly insuÆcient for representation of these textures.

2.3 Subband Covariance Statistics

The coeÆcients of our wavelet decomposition are typically correlated for two independent
reasons. First, the representation is highly overcomplete, and therefore the coeÆcients
are constrained to lie within a linear subspace. More importantly, covariances of subband
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Figure 4. Inadequacy of subband variance statistics. Shown are four pairs of original and
synthesized texture images. For each pair, the steerable pyramid subbands have the same
variance.

coeÆcients can arise from spectral peaks (i.e., periodicity) in a texture. In order to
represent such spectral features, we include the local auto-correlation of each subband as
a texture descriptor, as was done in [9, 53, 8].

It has been known for some time that correlation measurements are not suÆcient to
capture the structure of many natural textures [52, 24]. It is simple to generate examples
that demonstrate this. Figure 5 shows four example texture images, each accompanied
by a synthesized image having the same subband auto-correlation. The examples were
synthesized by computing the Fourier amplitude of the sample, generating an image of
Gaussian noise samples with standard deviations matched to this amplitude, inverse Fouri-
er transforming, and matching the pixel histogram. If one does not include this last step,
the results are signi�cantly worse visually. The auto-correlation clearly fails to adequately
capture the visual appearance of these textures. The best of the four synthesized exam-
ples is the herringbone image. In this case, the Fourier amplitude spectrum contains sharp
spectral peaks corresponding to the periodicity of the diagonal staircase stripes.

2.4 Subband Marginal Densities

In the previous section, we considered 2nd-order (covariance) statistical constraints. These
constraints, coupled with a maximal entropy assumption, imply Gaussian densities. But
natural images are known to give rise to non-Gaussian subband marginal densities [e.g., 25,
18, 45], that are sharply peaked at zero with heavier tails than a Gaussian of the same
variance. Intuitively, the explanation for this is that images have spatial structure consist-
ing of smooth areas interspersed with occasional edges or other abrupt transitions. The
smooth regions lead to near-zero coeÆcients, and the edges give sparse large-amplitude

8



coeÆcients.
The marginal densities of subbands of natural textures are also non-Gaussian, but are

not as readily described as those of natural images. Figure 2.4 shows empirical marginal
densities (histograms) for example wavelet subbands of our four texture images, com-
pared with Gaussian densities of the same variance. Such histogram measurements have
been used as the constraining statistics for texture synthesis algorithms by Heeger and
Bergen [36], and by Zhu et al. [69, 70].

Constraining a set of marginals of a probability density can impose joint statistical
relationships between the variables. In particular, both [36, 69] impose marginals on
an overcomplete set of linear (and possibly nonlinear) measurements. Although it may
be shown that large numbers of marginals are suÆcient to uniquely constrain a high-
dimensional probability density [69]1, we believe that the marginals of a �xed �nite linear
basis are insuÆcient to properly capture the structure of many textures. In particular,
long-range structures (such as straight or curved contours), nearly periodic patterns, and
second-order textures are not well represented. Such structures introduce striking statis-
tical dependencies between coeÆcients that are not explicitly represented in techniques
based on marginals. We discuss this in greater detail in the next section.

As an example, �gure 7 shows pairs of images whose subbands have the same empirical
marginal densities (histograms). The marginals were imposed using the technique of [36].
The synthesized \jittered squares" texture is preferable to that shown in the previous
section. But the representation of the herringbone cloth is worse. The brick wall has lost
some periodicity, but gained some local structure.

In our own work, we have found that imposing the second and fourth moments is usu-
ally suÆcient to produce marginal densities well-matched to those of the original texture.
An indirect way of imposing these moments is to adjust the mean and variance of the
energy (squared magnitude) of the complex channels. The mean of the energy controls
the second moment of the coeÆcients, while the variance controls the fourth moment.

2.5 Subband Joint Magnitude Statistics

Each of the statistical measures described thus far have been used by previous authors for
texture synthesis. In this section, we describe a novel statistical measurement that cap-
tures important structural information about textures. In recent work, we have studied
the joint statistics of wavelet coeÆcient amplitudes [13, 12, 56], and have found that these
are quite regular. In particular, we have examined the conditional histograms of pairs of
coeÆcient magnitudes at adjacent spatial locations, orientations, and scales. We �nd that
the variance of the conditional density often scales with the square of the conditioning
coeÆcient, even when the raw coeÆcients are uncorrelated. There is an intuitive expla-
nation for this: the \features" of real images give rise to large coeÆcients in local spatial
neighborhoods, as well as at adjacent scales and orientations.

In the context of this paper, we examine the joint statistics of the complex coeÆcient
magnitudes, and attempt to characterize and impose these directly. Figure 8 shows the
steerable pyramid coeÆcient magnitudes of the four texture images of �gures 5 and 7.
One can see that the magnitudes (and the relationship between them) capture important

1The theorem is a variant of the Fourier projection-slice theorem used for tomographic reconstruction.
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Figure 5. Inadequacy of covariance statistics. Shown are four pairs of original and syn-
thesized texture images. For each pair, the steerable pyramid subbands of the two images
have identical mean and covariance statistics.
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Figure 6. Marginal histograms for one steerable pyramid subband of our four di�erent
texture images. Solid lines: log empirical densities (histograms). Dashed lines: Gaussian
density with matched variance.
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structural information about each of these textures. In particular, large magnitudes appear
at the same locations in the \squares" texture, and large magnitudes of the two diagonal
orientations are anti-correlated in the herringbone texture. To make this more precise,
we examine conditional histograms of pairs of coeÆcients, as shown in �gure 9. The
left histogram shows statistics (gathered over spatial position, from the squares image)
from the magnitudes of two coeÆcients at adjacent spatial scales. Note the strong linear
correlation. The right histogram shows statistics taken from the herringbone texture for
a pair of coeÆcients at the two diagonal orientations. Here the two magnitudes are anti-
correlated. Such correlations are often present despite the fact that the raw coeÆcients
may be uncorrelated. This occurs because variations in phase across the image lead to
cancellation. We need to select a descriptor of this dependence that is easy to measure and
impose in a synthesis algorithm. As a simple summary of this dependence, we compute
the covariance of the complex magnitude of pairs of coeÆcients.

In general, we observe that edges, the most basic features of natural images, account
for much of the dependency between neighboring magnitudes. In particular, we typically
�nd:

1. Positive covariance of neighbors at the same location and orientation, at di�erent
scales. This dependence extends through several octaves.

2. Positive covariance with neighbors at the same orientation and scale, at location in
the direction corresponding to the orientation of the channel, due to the continuous
arrangement in edges and bars of the signi�cant responses.

3. For neighbors at the same location and scale, the covariance varies from positive to
negative as a function of the preferred orientation. Adjacent orientation bands tend
to respond to the same edges, giving rise to positive correlation. But the majority of
edge structures in images represent a single orientation, and thus will produce little
or no response in orthogonally or near-orthogonally oriented �lters.

2.6 Summary of Statistical Constraints

As a summary of the statistical model proposed, we enumerate the set of statistical de-
scriptors, review the features they capture, and compute their associated number of pa-
rameters.

� Image pixel statistics: Mean, variance, skewness, kurtosis, minimum and maximum
values. (6 parameters).

� Raw coeÆcient auto-correlation: Central samples of the auto-correlation of the real
part of each subband (N �K � M

2+1
2 parameters), and mean, variance, minimum and

maximum of lowpass and highpass residual bands (8 parameters). These characterize
the regularity (linear predictability) of the texture.

� CoeÆcient magnitude statistics: Central samples of the auto-correlation of each
subband (magnitude) (N �K � M

2+1
2 parameters), cross-correlation of each subband

(magnitude) with other orientations at the same scale (N � K(K�1)
2 parameters), and
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cross-correlation of each subband (magnitude) with other orientations at a coarser
scale (K2(N�1) parameters). These represent signi�cant structures in images, such
as edges, bars, corners, repeated patterns and \second order" textures.

For our texture examples, we have made choices of N=4, K=4 and M=7, resulting
in a total of 846 parameters. This set represents the union of the parameters we found to
be necessary for each of our example textures. Comparable results may be achieved for
many of the individual textures using substantially fewer parameters.

3 Texture Synthesis via Constraint Enforcement

The set of statistical constraints described above does not uniquely determine the image,
and thus a synthesis algorithm must necessarily choose from amongst the set of images
matching the constraints. If the output of the algorithm is non-deterministic, then this
choice will be drawn according to a probability density on the set of images matching the
constraints. A desirable solution is to sample from the density with maximal entropy sub-
ject to the constraints [39]. As mentioned previously, this formalism was used successfully
for texture synthesis by Zhu et al. [69]. The maximal entropy distribution has a form:

P
�
~I
�
/
Y
n

exp[��n�n(I)];

where the set of statistical measurements are of the form E (�n(I)). But solving for the
�n typically requires computationally expensive Monte Carlo techniques such as Gibbs
sampling [30, 69]. In addition, this solution presupposes that one has chosen precisely the
\correct" set of statistical constraints �n(I), since these completely determine the form
of the density. Use of the wrong constraints can give an entirely incorrect density: For
example, just because one has chosen to measure covariance statistics does not mean that
the density of the observations must be Gaussian! Finally, an idealized goal for our choice
of statistical features is that all images matched in these statistical measurements should
be visually indistinguishable. If we were to achieve this, then the choice of nondeterministic
algorithm by which one selects an image from this visual equivalence class becomes much
less important.

Once we decide to abandon the maximal-entropy formalism, we have considerably
more freedom to develop a non-deterministic algorithm that produces a synthetic image
whose sample statistics match those of an original texture image. We based our algorithm
on the concept of alternating projections onto constraint surfaces. We start with an im-
age of Gaussian white noise, and force this image to satisfy the statistical constraints by
sequentially and repeatedly projecting onto the set of images satisfying each constraint.
Speci�cally, we alternate between projecting the coeÆcients onto the manifold of coeÆ-
cients having the desired subband sample statistics, and, after projecting the coeÆcients
onto the image subspace (i.e., collapsing the pyramid), projecting the resulting image on-
to the set of images having the desired sample moments and range. Figure 10 shows a
block diagram of this synthesis-by-analysis algorithm. The algorithm bears a close re-
semblance to the projection onto convex sets (POCS) approaches that have been used in
image restoration [65, 37], and to the texture synthesis method of Heeger and Bergen [36].
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In general, it is desirable to implement the projection operations so as to select the
image in the constraint set that is closest (in a Euclidean sense ) to the initial image.
Assuming the constraint surface is continuous, the change will be orthogonal to the surface.
Producing a minimal change in the image improves the stability and convergence of the
iterative process. But it is often not possible to solve for this projection, and in these cases
we choose to simply project in the direction of the gradient of the constraint function until
reaching the surface. This is described in more detail in the next section.

Convergence of an in�nite sequence of alternated projections is only guaranteed for the
case when there are only two sets, both convex, and the projections are orthogonal to the
constraint surfaces [66]. Unfortunately, the constraint sets corresponding to our statistical
measurements are typically not convex, there are more than two, and our projection
operations are not always orthogonal. We note, however, that projection onto non-convex
sets has been used successfully for tasks such as image reconstruction from the power
spectrum (phase recovery) [65].

For the adjustment of magnitude statistics, we �rst adjust the auto-correlation, and
then the joint correlation with other orientation bands and the next coarser scale. Note
that the statistics of the raw coeÆcients are used to adjust the phase of the coeÆcients,
and this is done independently of the magnitude adjustment. The resulting synthetic
coeÆcients will thus have the correct magnitude statistics, but their raw statistics may
be incorrect. While this is clearly non-optimal, it leads to a simple implementation that
converges rapidly. In the following sections, we describe in more detail the method by
which we impose each of the statistical constraints.

3.1 Imposing Pixel Moments

In the image domain, we impose the �rst through fourth moments of the pixel histogram.
We would like to make a change to the image that is minimal but that gives the correct
values for the sample moments. The �rst and second moments (mean and variance) are
adjusted through a linear mapping of the pixel intensities. The normalized third and
fourth moments (skew and kurtosis) are adjusted by adding a multiple of the gradient of
the moment function to the image. In particular, the normalized kth moment is written:

mk(I) =
E
�
(In � �I)k

�
E
�
(In � �I)2

�k=2 ;
where E (�) indicates the expected value, estimated via the sample mean. Let Mk be the
desired value for the moment. Then we solve for the � that satis�es

mk(I + �~5mk(I)) =Mk:

In the limit as the projection distance shrinks to zero, this adjustment becomes an or-
thogonal projection onto the surface of images having the desired moment. The skew
and kurtosis are adjusted sequentially within an iteration of the synthesis loop. In cases
where no solution exists, we make no adjustment. This occurs sometimes in the �rst few
iterations of the algorithm. But as the algorithm begins to converge, we have found that
we can always �nd a solution.
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3.2 Auto-Correlation of the Subband Responses

We have applied the same method to impose local M �M auto-correlation within each
subband both on the raw coeÆcients (real part), and their magnitudes. We �rst solve for
an M �M convolution kernel, hn;m, that satis�es:

Dn;m =
X
�;�

h�;�Cn��;m��;

where Cn;m is the initial auto-correlation image, and Dn;m is the desired auto-correlation.
We then perform the convolution in the Fourier domain, using the (positive) square root:

F (I 0) = F (I) �
q
jHj;

where H is the Fourier transform of hn;m, and F (I) the Fourier transform of the original
subband. This method is simple and direct, behaving well in terms of stability and con-
vergence. It has an obvious drawback that when H has negative values, the adjustment
of the correlation using the �lter

p
jHj is not exact.

3.3 Cross-Correlation of the Subband Responses in Magnitude

We use a linear transform to impose correlations on the coeÆcient magnitudes. In general,
consider the problem of adjusting a random vector, ~x, to have a correlation matrix Cx,
using a linear transform. That is, we seek M such that:

E
�
M~x~xTMT

�
= Cx: (2)

Let Bx = E
�
~x~xT

�
, and let fEC ;DCg and fEB ;DBg be appropriate eigenvector/eigenvector

matrices such that:

Bx = EBDBD
T
BE

T
B Cx = ECDCD

T
CE

T
C (3)

Then the complete set of solutions are speci�ed as:

M = ECDCOD
�1
B ET

B ; (4)

where O is any orthonormal matrix. Thus, the problem is reduced to choosing an or-
thonormal matrix O. We would like to choose O to minimize the (Euclidean) change in
the vector ~x. A reasonable (but not necessarily optimal) choice is:

O = ET
CEB: (5)

The adjustment of the magnitude statistics is done in a coarse-to-�ne fashion. At
the coarsest scale (lowest frequency bands), we adjust the magnitudes as described above
to achieve the correct cross-correlation between the set of oriented bands at the scale.
For each subsequent �ner scale, the magnitudes are adjusted so as to achieve the correct
cross-correlation between bands at that scale, and also with the bands at the (previously
adjusted) coarser scale.
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Consider the general problem of adjusting a random vector, ~x, to have a self-correlation
matrix Cx, as well as a cross-correlation matrix with variable ~y of Cxy. We compute a
modi�ed vector, ~xmod =M~x+K~y, using matrices fK;Mg such that:

Cx = E
�
~xmod~x

T
mod

�
= E

�
(M~x+K~y)(M~x+K~y)T

�
and

Cxy = E
�
~xmod~y

T
�

= E
�
(M~x+K~y)~yT

�

Let Bxy = E
�
~x~yT

�
and By = E

�
~y~yT

�
. Then solving the second equation for K gives:

K = [Cxy �MBxy]B
�1
y :

Substituting this into the �rst equation and manipulating algebraically gives:

M [Bx �BxyB
�1
y BT

xy]M
T + CxyB

�1
y CT

xy = Cx:

Now let fEC ;DCg and fEB ;DBg be appropriate eigenvector/eigenvector matrices such
that:

Bx �BxyB
�1
y BT

xy = EBDBD
T
BE

T
B ; and

Cx � CxyB
�1
y CT

xy = ECDCD
T
CE

T
C

Then, as before, the complete set of solutions for M may be speci�ed as:

M = ECDCOD
�1
B ET

B ; (6)

for O any orthogonal matrix. As above, we choose

O = ET
CEB: (7)

3.4 Convergence, stability and computational cost

The algorithm we have described is fairly simple, but we cannot guarantee convergence.
The projection operations are not exactly orthogonal (for example, the gradient projec-
tions are only orthogonal to the constraint surface in the small-displacement limit), and the
constraint surfaces are not all convex. Nevertheless, we �nd that convergence is achieved
after about 50 iterations, for the several hundred textures we have synthesized. In addi-
tion, once convergence has been achieved (to within some tolerance), the synthetic texture
oscillates only slightly in its parameters, and no serious problems of stability have been
recorded.

Figure 12 shows the evolution of the adjustment of the parameters as a function of
the number of iterations, for a representative example (the \herringbone" texture). The
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dependence of the error is approximately linear with n in a log-log plot, implying that
the error decreases roughly as k=(nc), with k and c constants dependent on the choice of
parameter and texture. Figure 11 shows the corresponding synthetic texture for 0, 1, 3,
7, 15, and 31 iterations, illustrating the rapid visual convergence of the algorithm. Our
current implementation (in MatLab) requires roughly 5 minutes to synthesize a 128� 128
texture on a 200 Mhz Pentium workstation.

4 Results

4.1 Synthesis Examples

Texture synthesis provides a method to validate a texture model. In this section we
present a set of synthesis results obtained using 4 scales and 4 orientations, a neighborhood
of 7x7 pixels and 50 iterations of the algorithm on images of 128x128 pixels.

Figure 13 shows a set of synthesis results on arti�cial periodic texture images. The
algorithm handles such input quite well, producing output with the same periodicities and
structures. Note that the absolute phase of the synthesized images is random, due to the
translation-invariant nature of the algorithm, and the fact that we are treating boundaries
periodically in all computations.

Figure 14 shows a set of synthesis results on classical \texton" images, as pioneered
by Julesz [40]. The textons are placed at independent random non-overlapping position-
s within the image. The algorithm does a reasonable job of re-creating these images,
although there are signi�cantly more artifacts than in the periodic examples.

Figures 15 and 16 show synthesis results for natural textures. The �rst set contains
highly random textures, such as the animal fur or wood grain. The synthesized images
are virtually indistinguishable from the originals. The second set contains more regular
structured textures, such as a brick wall and various types of woven fabric. These are also
reproduced quite well. Comparing these results with those obtained using the statistical
models analyzed (see �gures 5 and �gures 7), the higher capacity of the proposed model
is apparent.

Finally, it is instructive to apply the algorithm to images that are structured and
highly inhomogeneous. Figure 17 shows a set of synthesis results on an arti�cial image
of a \bull's eye", a real image of a crowd of people, and a face. The �rst two produce
quite compelling results that capture the local structure of the original images, albeit in
a globally disorganized fashion. The third is also interesting, in that it seems to contain
face-like structures, again in a globally disorganized arrangement.

Not all the tested textures have provided positive results. Figure 18 shows an image
of wet stones. The image is highly structured, with re
ection of light on the stone
surfaces creating a strong impression of three-dimensionality. The algorithm produces
a synthesized image that bears some resemblance to the original, but lacks this three-
dimensionality. Also in �gure 18 is an image containing stripes with a \sawtooth" (linear
ramp) cross section. The result contains stripes of the correct periodicity and orientation,
but the cross sectional shape is irregular. The algorithm is unable to represent the local
phase structure of this pattern, due to our reliance on the real symmetric portion of the
complex transform. It is interesting to note, however, that the synthesized image is quite
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visually similar to the original. Another clear example of a failure to properly represent
local phase is an image of piecewise constant polygonal patches. We can see that the
model, although detecting and reproducing discontinuities, is not able to di�erentiate
between odd-symmetric edges and even-symmetric lines.

Finally, as a demonstration of the 
exibility of the technique, we consider the prob-
lem of creating textures that lie visually \in between" two other textures. Fortunately,
the texture parameter space is convex, and so we can simply take linear combinations
of parameters.2 Figure 19 shows a sequence of four textures synthesized using sample
statistics that are weighted averages of those corresponding to two original textures.

4.2 Constrained Synthesis Examples

In addition to the synthesis application demonstrated in the previous section, it is often of
interest to synthesize images subject to some set of constraints. In particular, we consider
the problems of extending an image beyond its spatial boundaries (spatial extrapolation),
and extending an image to higher resolution (scale extrapolation). In the former case,
the additional constraints are that the original image pixels are known. In the latter,
the additional constraints are that the coeÆcients of the pyramid representation at all
resolutions coarser than some the starting resolution are known.

Spatial extrapolation. In this application, we want to synthesize an image in which a
subset of the pixels are known (i.e., taken from an existing image). The set of all images
with this subset of pixels matching the known values is convex, and the projection onto this
convex set is easily inserted into the iterative loop of the synthesis algorithm. Speci�cally,
we simply re-set the constrained pixels on each iteration of the synthesis loop. This
technique is applicable to the restoration of pictures which have been destroyed in some
region ("�lling holes") [e.g., 37]. Figure 20 shows two examples that have been spatially
extrapolated using this method. In these examples, the set of statistical parameters have
been obtained from the original images. Notice that the border between real and synthetic
data is barely noticeable.

Scale extrapolation. Considering that an important part of the energy of natural
images correspond to the edges, and that these are very redundant over a range of scales ,
it seems feasible to extrapolate some of the �ner scale information from the coarser scale
coeÆcients. This is a variant of the so-called \super-resolution" problem. We modi�ed
our algorithm to accomplish this by replacing the coarse-scale subbands with those of a
low-resolution image on each iteration. This replacement is done just after constructing
the pyramid. Figure 21 shows an example. Much of the appearance of the original has
been recovered.

2Linear combinations of the statistical measurements corresponding to two di�erent textures correspond

to the statistics of an image divided into two regions containing the two textures. Subband coeÆcients

near the boundary will be corrupted, but in the limit as the image size goes to in�nity, their e�ect on the

statistics will diminish to zero.
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5 Discussion

We have described a model for visual texture, based on a set of statistical measurements
made in an overcomplete multi-scale image representation. The most signi�cant con-
tribution of our model is the introduction of non-Gaussian joint statistical relationships
between coeÆcients. We demonstrated the quality of the model by synthesizing a wide
variety of visual textures using an iterative synthesis-by-analysis statistical sampling algo-
rithm. We believe these synthesis results to be competitive, both in terms of quality of the
results and in computational cost, with the current best techniques. We also demonstrated
the 
exibility of this algorithm by using it in several applications that may be described
as \constrained synthesis" problems.

The most fundamental issue in our model is the choice of statistical measurements.
While we have tried to motivate these by empirical studies on real textures, better choices
undoubtedly exist. In particular, the failures of �gure 18 are primarily due to the lack of
a representation of local phase information (e.g., even-symmetric lines vs. odd-symmetric
intensity edges). We view this an important area for future development. Another
important area for exploration is the use of adaptive bases. Our technique currently uses
a �xed basis whose properties are appropriate for typical images. Adapting the basis to
the statistical properties of each individual texture (as is described, for example, in [70])
could give both visually improved results and a reduction in the size of the basis.

A secondary issue is the somewhat ad hoc nature of our sampling algorithm. In our
experience, the algorithm has never failed to converge to an image that nearly satis�es
the statistical constraints (as shown in �gure 12). Nevertheless, we do not have a proof
of convergence. A deeper problem with the algorithm is that our probability model is
implicit. Speci�cally, we do not not sample from the density with maximal entropy, but
rather impose the statistical constraints through our iterative procedure. This induces a
probability density on the space of output images, but we do not have a form for this
density and we do not know its entropy. Nevertheless, as described earlier, we believe
that maximal entropy, although desirable, is not an indispensable property of a texture
synthesis algorithm. Our technique achieves a good compromise between computational
cost and what in practice seems to be a high entropy of the associated implicit density.

Our choice of constraints bears a resemblance to observations made in a number of
other areas. In particular, we motivated the second-order statistics as a means of captur-
ing periodicity and linear features, as represented by uneven spectral distribution within
subbands. We used the second-order magnitude statistics as a means of capturing so-called
local structures. We can also interpret these as constraints on local coeÆcient magnitude
and phase, since the second-order coeÆcient statistics determine the local arrangement of
coeÆcient phases (see Figure 10). Anderson [1] has synthesized textures using statistical
constraints based on the amplitude and sign of subband coeÆcients.

We envision a number of extensions to our synthesis algorithm. The results could
be made much more visually compelling by introducing color (e.g., using the approach
of [36]). Since the representation of a texture image is quite compact (846 parameters, for
our examples), the synthesis technique might be used in conjunction with a compression
system in order to \fabricate" detail rather than encode it exactly.

18



References

[1] C H Anderson and W D Langer. Statistical models of image texture. Technical report,
Washington U. Medical School, 1997. Available at ftp://shifter.wustl.edu/pub/.

[2] J J Atick. Could information theory provide an ecological theory of sensory processing?
Network: Computation in Neural Systems, 3:213{251, 1992.

[3] F Attneave. Some informational aspects of visual perception. Psych. Rev., 61:183{193, 1954.

[4] H B Barlow. Possible principles underlying the transformation of sensory messages. In W A
Rosenblith, editor, Sensory Communication, page 217. MIT Press, Cambridge, MA, 1961.

[5] A J Bell and T J Sejnowski. The 'independent components' of natural scenes are edge �lters.
Vision Research, 37(23):3327{3338, 1997.

[6] J R Bergen and E H Adelson. Visual texture segmentation based on energy measures. J. Opt.
Soc. Am. A, 3, 1986.

[7] J R Bergen and E H Adelson. Early vision and texture perception. Nature, 333:363{364,
1988.

[8] C A Bouman and M Shapiro. A multiscale random �eld model for Bayesian image segmen-
tation. IEEE Trans. Image Proc., 3(2), 1994.

[9] A C Bovik, M Clark, and W S Geisler. Multichannel texture analysis using localized spatial
�lters. IEEE Pat. Anal. Mach. Intell., 12(1), 1990.

[10] A C Bovik, M Clark, and W S Geisler. Localized measurements of emergent image frequencies
by Gabor wavelets. IEEE Pat. Anal. Mach. Intell., 38:691{712, 1992.

[11] P Brodatz. Textures: A Photographic Album for Artists and Designers. Dover, New York,
1966.

[12] R W Buccigrossi and E P Simoncelli. Image compression via joint statistical characterization
in the wavelet domain. Technical Report 414, GRASP Laboratory, University of Pennsylvania,
May 1997. Accepted (3/99) for publication in IEEE Trans Image Processing.

[13] R W Buccigrossi and E P Simoncelli. Progressive wavelet image coding based on a conditional
probability model. In ICASSP, volume IV, pages 2957{2960, Munich, Germany, April 1997.
IEEE Sig Proc Society.

[14] J A Cadzow, D M Wilkes, R A Peters II, and X Li. Image texture synthesis{by{analysis using
moving{average models. 29(4):1110{1122, 1993.

[15] D Cano. Texture synthesis using hierarchical linear transforms. Signal Processing, 15:131{148,
1988.

[16] P C Chen and T Pavlidis. Segmentation by texture using correlation. IEEE Pat. Anal. Mach.

Intell., 5(1):64{69, 1983.

[17] G Cross and A Jain. Markov random �eld texture models. IEEE Trans PAMI, 5:25{39, 1983.

[18] J Daugman. ?? title ?? IEEE Trans. Acoust. Speech Signal Proc., 36(7):1169{1179, 1988.

[19] John G. Daugman. Entropy reduction and decorrelation in visual coding by oriented neural
receptive �elds. IEEE Trans. Biomedical Engineering, 36(1):107{114, 1989.

[20] J De Bonet and P Viola. A non-parametric multi-scale statistical model for natural images.
In Adv in Neural Info Processing, volume 9. MIT Press, December 1997.

19



[21] H Derin and H Elliott. Modeling and segmentation of noisy and textured images using Gibbs
random �elds. IEEE Pat. Anal. Mach. Intell., 9(1):39{55, 1987.

[22] D Dunn, W E Higgins, and J Wakeley. Texture segmentation using 2-D Gabor elementary
functions. IEEE Pat. Anal. Mach. Intell., 16(2), 1994.

[23] I M Elfadel and R W Picard. Gibbs random �elds, co-occurrences, and texture modeling.
IEEE Pat. Anal. Mach. Intell., 16(1):24{37, Jan 1994.

[24] O D Faugeras and W K Pratt. Decorrelation methods of texture feature extraction. IEEE

Pat. Anal. Mach. Intell., 2(4), 1980.

[25] D J Field. Relations between the statistics of natural images and the response properties of
cortical cells. J. Opt. Soc. Am. A, 4(12):2379{2394, 1987.

[26] J M Francos, A Z Meiri, and B Porat. A uni�ed texture model based on a 2-D Wold-like
decomposition. IEEE Trans. Signal Proc., 41(8):2665{2678, 1993.

[27] W T Freeman and E H Adelson. The design and use of steerable �lters. IEEE Pat. Anal.

Mach. Intell., 13(9):891{906, 1991.

[28] A Gagalowicz. A new method for texture �elds synthesis: Some applications to the study of
human vision. IEEE Pat. Anal. Mach. Intell., 3(5), 1981.

[29] A Gagalowicz and S D Ma. Sequential synthesis of natural textures. Comp. Vis. Graphics

Image Proc., 30:289{315, 1985.

[30] S Geman and D Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Pat. Anal. Mach. Intell., 6:721{741, 1984.

[31] C C Gotlieb and H E Kreyszig. Texture descriptors based on co-occurance matrices. Comp.

Vis. Graphics Image Proc., 51:70{86, 1990.

[32] N Graham. Visual pattern analyzers. Oxford University Press, New York, 1989.

[33] H. Greenspan, S. Belongie, R. Goodman, P. Perona, S. Rakshit, and C. H. Anderson. Over-
complete steerable pyramid �lters and rotation invariance. In Proceedings, CVPR, pages
222{228, 1994.

[34] R M Haralick. Statistical and structural approach to texture. Proc. IEEE, 67:786{804, May
1979.

[35] M Hassner and J Sklansky. The use of Markov random �elds as models of texture. Comp.

Graphics Image Proc., 12:357{370, 1980.

[36] D Heeger and J Bergen. Pyramid-based texture analysis/synthesis. In Proc. ACM SIG-

GRAPH, August 1995.

[37] A N Hirani and T Totsuka. Combining frequency and spatial domain information for fast
interactive image noise removal. In ACM SIGGRAPH, pages 269{276, 1996.

[38] H Iversen and T Lonnestad. An evaluation of stochastic models for analysis and synthesis of
gray scale texture. Pattern Recognition Letters, 15:575{585, 1994.

[39] E T Jaynes. Information theory and statistical mechanics. Phys. Rev., 106:620{630, 1957.

[40] B Julesz. Visual pattern discrimination. IRE Trans Info Theory, IT-8, 1962.

[41] B Julesz. Textons, the elements of texture perception and their interactions. Nature, 290:91{
97, 1981.

20



[42] R L Kashyap, R Chellappa, and A Khotanzad. Texture classi�cation using features derived
from random �eld models. Patt Rec Letters, 1:43{50, Oct 1982.

[43] D Kersten. Predictability and redundancy of natural images. J. Opt. Soc. Am. A, 4(12):2395{
2400, 1987.

[44] H Knutsson and G H Granlund. Texture analysis using two-dimensional quadrature �lters. In
Workshop on Computer Architecture for Pattern Analysis and Image Database Management,
pages 206{213. IEEE Computer Society, 1983.

[45] S G Mallat. A theory for multiresolution signal decomposition: The wavelet representation.
IEEE Pat. Anal. Mach. Intell., 11:674{693, July 1989.

[46] R Navarro and J Portilla. Robust method for texture synthesis{by{analysis based on a mul-
tiscale Gabor scheme. In Proc. of the SPIE, vol. 2657, pages 86{96, San Jose, CA, Jan
1996.

[47] B A Olshausen and D J Field. Natural image statistics and eÆcient coding. Network: Com-

putation in Neural Systems, 7:333{339, 1996.

[48] P Perona and J Malik. Detecting and localizing edges composed of steps, peaks and roofs. In
Proc. 3rd Intl. Conf. Computer Vision, Osaka, Japan, 1990.

[49] A C (K) Popat. Conjoint probabilistic Subband Modeling. PhD thesis, Massachusetts Institute
of Technology, Program in Media Arts and Sciences, Cambridge, MA, September 1997.

[50] K Popat and R W Picard. Cluster-based probability model and its application to image and
texture processing. IEEE Trans Im Proc, 6(2):268{284, 1997.

[51] J Portilla, R Navarro, O Nestares, and A Tabernero. Texture synthesis-by-analysis based on
a multiscale early-vision model. Optical Engineering, 35(8), 1996.

[52] W K Pratt, O D Faugeras, and A Gagolowicz. Visual discrimination of stochastic texture
�elds. IEEE Trans. on Systems Man and Cybernetics, Nov 1978.

[53] T R Reed and H Wechsler. Segmentation of textured images and gestalt organization using
spatial/spatial-frequency representations. IEEE Pat. Anal. Mach. Intell., 12(1), 1990.

[54] D L Ruderman and W Bialek. Statistics of natural images: Scaling in the woods. Phys. Rev.
Letters, 73(6), 1994.

[55] E Simoncelli and J Portilla. Texture characterization via joint statistics of wavelet coeÆcient
magnitudes. In Fifth IEEE Int'l Conf on Image Proc, volume I, Chicago, October 4-7 1998.
IEEE Computer Society.

[56] E P Simoncelli. Statistical models for images: Compression, restoration and synthesis. In
31st Asilomar Conf on Signals, Systems and Computers, pages 673{678, Paci�c Grove, CA,
November 1997. IEEE Computer Society.

[57] E P Simoncelli and W T Freeman. The steerable pyramid: A 
exible architecture for multi-
scale derivative computation. In Second Int'l Conf on Image Proc, volume III, pages 444{447,
Washington, DC, October 1995. IEEE Sig Proc Society.

[58] E P Simoncelli, W T Freeman, E H Adelson, and D J Heeger. Shiftable multi-scale transforms.
IEEE Trans Information Theory, 38(2):587{607, March 1992. Special Issue on Wavelets.

[59] A Teuner, O Pichler, and B J Hosticka. Unsupervised texture segmentation of images using
tuned matched Gabor �lters. IEEE Trans. Image Proc., 4(6), 1995.

[60] M R Turner. Texture discrimination by Gabor functions. Biol. Cybern., 55:71{82, 1986.

21



[61] M Unser. Texture classi�cation and segmentation using wavelet frames. IEEE Trans. Image

Proc., 4(11), 1995.

[62] A van der Schaaf and J H van Hateren. Modelling the power spectra of natural images:
Statistics and information. Vision Research, 28(17):2759{2770, 1996.

[63] H Voorhees and T Poggio. Computing texture boundaries from images. Nature, 333:364{367,
1988.

[64] A. B. Watson. EÆciency of a model human image code. J. Opt. Soc. Am. A, 12:2401{2417,
1987.

[65] D C Youla. Generalized image restoration by the method of alternating orthogonal projections.
IEEE Trans. Circuits and Systems, 25:694{702, 1978.

[66] D C Youla and H Webb. Image restoration by the method of convex projections. 1:81{101,
1982.

[67] C Zetzsche, BWegmann, and E Barth. Nonlinear aspects of primary vision: Entropy reduction
beyond decorrelation. In Int'l Symposium, Society for Information Display, volume XXIV,
pages 933{936, 1993.

[68] S Zhu and D Mumford. Prior learning and Gibbs reaction-di�usion. IEEE Pat. Anal. Mach.

Intell., 19(11), 1997.

[69] S Zhu, Y Wu, and D Mumford. Filters, random �elds and maximum entropy (FRAME) {
towards the uni�ed theory for texture modeling. In IEEE Conf Computer Vision and Pattern

Recognition, June 1996.

[70] S C Zhu, Y N Wu, and D Mumford. Minimax entropy principle and its application to texture
modeling. In Neural Computation, volume 9, pages 1627{1660, 1997.

22



Figure 7. Inadequacy of subband marginal statistics. Shown are four pairs of original and
synthesized texture images. For each pair, the pyramid subbands of the two images have
identical histograms.
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Figure 8. Normalized magnitude responses in the subbands for the images of �gures 5
and 7.
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Figure 9. Empirical conditional densities of neighboring wavelet coeÆcient magnitudes,
displayed as grayscale images. Image brightness corresponds to frequency of occurrence of
each pair of values, and each column is independently normalized to �ll the range [0; 1]. Left:
two coeÆcients at adjacent scales of the \jittered squares" image. Right: two coeÆcients
at opposite diagonal orientations of the \herringbone" image.
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Figure 10: Block diagram of texture synthesis algorithm. See text.

Figure 11: Herringbone synthesis, for 0, 1, 3, 7, 15 and 31 iterations
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Figure 12. Parameter error as a function of the number of iterations, (expressed as
signal-to-noise ratio in decibels). (a) First-order statistics descriptors (from top to bottom:
mean, variance, kurtosis, range and skewness). (b) Auto covariance of the real part of each
subbands (16); (c) Auto-covariance of the magnitude responses; (d) Cross-covariance of
the magnitude responses at di�erent orientations, for each scale (4); (e) Cross-covariance
of the parent scales with the child scale (3).

Figure 13. Synthesis results on arti�cial periodic textures. For each pair of textures, the
upper image is the original texture, and the lower image is the synthesized texture.
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Figure 14: Synthesis results on arti�cial \texton" images [40].
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Figure 15. Synthesis results on natural \random" textures. See caption of �gure 13.
These are from the Brodatz texture album [11]

.
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Figure 16: Synthesis results on natural \structured" textures. See caption of �gure 13.

.
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Figure 17. Synthesis results on structured images not usually considered to be \texture".

Figure 18: Synthesis failures.
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Figure 19. Sequence of �ve synthesized textures that span the range \between" the
\brick" and \jittered squares" images.

(a) (b) (c)

Figure 20. (a) Original images; (b) Conserved samples; (c) Extended images, synthesized
using statistical measurements from (a) while retaining the samples of (b).
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(a) (b) (c)

Figure 21. (a) Original images; (b) Images reconstructed without including the �nest scale
subbands of the pyramid; (c) Images extended in scale, using the course-scale subbands of
(b) and the statistics of (a).
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