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Abstract. We present a universal statistical model for texture images in the context of an overcomplete complex
wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding
to basis functions at adjacent spatial locations, orientations, and scales. We develop an efficient algorithm for
synthesizing random images subject to these constraints, by iteratively projecting onto the set of images satisfying
each constraint, and we use this to test the perceptual validity of the model. In particular, we demonstrate the necessity
of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are
removed from the set. We also demonstrate the power of our model by successfully synthesizing examples drawn
from a diverse collection of artificial and natural textures.
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Vision is the process of extracting information from the
images that enter the eye. The set of all possible images
is vast, and yet only a small fraction of these are likely
to be encountered in a natural setting (Kersten, 1987;
Field, 1987; Daugman, 1989; Ruderman and Bialek,
1994). Nevertheless, it has proven difficult to character-
ize this set of “natural” images, using either determin-
istic or statistical models. The class of images that we
commonly call “visual texture” seems most amenable
to statistical modeling. Loosely speaking, texture im-
ages are specially homogeneous and consist of repeated
elements, often subject to some randomization in their
location, size, color, orientation, etc. Julesz pioneered
the statistical characterization of textures by hypoth-
esizing that theNth-order joint empirical densities of
image pixels (for some unspecifiedN), could be used
to partition textures into classes that are preattentively
indistinguishable to a human observer (Julesz, 1962).
This work established the description of texture using
homogeneous (stationary) random fields, the goal of
determining a minimal set of statistical measurements
for characterization, and the validation of texture mod-

els through human perceptual comparisons. Julesz et al.
later proposed that pairwise (N = 2) statistics were
sufficient (Julesz et al., 1973), but then disproved this
conjecture by producing example pairs of textures with
identical statistics through second (and even third) or-
der that were visually distinct (Caelli and Julesz, 1978;
Julesz et al., 1978).

Since then, two important developments have en-
abled a new generation of more powerful statistical tex-
ture models. The first is the theory of Markov random
fields, in which the full model is characterized by statis-
tical interactions within local neighborhoods. A num-
ber of authors have developed Markov texture models,
along with tools for characterizing and sampling from
such models (e.g. Hassner and Sklansky, 1980; Cross
and Jain, 1983; Geman and Geman, 1984; Derin and
Elliott, 1987). The second is the use of oriented lin-
ear kernels at multiple spatial scales for image analysis
and representation. The widespread use of such kernels
as descriptions of early visual processing in mammals
inspired a large number of models for texture classi-
fication and segmentation (e.g., Bergen and Adelson,
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1986; Turner, 1986; Malik and Perona, 1990). The de-
velopment of wavelet representations, which are based
on such kernels, have revolutionized signal and image
processing. A number of recent inspirational results in
texture synthesis are based on multi-scale decomposi-
tions (Cano and Minh, 1988; Porat and Zeevi, 1989;
Popat and Picard, 1993; Heeger and Bergen, 1995;
Portilla et al., 1996; Zhu et al., 1996; De Bonet and
Viola, 1997).

In this paper, we describe a universal parametric
statistical model for visual texture, develop a novel
method of sampling from this model, and re-examine
the Julesz conjecture in the context of our model by
comparing the appearance of original texture images
with synthesized images that are considered equiva-
lent under our model. We work within a fixed over-
complete multi-scale complex wavelet representation,
and our Markov statistical descriptors are based on
pairs of wavelet coefficients at adjacent spatial loca-
tions, orientations, and scales. In particular, we measure
the expected product of the raw coefficient pairs (i.e.,
correlation), and the expected product of theirmagni-
tudes. For pairs of coefficients at adjacent scales, we
also include the expected product of the fine scale co-
efficient with the phase-doubled coarse scale coeffi-
cient. Finally, we include a small number of marginal
statistics of the image pixels and lowpass coefficients at
different scales. We develop an efficient algorithm for
synthesizing images subject to these constraints, which
utilizes iterative projections onto sets. We demonstrate
the necessity of each type of parameter by showing syn-
thesis examples that fail when that subset of parameters
is removed. Finally, we show a large set of examples of
artificial and natural texture synthesis, demonstrating
the power and flexibility of the model. Previous instan-
tiations of this model have been described in Simoncelli
(1997), Simoncelli and Portilla (1998) and Portilla and
Simoncelli (1999).

1. A Framework for Statistical Texture Modeling

We seek a statistical description of visual texture that
is consistent with human visual perception. A natu-
ral starting point is to define a texture as a real two-
dimensional homogeneous random field (RF)X(n,m)
on a finite lattice(n,m) ∈ L ⊂ Z2. The basis for
connecting such a statistical definition to perception
is the hypothesis first stated by Julesz (1962) and re-
formulated by later authors (e.g., Yellott, 1993; Victor,
1994; Zhu et al., 1996): there exists a set of functions
{φk(X), k = 1 . . . Nc} such that samples drawn from
any two RFs that are equal in expectation over this set

are visually indistinguishable under some fixed com-
parison conditions. Mathematically,

E(φk(X)) = E(φk(Y)),

∀k⇒ samples ofX andY are

perceptually equivalent, (1)

whereE(·) indicates the expected value over the rele-
vant RF. We refer to this set of functions as the
constraint functions. The hypothesis establishes the im-
portance of human perception as the ultimate criterion
for texture equivalence, and postulates the existence
of a universal set of statistical measurements that can
capture this equivalence. The hypothesis also implies
that this set of statistical measurements provides a pa-
rameterization of the space of visual textures. Julesz’
originally stated his conjecture in terms ofNth-order
pixel statistics (assuming homogeneous RFs), but in
later work he disproved it for casesN= 2 andN= 3
by constructing a set of counterexamples (Caelli and
Julesz, 1978; Julesz et al., 1978). Nevertheless, the
general form of the hypothesis provides an appealing
foundation for texture modeling.

Many variants of Julesz’ conjecture may be formu-
lated. For example, a more restricted version of the
conjecture states that there exist such sets of functions
for each individual texture, or for each subclass of tex-
ture. This form of the conjecture has been implicitly as-
sumed in a number of texture models based on texture-
specific adaptive decompositions (e.g., Faugeras and
Pratt, 1980; Zhu et al., 1996; Manduchi and Portilla,
1999). A more ambitious version of the conjecture
states that there exists a set of statistical measurements
such that two textures are perceptually indistinguish-
ableif and only if they are drawn from RFs matching
those statistics. In this case, the set of statistical mea-
surements are both sufficient and necessary to guaran-
tee perceptual equivalence. This bidirectional connec-
tion between statistics and perception is desirable, as it
ensures compactness as well as completeness (i.e., pre-
vents over-parameterization) (Cano and Minh, 1988).
The ultimate goal is to achieve such a representation us-
ing, in addition, a set of visually meaningful parameters
that capture independent textural features. If one were
to fully succeed in producing such a set, they would
also serve as a model for the early processes of human
vision that are responsible for texture perception.

1.1. Testing the Julesz Conjecture

Despite the simplicity with which Julesz’ conjecture
is expressed, it contains a number of subtleties and
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ambiguities that make it difficult to test a specific model
(i.e., set of constraints) experimentally. First, the defi-
nition of perceptual equivalence is a loose one, and
depends critically on the conditions under which com-
parisons are made. Many authors refer to preattentive
judgements, in which a human subject must make a
rapid decision (“same” or “different”) without careful
inspection (e.g., Malik and Perona, 1990).

Another subtlety is that the perceptual side of the
conjecture is stated in terms of individual images, but
the mathematical side is stated in terms of the statistics
of abstract probabilistic entities (RFs). In order to rec-
oncile this inconsistency, one must assume that reason-
able estimates of the statistics may be computed from
single finite images. The relevant theoretical property
is ergodicity: a spatially ergodic RF is one for which
ensemble expectations (such as those in the Julesz con-
jecture) are equal to spatial averages over the lattice, in
the limit as the lattice grows infinitely large. A number
of authors have discussed both the necessity of and the
complications arising from this property when inter-
preting the Julesz conjecture (e.g., Gagalowicz, 1981;
Yellott, 1993; Victor, 1994).

But ergodicity is an abstract property, defined only
in the limit of an image of infinite size. In order to work
with the Julesz conjecture experimentally, one must be
able to obtain reasonable estimates of statistical pa-
rameters fromfinite images. Thus we define a stronger
form of ergodicity:

Definition. A homogeneous RFX has the property
of practical ergodicity with respect to functionφ :
R|L| →R, and with toleranceε, and probabilityp, if
and only if the spatial average ofφ over a sample image
x(n,m) drawn fromX is a good approximation to the
expectation ofφ with high probability:

PX(|φ(x(n,m))− E (φ(X)) | < ε) ≥ p. (2)

Here,φ̄ indicates an average over all spatial translates
of the image1

φ(x(n,m)) ≡ 1

|L|
∑
(i, j )∈L

φ(x(bn+ i cN, bm+ j cM)),

where(N,M) are the dimensions of the image pixel
latticeL, andb·cN indicates that the result is taken mo-
dulo N. We refer to these spatial averages asestimates
or measurementsof the statistical parameters. Clearly,
for a given type of texture, there is a tradeoff between

the size of the lattice, the complexity and spatial extent
of φ, and the values ofε and p.

Several methodologies have been used for testing
specific examples of the Julesz conjecture. Julesz and
others constructed counterexamples by hand (Caelli
and Julesz, 1978; Julesz et al., 1978; Gagalowicz, 1981;
Diaconis and Freedman, 1981; Yellot, 1993). Speci-
fically, they created pairs of textures with the same
Nth-order pixel statistics that were strikingly differ-
ent in appearance (see Fig. 13). Many authors have
used classification tests (sometimes in the context of
image segmentation) to evaluate texture models (e.g.,
Chen and Pavlidis, 1983; Bergen and Adelson, 1986;
Turner, 1986; Bovik et al., 1990). In most cases, this
involves defining a distance measure between vectors
of statistics computed on each of two texture images,
and comparing this with the discriminability of those
images by a human observer. This is usually done over
some fixed test set of example textures, either artifi-
cial or photographic. But classification provides a fairly
weak test of the bidirectional Julesz conjecture. Sup-
pose one has a candidate set of constraint functions
that is insufficient. That is, there exist pairs of texture
images that produce identical statistical estimates of
these functions, but look different. It is highly unlikely
that such a pair (with exactly matching statistics) would
happen to be in the test set, unless the examples in the
set were artificially constructed in this way. Alterna-
tively suppose one has a candidate set of parameters
that is overconstrained. That is, there exist pairs of
texture images that look the same, but have different
statistics. Again, it is unlikely that such a pair would
happen to be in the test set.

A more efficient testing methodology may be de-
vised if one has an algorithm for sampling from a
RF with statistics matching the estimated statistics of
an example texture image. The usual approach is re-
ferred to as “synthesis-by-analysis” (e.g. Faugeras and
Pratt, 1980; Gagalowicz, 1981; Cano and Minh, 1988;
Cadzow et al., 1993). First, one estimates specific val-
uesck, corresponding to each of the constraint func-
tions φk, from an example texture image. Then one
draws samples from a random fieldX satisfying the
statistical constraints:

E(φk(X)) = ck, ∀k. (3)

One then makes visual comparisons of the original
example image with images sampled from this ran-
dom field. Clearly, we cannot hope to fully demon-
strate sufficiency of the set of statistics using this
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synthesis-by-analysis approach, as this would require
exhaustive sampling from the RF associated with every
possible texture. But if one assumes practical ergodi-
city of the generating RF for all visually relevant func-
tions (with probability close to one, for visually chosen
thresholds), then virtually all generated samples will be
perceptually equivalent. Under this assumption, gener-
ating a single sample that is visually close to each exam-
ple in a visually rich library of texture images provides
compelling evidence of the power of the model.

A much stronger statement may be made regarding
synthesis failures. A single generated sample that is vi-
sually different from the original texture indicates that
the set of constraint functions is almost certainly insuf-
ficient. This is true under the assumption of practical
ergodicity of the generating RF for the constraint func-
tions of the model. In this paper, we demonstrate the
importance of various subsets of our proposed para-
meter set by showing that the removal of each sub-
set results in a failure to synthesize at least one of the
example textures in our library.

In summary, the synthesis-by-analysis methodology
for testing a model of visual texture requires the fol-
lowing ingredients:

• A candidate set of constraint functions,{φk}. This is
the topic of Section 2.
• A library set of example textures. We have assembled

a well-known set of images by Brodatz (1966), the
VisTex database (1995), a set of artificial computer-
generated texture patterns, and a set of our own dig-
itized photographs. For purposes of this paper, we
utilize only grayscale images.
• A method of estimating statistical parameters. In this

paper, we assume practical ergodicity (as defined
above), and compute estimates of the parameters by
spatially averaging over single images.
• An algorithm for generating samples of a RF satis-

fying the statistical constraints. Computational effi-
ciency is an important consideration: An inefficient
sampling algorithm can impose practical limitations
on the choice of the constraint functions, and consti-
tutes an obstacle for visually testing and modifying
sets of constraint functions since this process typi-
cally requires subjective visual comparison of many
synthesized textures. This is discussed in the follow-
ing subsections.
• A method of measuring the perceptual similarity of

two texture images. In this paper, we use only infor-
mal visual comparisons.

1.2. Random Fields from Statistical Constraints

Given a set of constraint functions,{φk}, and their cor-
responding estimated values for a particular texture,
{ck}, we need to define and sample from a RF that sat-
isfies Eq. (3). A mathematically attractive choice is the
density with maximum entropy that satisfies the set of
constraints (Jaynes, 1957). Zhu et al. (1996) have devel-
oped an elegant framework for texture modeling based
on maximum entropy and have used it successfully for
synthesis. The maximum entropy density is optimal
in the sense that it does not introduce any constraints
on the RF beyond those of Eq. (3). The form of the
maximum entropy density may be derived by solving
the constrained optimization problem using Lagrange
multipliers (Jaynes, 1978).

P(Ex) ∝
∏

k

e−λkφk(Ex) (4)

where Ex ∈R|L| corresponds to a (vectorized) image,
and theλk are the Lagrange multipliers. The val-
ues of the multipliers must be chosen such that the
density satisfies the constraints given in Eq. (3). But
the multipliers are generally a complicated function
of the constraint values,ck, and solving typically
requires time-consuming iterative numerical approxi-
mation schemes. Furthermore, sampling from this den-
sity is non-trivial, and typically requires computation-
ally demanding algorithms such as the Gibbs sampler
(Geman and Geman, 1984; Zhu et al., 1996), although
recent work by Zhu et al. on Monte Carlo Markov
Chain methods has reduced these costs significantly
(Zhu et al., 1999).

Our texture model is based on an alternative to the
maximum entropy formulation that has recently been
formalized by Zhu et al. (1999). In particular, our
synthesis algorithm (Simoncelli, 1997; Simoncelli and
Portilla, 1998; Portilla and Simoncelli, 1999) operates
by sampling from the ensemble of images that yield
the sameestimatedconstraint values:

T Eφ,Ec = {Ex : φk(Ex) = ck, ∀k} (5)

If we assumeT Eφ,Ec is compact (easily achieved, for ex-
ample, by including the image variance as one of the
constraints), then the maximum entropy distribution
over this set is uniform. Zhu et al. (1999) have termed
this set theJulesz Ensemble, and have shown that the
uniform distribution over this set is equivalent to the
maximal entropy distribution of Eq. (4) in the limit as
the size of the lattice grows to infinity.
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1.3. Sampling via Projection

Given a set of constraint functions,φk, and their cor-
responding values,ck, the sampling problem becomes
one of selecting an image at random from the associated
Julesz ensemble defined in Eq. (5). Consider a deter-
ministic function that maps an initial imageEx0 onto an
element ofT Eφ,Ec:

pEφ,Ec : R|L| → T Eφ,Ec

If Ex0 is a sample of a RFX0 defined over the same
latticeL, then the functionpEφ,Ec induces a RF onT Eφ,Ec:

Xt = pEφ,Ec(X0).

AssumingX0 is a homogeneous RF, and thatpEφ,Ec is
a translation-invariant function (easy conditions to ful-
fill), the resultingXt will also be a homogeneous RF.

By this construction, texture synthesis is reduced to
drawing independent samples fromX0, and then ap-
plying the deterministic functionpEφ,Ec. Note thatXt is
guaranteed to be practically ergodic with respect to the
set{φk} for anyε > 0 and anyp. Thus, a single sam-
ple drawn fromXt that is visually different from the
original example serves to demonstrate that the set of
constraint functions is insufficient.

In general, the entropy ofXt will have a complicated
dependence on both the form of the projection function
pEφ,Ec and the distribution ofX0. Solving for a choice of
X0 that maximizes the entropy ofXt is just as difficult
as solving for the maximum entropy density defined in
the previous section. Instead, we choose a high-entropy
distribution for X0: Gaussian white noise of the same
mean and variance as that of the original image,Ex0. In
practice, this choice seems to produce anXt with fairly
high entropy. By deciding not to insist on a uniform
(and thus, maximal entropy) density over the Julesz
ensemble, we obtain a considerable gain in efficiency
of the algorithm and flexibility in the model, as we will
show throughout this paper.

1.4. Projection onto Constraint Surfaces

The number and complexity of the constraint functions
{φk} in a realistic model of a texture make it very diffi-
cult to construct a single projection functionpEφ,Ec. Thus,
we consider an iterative solution, in which the con-
straints are imposed sequentially, rather than simulta-

neously. Specifically, we seek a set of functions

pk : R|L| −→ Tk,

whereTk is the set of images satisfying constraintk,

Tk = {Ex : φk(Ex) = ck},
such that by iteratively and repeatedly applying these
functions, we arrive at an image inT Eφ,Ec. This can be
expressed as follows:

Ex(n) = pbncNc

(Ex(n−1)
)
, (6)

with Ex(0)= Ex0 an initial image. Assuming this sequence
of operations converges, the resulting image will be a
member of the Julesz ensemble:

pEφ,Ec( Ex0) ≡ lim
n→∞ Ex

(n) ∈ T Eφ,Ec. (7)

Since we do not, in general, know how the projec-
tion operations associated with each constraint function
will interact, it is preferable to choose each functionpk

to modify the image as little as possible. If the func-
tionsφk are smooth, the adjustment that minimizes the
Euclidean change in the image is an orthogonal projec-
tion of the image onto the manifold of all the images
satisfying that particular constraint. This method has
been extensively used in the form of projecting onto
convex sets (POCS) (Youla and Webb, 1982). In the
restricted case of two constraints whose solution sets
are both convex and known to intersect, the procedure
is guaranteed to converge to a solution. In the case of
more than two sets, even if all of them are convex, con-
vergence is not guaranteed (Youla and Webb, 1982).
Interesting results have been reported in applying al-
ternating orthogonal projections onto non-convex sets
(Youla, 1978). The texture synthesis algorithm devel-
oped by Heeger and Bergen (1995) is based on an itera-
tive sequence of histogram-matching operations, each
of which is an orthogonal projection onto a non-convex
set. In this paper, we will use a relatively large num-
ber of constraints, and only few of these are convex.
Nevertheless, the algorithm has not failed to get close
to convergence for the many hundreds of examples on
which it has been tested.

1.5. Gradient Projection

By splitting our projection operation into a sequence
of smaller ones, we have greatly simplified our
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mathematical problem. However, in many practical
cases, even solving a single orthogonal projection may
be difficult. Since our method already involves two
nested loops (going repeatedly through the set of con-
straints), we need to find efficient, single-step adjust-
ments for each constraint or group of constraints. A
simple possibility corresponds to moving in the direc-
tion of the gradient ofφk(Ex):

Ex′ = Ex + λk E∇φk(Ex), (8)

whereλk is chosen such that

φk(Ex′) = ck. (9)

The rationale of the gradient projection is the same
as for the orthogonal case: we want to adjustφk(Ex)
while changingEx as little as possible. It is interesting
to note that the gradient vectorE∇φk(Ex), when evalu-
ated at imagesEx that lie on the surface corresponding
to the constraint,Tk, is orthogonal to that surface. This
means that in the limit asφk(Ex)→ ck, orthogonal and
gradient projections are equivalent. It also implies that
if we orthogonally project our gradient-projected vec-
tor Ex′ back onto the original constraint set, we obtain
again the original vectorEx. In this sense, the gradient
projection and the orthogonal projection are inverse of
each other.

The calculation ofE∇φk(Ex) is usually straightfor-
ward, and all that remains in implementing the projec-
tion is to solve for the constantλk that satisfies Eq. (9).
In general, however, there may not be a single solution.
When there are multiple solutions forλk, we simply
choose the one with the smallest magnitude (this cor-
responds to making the minimal change in the image).
When there is no solution, we solve for theλk that
comes closest to satisfying the constraint of Eq. (9).

We can extend the previous idea from the adjustment
of a single constraint to the adjustment of a subset of
related constraints{ EφS , EcS}, whereS ⊂ {k = 1 . . . Nc}.
In this case, we seek values ofλk, ∀k ∈ S such that the
projected vector

Ex′ = Ex +
∑
k∈S

λk E∇φk(Ex) (10)

satisfies the constraints:

EφS(Ex′) = EcS . (11)

2. Texture Model

How should one go about choosing a set of con-
straint functions? Since texture comparisons are to
be done by human observers, one source of inspira-
tion is our knowledge of the earliest stages of hu-
man visual processing. If the set of constraint func-
tions can be chosen to emulate the transformations
of early vision, then textures that are equivalent ac-
cording to the constraint functions will be equivalent
at this stage of human visual processing. As is com-
mon in signal processing, we proceed by first decom-
posing the signal using a linear basis. The constraint
functions are then defined on the coefficients of this
basis.

2.1. Local Linear Basis

There is a long history of modeling the response prop-
erties of neurons in primary visual cortex, as well as
the performance of human observers in psychophysi-
cal tasks, using localized oriented bandpass linear fil-
ters (e.g., Graham, 1989). These decompositions are
also widely used for tasks in computer vision. In ad-
dition, recent studies of properties of natural images
indicate that such decompositions can make acces-
sible higher-order statistical regularities (e.g., Field,
1987; Watson, 1987; Daugman, 1988; Zetzsche et al.,
1993; Simoncelli, 1997). Especially relevant are re-
cent results on choosing bases to optimize information-
theoretic criterion, which suggest that a basis of local-
ized oriented operators at multiple scales is optimal
for image representation (Olshausen and Field, 1996;
Bell and Sejnowski, 1997). Many authors have used
sets of multi-scale bandpass filters for texture synthesis
(Cano and Minh, 1988; Porat and Zeevi, 1989; Popat
and Picard, 1993; Heeger and Bergen, 1995; Portilla
et al., 1996; Zhu et al., 1996; De Bonet and Viola,
1997).

We wish to choose a fixed multi-scale linear de-
composition whose basis functions are spatially local-
ized, oriented, and roughly one octave in bandwidth. In
addition, our sequential projection algorithm requires
that we be able to invert this linear transformation. In
this regard, a bank of Gabor filters at suitable orienta-
tions and scales (e.g., Daugman and Kammen, 1986;
Porat and Zeevi, 1989; Portilla et al., 1996) would
be inconvenient. An orthonormal wavelet represen-
tation (e.g., Daubechies, 1988; Mallat, 1989) suffers
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from a lack of translation-invariance, which is likely to
cause artifacts in an application like texture synthesis
(Simoncelli et al., 1992). Thus, we chose to use a “steer-
able pyramid” (Simoncelli et al., 1992; Simoncelli and
Freeman, 1995), since this transform has nice recon-
struction properties (specifically, it is a tight frame),
in addition to properties of translation-invariance and
rotation-invariance. The basis functions may be in-
terpreted as directional derivatives of some lowpass
kernel.

For this paper, we have extended the original steer-
able pyramid representation to include complex “ana-
lytic” filters. That is, the real and imaginary parts cor-
respond to a pair of even- and odd-symmetric filters
(analogous to a Hilbert Transform pair in one dimen-
sion). This allows us to utilize measures of local phase
and energy in some of our texture descriptors. Such
measures have proved important throughout computer
vision (e.g., Knutsson and Granlund, 1983; Perona and
Malik, 1990), and are again motivated by what is known
of biological vision.

Similar to conventional orthogonal wavelet decom-
positions, the steerable pyramid is implemented by re-
cursively splitting an image into a set of oriented sub-
bands and a lowpass residual band. The system dia-
gram for the transform is shown in Fig. 1. The fil-
ters used in this transformation are polar-separable
in the Fourier domain, where they may be written

Figure 1. System diagram for the steerable pyramid (Simoncelli and Freeman, 1995). The input image is initially split into high- and lowpass
bands. The lowpass band is then further split into a lower-frequency band and a set of oriented subbands. The recursive construction of a pyramid
is achieved by inserting a copy of the diagram contents indicated by the shaded region at the location of the solid circle (i.e., the lowpass
branch).

as:

L(r, θ) =



2 cos

(
π

2
log2

(
4r

π

))
,

π

4
< r <

π

2

2, r ≤ π
4

0, r ≥ π
2

Bk(r, θ) = H(r )Gk(θ), k ∈ [0, K − 1],

with radial and angular parts

H(r )=



cos

(
π

2
log2

(
2r

π

))
,

π

4
< r <

π

2

1, r ≥ π
2

0, r ≤ π
4

Gk(θ)=

αK

[
cos

(
θ − πk

K

)]K−1

,

∣∣∣∣θ − πk

K

∣∣∣∣ < π

2

0, otherwise,

wherer, θ are polar frequency coordinates, andXk =
2k−1 (K−1)!√

K [2(K−1)]!
. The lowpass band is subsampled by

a factor of two along both axes (and thus requires
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Figure 2. A 3-scale, 4-orientation complex steerable pyramid representation of a disk image. Left: real parts of oriented bandpass images at
each scale and the final lowpass image. Right: magnitude (complex modulus) of the same subbands. Note that the highpass residual band is not
shown.

an amplitude of two). Unlike conventional orthogo-
nal wavelet decompositions, the subsampling does not
produce aliasing artifacts, as the support of the lowpass
filter L(r, θ) obeys the Nyquist sampling criterion. The
recursive procedure is initialized by splitting the input
image into lowpass and highpass portions, using the
following filters:

L0(r, θ) =
L
(

r
2, θ

)
2

H0(r, θ) = H

(
r

2
, θ

)
.

For all examples in this paper, we have usedK = 4
orientation bands, andN = 4 pyramid levels (scales),
for a total of 18 subbands (16 oriented, plus high-
pass and lowpass residuals). Figure 2 shows an exam-
ple image decomposition. The basis set forms a tight
frame, and thus the transformation may be inverted by
convolving each complex subband with its associated
complex-conjugated filter and adding the results. Al-
ternatively, one may reconstruct from the non-oriented
residual bands and either the real or imaginary portions
of the oriented bands.

2.2. Statistical Constraints

Assuming one has decomposed an image using a set
of linear filters, the constraint functions may be de-
fined on the coefficients of this decomposition. Pre-
vious authors have used autocorrelation (e.g., Chen
and Pavlidis, 1983; Bovik et al., 1990; Reed and
Wechsler, 1990; Bouman and Shapiro, 1994; Portilla
et al., 1996), nonlinear scalar functions (Anderson and
Langer, 1997), and marginal histograms (Faugeras and

Pratt, 1980; Heeger and Bergen, 1995; Zhu et al., 1996)
of subbands. But recent nonparametric models of joint
coefficient densities have produced the most visually
impressive synthesis results. Popat and Picard (1997)
used a mixture model to capture regions of high prob-
ability in the joint density of small sets of coefficients
at adjacent spatial positions and scales. De Bonet and
Viola (1997) showed impressive results by directly re-
sampling from the scale-to-scale joint histograms on
small neighborhoods of coefficients. These nonpara-
metric texture models, along with our own studies of
joint statistical properties in the context of other ap-
plications (Simoncelli, 1997; Buccigrossi and Simon-
celli, 1999), motivated us to consider the use of joint
statistical constraints.

In general, we have used the following heuristic strat-
egy for incrementally augmenting an initial set of of
constraint functions:

1. Initially choose a set of basic parameters and syn-
thesize texture samples using a large library of
examples.

2. Gather examples of synthesis failures, and classify
them according to the visual features that distin-
guish them from their associated original texture
examples. Choose the group of failures that pro-
duced the poorest results.

3. Choose a new statistical constraint that captures the
visual feature most noticeably missing from the fail-
ure group. Incorporate this constraint into the syn-
thesis algorithm.

4. Verify that the new constraint achieves the desired
effect of capturing that feature by re-synthesizing
the textures in the failure group.
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5. Verify that the original constraints are still neces-
sary. For each of the original constraints, find a tex-
ture example for which synthesis fails when that
constraint is removed from the set.

This strategy resembles the greedy entropy-
minimization approach proposed by Zhu et al. (1996),
but differs in that: 1) the constraint set is not adapted for
a single texture, but to a reference set of textures; and
2) the procedure is driven by perceptual criteria rather
than information-theoretic criteria. Our constraint set
was developed using this strategy, beginning with a set
containing only correlation measures. Below, we de-
scribe each of the resulting constraints, providing some
motivation for its inclusion, and demonstrating its ne-
cessity by showing two examples of synthesis failures
when that constraint is removed from the set.

Marginal Statistics. The statistics of gray-level tex-
ture pixels express the relative amount of each intensity
in the texture. Many texture models make direct use
of the pixel histogram to characterize this distribution
(e.g. Gagalowicz, 1981; Heeger and Bergen, 1995; Zhu
et al., 1996; Portilla et al., 1996). A more complete de-
scription of the gray-level distribution, which includes
some basic spatial information, consists of characteriz-
ing the marginal statistics of the blurred versions of the
image at different scales. In our current model we have
found it sufficient to measure three normalized sample
moments (variance, skewness and kurtosis), together
with the range (minimum and maximum intensities)
for the pixel statistics, and the skewness and kurtosis
of the lowpass images computed at each level of the
recusive pyramid decomposition illustrated in Fig. 1
(their variance is included in the autocorrelation, de-
scribed next). Figure 3 demonstrates the necessity of
these pixel-domain statistics for proper synthesis of two
different example textures.

Coefficient Correlation. The coefficients of our
wavelet decomposition are typically correlated for two
reasons. First, the representation is highly overcom-
plete, so the coefficients lie within a linear subspace.
More importantly, covariances of subband coefficients
can arise from spectral peaks (i.e., periodicity) or ridges
(i.e., globally oriented structure) in a texture (Francos
et al., 1993). In order to represent such spectral features,
we should include the local autocorrelation of each sub-
band as a texture descriptor. However, due to the over-
completeness of our linear representation, the spatial

Figure 3. Necessity of marginal constraints. Left column: original
texture images. Middle: Images synthesized using full constraint set.
Right: Images synthesized using all but the marginal constraints.

correlation of the subband responses are highly redun-
dant, and thus unsuitable for a compact model. A more
efficient set of parameters which describe the same type
of features is obtained using the local autocorrelation
of the lowpass images computed at each level of the re-
cursive pyramid decomposition. This set of parameters
provide high spectral resolution in the low frequencies
and low spectral resolution in high frequencies, which
is a natural solution for a scale-invariant modeling of
images (see Tabernero et al., 1999). It has been known
for some time that correlation measurements alone are
not sufficient to capture the structure of many natural
textures (Julesz et al., 1978; Pratt et al., 1978; Faugeras
and Pratt, 1980). But in the context of our model, they
are still necessary to represent periodic structures and
long-range correlations. This is illustrated in Fig. 4.

Figure 4. Necessity of raw autocorrelation constraints. Left col-
umn: original texture images. Middle: Images synthesized using full
constraint set. Right: Images synthesized using all but the autocor-
relation constraints.
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Magnitude Correlation. Each of the parameters de-
scribed thus far have been used by previous authors for
texture synthesis. But these parameters are not suffi-
cient (at least in the context of our choice of basis) to
represent many textures. In recent work, we have stud-
ied the joint statistics of wavelet coefficient amplitudes
for natural images (Simoncelli, 1997; Buccigrossi and
Simoncelli, 1999; Wainwright and Simoncelli, 2000),
and have found that these are quite regular. In particular,
we have examined the conditional histograms of pairs
of coefficient amplitudes at adjacent spatial locations,
orientations, and scales. We find that the variance of the
conditional density scales with the square of the con-
ditioning coefficient, even when the raw coefficients
are uncorrelated. There is an intuitive explanation for
this: the “features” of real images give rise to large co-
efficients in local spatial neighborhoods, as well as at
adjacent scales and orientations. The use of joint statis-
tics of rectified subband coefficients also appears in the
human vision literature in the form of “second-order”
texture analyzers and models (see Graham, 1989 or
Bergen and Landy, 1991). The idea is to decompose
the image with a linear basis, rectify or square the co-
efficients, and then apply a second linear transform.
These measures may be used to represent or compare
textures, or to segment an image into homogeneous
simpler (“first-order”) texture regions.

Figure 5 shows the steerable pyramid coefficient
magnitudes of two texture images. One can see that

Figure 5. Normalized magnitude responses of the steerable pyra-
mid subbands for two example textures images (shown at left).

Figure 6. Necessity of magnitude correlation constraints. Left col-
umn: original texture images. Middle: Images synthesized using full
constraint set. Right: Images synthesized using all but the magnitude
auto- and cross-correlation constraints.

the magnitudes (and the relationship between them)
capture important structural information about each of
these textures. In particular, large magnitudes appear at
the same locations in the “squares” texture, and large
magnitudes of the two diagonal orientations are anti-
correlated in the herringbone texture. Such correlations
are often present despite the fact that the raw coeffi-
cients may be uncorrelated. This can occur because
variations in phase across the image lead to cancel-
lation. Furthermore, the magnitude correlation is not
purely due to the linear basis we have chosen: Different
images reveal different degrees of correlation. As a
simple summary of this dependence, we compute the
correlation of the complex magnitude of pairs of coef-
ficients at adjacent positions, orientations and scales.
Note that computing the cross-scale statistics requires
that the coarse subband be upsampled and interpolated
to match the dimensions of the fine subband. Figure 6
demonstrates the necessity of the magnitude correla-
tion constraints: high contrast locations in the image
are no longer organized along lines or edges.

Cross-Scale Phase Statistics.In earlier instantiations
of our model (Simoncelli and Portilla, 1998), we found
that many examples of synthesis failure were due to
inability to represent the phase of the responses to lo-
cal features, such as edges and lines. For example, a
white line on a dark background will give rise to a
zero phase response in the coefficients of all scales
along that line, whereas a dark line on a light back-
ground will produce aπ response. Similarly, an edge
will produce either+π

2 or−π
2 phase responses along

the edge, depending on the polarity of the edge. As an
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Figure 7. Illustration of the “relative phase” statistic for two one-dimensional signals, shown in the top row. Left two columns: Responses to
an impulse signal. Right two columns: Responses to a step edge signal. The left plots in each pair of columns show real/imaginary parts, and
the right plots show the corresponding magnitude/phase.

intermediate case, a feature with a sawtooth profile will
create phase responses that shift with the spatial fre-
quency of the subband. Such gradients of intensity oc-
cur, for example, when convex objects are illuminated
diffusely, and are responsible for much of the three
dimensional appearance of these textures.

In order to capture the local phase behavior, we have
developed a novel statistical measurement that captures
the relative phase of coefficients of bands at adjacent
scales. In general, the local phase varies linearly with
distance from features, but the rate at which it changes
for fine-scale coefficients is twice that of those at the
coarser scale. To compensate for this, we double the
complex phase of the coarse-scale coefficients, and
compute the cross-correlation of these modified coeffi-
cients with the fine-scale coefficients. Mathematically,

φ( f, c) = c2 · f ∗

|c| ,

where f is a fine-scale coefficient,c is a coarse-scale
coefficient at the same location.

Definingĉ = c2/|c|, we can express the expectation
of that product as:

E(ĉ f ∗) = E( fr ĉr + fi ĉi )+ iE( fr ĉi − fi ĉr )

' 2E( fr ĉr )+ 2iE( fr ĉi ),

where the approximation holds because(ĉr , ĉi ) is a
quadrature-phase pair (approximately), as is( fr , fi ).
Thus, relative phase is captured by the two real ex-
pectationsE( fr ĉr ) andE( fr ĉi ). This statistic is illus-

Figure 8. Necessity of cross-scale phase constraints. Left column:
original texture images. Middle: Images synthesized using full con-
straint set. Right: Images synthesized using all but the cross-scale
phase constraints.

trated in Fig. 7 for two one-dimensional signals: An
impulse function, and a step edge. Note the difference
in the real/imaginary parts of the relative phase statistic
for the two signals. Figure 8 demonstrates the impor-
tance of this phase statistic in representing textures with
strong illumination effects. In particular, when it is re-
moved, the synthesized images appear much less three
dimensional and lose the detailed structure of shadows.

2.3. Summary of Statistical Constraints

As a summary of the statistical model proposed, we
enumerate the set of statistical descriptors, review the



60 Portilla and Simoncelli

features they capture, and give their associated number
of parameters.

• Marginal statistics: skewness and kurtosis of the par-
tially reconstructed lowpass images at each scale
(2(N+1)parameters) variance of the high-pass band
(1 parameter), and means variance, skew, kurtosis,
minimum and maximum values of the image pixels
(6 parameters),
• Raw coefficient correlation: Central samples of the

auto-correlation of the partially reconstructed low-
pass images, including the lowpass band ((N+ 1) ·
M2+1

2 parameters) These characterize the salient
spatial frequencies and the regularity (linear pre-
dictability) of the texture, as represented by periodic
or globally oriented structures.
• Coefficient magnitude statistics: Central samples of

the auto-correlation of magnitude of each subband
(N · K · M2+1

2 parameters), cross-correlation of each
subband magnitudes with those of other orientations
at the same scale (N · K (K−1)

2 parameters), and cross-
correlation of subband magnitudes with all orienta-
tions at a coarser scale (K 2(N − 1) parameters).
These represent structures in images (e.g., edges,
bars, corners), and “second order” textures.
• Cross-scale phase statistics: cross-correlation of the

real part of coefficients with both the real and imag-
inary part of the phase-doubled coefficients at all
orientations at the next coarser scale (2K 2(N − 1)
parameters). These distinguish edges from lines, and
help in representing gradients due to shading and
lighting effects.

For our texture examples, we have made choices of
N = 4, K = 4 andM = 7, resulting in a total of 710
parameters. We emphasize that this is auniversal(non-
adapted) parameter set. High quality synthesis results
may be achieved for many of the individual textures
in our set using a much-reduced subset of these pa-
rameters. But, as we have shown in Figs. 3, 4, 6 and 8
removal of any one group of parameters leads to syn-
thesis failures for some textures.

3. Implementation and Results

3.1. Sequential Projection, Convergence,
and Efficiency

Figure 9 shows a block diagram of our synthesis-by-
analysis algorithm. The process is initialized with an

Figure 9. Top level block diagram of recursive texture synthesis
algorithm. See text.

image containing samples of Gaussian white noise. The
image is decomposed into a complex steerable pyra-
mid. A recursive coarse-to-fine procedure imposes the
statistical constraints on the lowpass and bandpass sub-
bands, while simultaneously reconstructing a lowpass
image. A detailed diagram of this coarse-to-fine pro-
cedure is shown in Fig. 10. The autocorrelation of the
reconstructed lowpass image is then adjusted, along
with the skew and kurtosis, and the result is added to
the variance-adjusted highpass band to obtain the syn-
thesized texture image. The marginal statistics are im-
posed on the pixels of this image, and the entire process
is repeated. For accelerating the convergence, at the end
of the loop we amplify the change in the image from
one iteration to the next by a factor 1.8. Details of each
of the adjustment operations are given in the Appendix.

The algorithm we have described is fairly simple, but
we cannot guarantee convergence. The projection op-
erations are not exactly orthogonal, and the constraint
surfaces are not all convex. Nevertheless, we find that
convergence is achieved after about 50 iterations, for
the hundreds of textures we have synthesized. In ad-
dition, once convergence has been achieved (to within
some tolerance), the synthetic textures are quite stable,
oscillating only slightly in their parameters. Figure 11
shows the evolution of a synthetic texture, illustrat-
ing the rapid visual convergence of the algorithm. Our
current implementation (in MatLab) requires roughly
20 minutes to synthesize a 256× 256 texture (in 50
iterations) on a 500 Mhz Pentium workstation.

3.2. Synthesis Results

A visual texture model must be tested visually. In this
section, we show that our model is capable of repre-
senting an impressive variety of textures.2 Figure 12
shows a set of synthesis results on artificial texture im-
ages. The algorithm handles periodic examples quite
well, producing output with the same periodicities and
structures. Note that the absolute phase of the syn-
thesized images is random, due to the translation-
invariant nature of the algorithm, and the fact that we



A Parametric Texture Model 61

Figure 10. Block diagram describing the coarse-to-fine adjustment of subband statistics and reconstruction of intermediate scale lowpass image
(gray box of Fig. 9).

Figure 11. Example texture synthesis progression, for 0, 1, 2, 4 and
64 iterations. Original image shown in Fig. 5.

are treating boundaries periodically in all computa-
tions. Also shown are results on a few images composed
of repeated patterns placed at random non-overlapping
positions within the image. Surprisingly, our statistical
model is capable of representing these types of texture,
and the algorithm does a reasonable job of re-creating
these images, although there are significantly more ar-
tifacts than in the periodic examples.

Figure 13 shows two pairs of counterexamples that
have been used to refute the Julesz conjecture. The

leftmost pair were originally created by Julesz et al.
(1978): they have identical third-order pixel statistics,
but are easily discriminated by human observers. Our
model succeeds, in that it can reproduce the visual ap-
pearance of either of these textures. In particular, we
have seen that the strongest statistical difference arises
in the magnitude correlation statistics. The rightmost
pair were constructed by Yellott (1993), to have identi-
calsampleautocorrelation. Again, our model does not
confuse these, and can reproduce the visual appearance
of either one.

Figure 14 shows synthesis results photographic tex-
tures that are pseudo-periodic, such as a brick wall and
various types of woven fabric. Figure 15 shows syn-
thesis results for a set of photographic textures that
are aperiodic, such as the animal fur or wood grain.
Figure 16 shows several examples of textures with
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Figure 12. Synthesis results on artificial textures. For each pair of
textures, the upper image is the original texture, and the lower image
is the synthesized texture.

Figure 13. Synthesis of classic counterexamples to the Julesz con-
jecture (Julesz et al., 1978; Yellot, 1993) (see text). Top row: original
artificial textures. Bottom row: Synthesized textures.

complex structures. Although the synthesis quality is
not as good as in previous examples, we find the abil-
ity of our model to capture salient visual features of
these textures quite remarkable. Especially notable are
those examples in all three figures for which shading
produces a strong impression of three-dimensionality.

Finally, it is instructive to apply the algorithm to
images that are structured and highly inhomogeneous.

Figure 14. Synthesis results on photographic pseudo-periodic tex-
tures. See caption of Fig. 12.

Figure 15. Synthesis results on photographic aperiodic textures.
See caption of Fig. 12.
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Figure 16. Synthesis results on artificial textures. For each pair of
textures, the upper image is the original texture and the lower image
is the synthesized texture.

Figure 17. Synthesis results on inhomogeneous photographic im-
ages not usually considered to be “texture”.

Figure 17 shows a set of synthesis results on an artificial
image of a “bull’s eye”, and photographic images of a
crowd of people and a face. All three produce quite
compelling results that capture the local structure of
the original images, albeit in a globally disorganized
fashion.

Figure 18. Artificial textures illustrating failure to synthesize cer-
tain texture attributes. See text.

As explained in Section 1.1, synthesis failures indi-
cate insufficiency of the parameters. In keeping with
the methodology prescribed in 2.2, we have created a
set of artificial textures that have some of the attributes
that our model fails to reproduce. Figure 18 shows syn-
thesis examples for these examples. The first of these
contains black bars of all orientations on a white back-
ground. Although a texture of single-orientation bars
is reproduced fairly well (see Fig. 12), the mixture of
bar orientations in this example leads to the synthesis of
curved line segments. In general, the model is unable to
distinguish straight from curved contours, except when
the contours are all of the same orientation. The same
type of artifact may be seen in the synthesis of pine
shoots (Fig. 16). The second example contains bars of
different grayscale value. The synthesized image does
not capture the abruptness of bar endings nearly as
well as the black-and-white example in Fig. 12. This
is because the pixel marginal statistics provide an im-
portant constraint in the black-and-white example, but
are not as informative in the grayscale example. The
third example contains ellipses of all orientations. Al-
though the synthesized result contains black lines of
appropriate thickness and curvature, most of them do
not form closed contours. A similar artifact is present
in synthesis of beans (Fig. 16). This and the previous
problem are due in part to the lack of representation
of “end points” in the model. Finally, the fourth exam-
ple contains polygonal patches of constant gray value.
Within each subband of the steerable pyramid, the local
phase at polygon edges is equally likely to be positive
as negative, and thus averages to zero. The local phase
descriptor is unable to distinguish lines and edges in
this case, and the resulting synthetic image has some
transitions that look like bright or dark lines, rather than
step edges. An analogous problem occurs with textures
containing lines of different polarities. Again, the pixel
marginal statistics are not beneficial in this example.

Unknown

Unknown
"complexstructuredphotographic"[publishererror]
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3.3. Extensions

As a demonstration of the flexibility of our approach,
we can modify the algorithm to handle applications
of constrained texture synthesis. In particular, con-
sider the problem of extending a texture image be-
yond its spatial boundaries (spatial extrapolation). We
want to synthesize an image in which the central pix-
els contain a copy of the original image, and the sur-
rounding pixels are synthesized based on the statis-
tical measurements of the original image. The set of
all images with the same central subset of pixels is
convex, and the projection onto such a convex set is
easily inserted into the iterative loop of the synthe-
sis algorithm. Specifically, we need only re-set the
central pixels to the desired values on each iteration
of the synthesis loop. In practice, this substitution is
done by multiplying the desired pixels by a smooth
mask (a raised cosine) and adding this to the cur-
rent synthesized image multiplied by the complement
of this mask. The smooth mask prevents artifacts at
the boundary between original and synthesized pixels,
whereas convergence to the desired pixels within the
mask support region is achieved almost perfectly. This
technique is applicable to the restoration of pictures
which have been destroyed in some subregion (“fill-
ing holes”) (e.g., Hirani and Totsuka, 1996), although
the estimation of parameters from the defective image
is not straightforward. Figure 19 shows a set of ex-
amples that have been spatially extrapolated using this
method. Observe that the border between real and syn-
thetic data is barely noticeable. An additional poten-
tial benefit is that the synthetic images are seamlessly
periodic (due to circular boundary-handling within
our algorithm), and thus may be used to tile a larger
image.

Finally, we consider the problem of creating a texture
that lies visually “in between” two other textures. The
parameter space consisting of spatial averages of local
functions has a type of convexity property in the limit as
the image lattice grows in size.3 Figure 20 shows three
images synthesized from parameters that are an aver-
age of the parameters for two example textures. In all
three cases, the algorithm converges to an interesting-
looking image that appears to be a patchwise mix-
tures of the two initial textures, rather than a new
homogeneous texture that lies perceptually between
them. Thus, in our model, the subset of parameters
corresponding to textures (homogeneous RFs) is not
convex!

Figure 19. Spatial extrapolation of texture images. Upper left cor-
ner: example of an initial image to be extrapolated. Center shows an
example texture image, surrounded by a black region indicating the
pixels to be synthesized. Remaining images: extrapolated examples
(central region of constrained pixels is the same size and shape in all
examples).

Figure 20. Examples of “mixture” textures. Left: text (Fig. 19) tile
mosaic (Fig. 3); Middle: lizard skin (Fig. 14) and woven cane (Fig. 4);
Right: plaster (Fig. 15) and brick (Fig. 14).

4. Discussion

We have described a universal parametric model for
visual texture, based on a novel set of pairwise joint
statistical constraints on the coefficients of a multi-
scale image representation. We have described a frame-
work for testing the perceptual validity of this model
in the context of the Julesz conjecture, and devel-
oped a novel algorithm for synthesizing model tex-
tures using sequential projections onto the constraint
surfaces. We have demonstrated the necessity of sub-
sets of our constraints by showing examples of tex-
tures for which synthesis quality is substantially de-
creased when that subset is removed from the model.
And we have shown the power and flexibility of
the model by synthesizing a wide variety of artifi-
cial and natural textures, and by applying it to the
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constrained synthesis of boundary extrapolation. We
find it especially remarkable that the model can re-
produce textures with complex structure and lighting
effects.

The most fundamental issue in our model is the
choice of statistical constraints. We have motivated
these through observations of structural and statisti-
cal properties of images, and “reverse-engineering” of
early human visual processing, and we have refined
and augmented these measurements by observing fail-
ures to synthesize particular types of texture. Never-
theless, there is room for improvement. First, the fail-
ures of Fig. 18 suggest that our constraint set is still
insufficient. A more difficult problem is that our par-
ticular choices are not unique, and we cannot be sure
that an alternative set of measurements would not pro-
duce similar (or better) synthesis results. Finally, the
fact that some regions of the parameter space do not
correspond to homogeneous RFs (see the mixture tex-
tures in Fig. 20) indicates that the current parameteriza-
tion should be rearranged to give rise to a more useful
topological distribution of the subset of parameters that
correspond to textures. Convexity of this subset, in par-
ticular, would bring us closer to defining a perceptual
distance metric for texture, and would allow us to in-
terpolate between texture examples.

Our synthesis algorithm is closest to (and is, in fact,
a generalization of) that of Heeger and Bergen (1995).
It has the drawback that we cannot prove convergence.
In our experience with hundreds of texture examples,
however, the algorithm has never failed to converge to
an image that nearly satisfies the statistical constraints.
A deeper problem is that our model (in particular, the
implicit probability density on the space of images) is
not fully determined by the set of constraints, but is
also determined by the sampling algorithm.

It is worth comparing our model with several re-
cent successful texture models. By far the most suc-
cessful approaches in terms of visual appearance have
been the non-parametric sampling techniques (notably,
Popat and Picard, 1993; De Bonet and Viola, 1997;
Efros and Leung, 1999). Despite the beautiful synthe-
sis results, however, these techniques do not provide a
compact representation of texture (the representationis
the example texture image). Additionally, they are not
easily extensible to problems that require one to infer
a model from corrupted or partial information.

Amongst the parametric approaches, high quality re-
sults have been obtained using marginal histograms of
filter responses as statistical constraints (Heeger and

Bergen, 1995; Zhu et al., 1996). In the case of our
particular basis set, we find that marginal statistics
are insufficient to represent many of the more com-
plex textures. This is not to say that the marginals of
a larger set of filters would not be sufficient. In fact,
Zhu et al. have shown, using a variant of the Fourier
projection-slice theorem used for tomographic recon-
struction, that large numbers of marginals are sufficient
to uniquely constrain a high-dimensional probability
density (Zhu et al., 1996). But increasing the number of
marginals, in addition to making the representation less
compact, will also slow down the convergence of most
sampling algorithms. It remains to be seen whether
simple models of the joint statistics, such as that in-
troduced in this paper, can provide a more efficient
representation.

Another interesting concept used in a number of
recent models is to adapt the basis to the statistical
properties of each individual texture example (Bovik
et al., 1992; Francos et al., 1993; Portilla et al., 1996;
Zhu et al., 1997; Manduchi and Portilla, 1999). The
model by Zhu et al., in particular, produces high-quality
synthesis examples using a surprisingly small set of fil-
ters. The drawback with this approach is the additional
computational expense (often substantial) in the filter-
selection process.

We envision a number of extensions of our texture
modeling approach. The results can be made much
more visually compelling by introducing color.2 Pre-
liminary results indicate that the alternating projections
approach can be applied to other problems such as de-
noising (Portilla and Simoncelli, 2000). Since the rep-
resentation of a texture image is quite compact, the syn-
thesis technique might be used in conjunction with a
compression system in order to “fabricate” detail rather
than encode it exactly. Finally, we believe our synthe-
sis approach might be extended for use in constrained
synthesis applications such as repairing defects (e.g.,
scratches or holes), “super-resolution” zooming, and
“painting” texture onto an image (e.g., Hertzmann,
1998).

Appendix A: Adjustment of Constraints

In this appendix, we give the mathematical details of the
method by which each group of statistical constraints
is imposed. Throughout, we use the symbolt to denote
the statistics estimated from the original sample image
Ext .
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A.1. Adjusting Marginal Statistics

We adjust the mean, variance, skew, kurtosis and range
using the following procedure: 1) subtract the sample
mean, 2) adjust the sample skewness, 3) adjust the sam-
ple kurtosis, 4) adjust the sample variance and mean,
and 5) adjust the range. We denote the central sample
moments as follows:

µn(Ex) =
{

x(i, j ), n = 1

(x(i, j )− µ1(Ex))n, n > 1.
(12)

For readability, we typically drop the dependence onEx.
The coefficients of skewness and kurtosis are defined
as

η(Ex) = µ3(Ex)
(µ2(Ex))1.5 κ(Ex) = µ4(Ex)

(µ2(Ex))2 (13)

In the following paragraphs, we describe the adjust-
ment of each parameter.

Mean and Variance. These adjustments are accom-
plished in the usual way:

Ex′ = (Ex − µ1)

√
µt

2

µ2
+ µt

1

which corresponds to two gradient (and, in this case,
orthogonal) projections.

Range. The range ofEx is an exception in our set of
constraints, because it can not be written as the expec-
tation of a function applied to the image. We include
it nevertheless, because it helps to improve the visual
appearance of the results, as well as the convergence
of the algorithm. The adjustment is made by clipping
those pixel values that are outside the desired range.
This procedure is an orthogonal projection of the image
onto a hypercube of dimension|L|, which is a convex
set.

Skewness. In order to adjust the skewness, we assume
µ1(Ex) = 0, and compute the components ofE∇η(Ex):

∂η

∂x(i, j )
= 3

|L|µ3/2
2

(
x(i, j )2− µ1/2

2 ηx(i, j )− µ2
)
.

(14)

Dropping the scale factor and vectorizing, we define a
vector in the direction of the gradient:

Eg ≡ Ex ¯ Ex − µ1/2
2 ηEx − µ2, (15)

where¯ indicates element-wise multiplication. Fol-
lowing Eq. (8), we set the sample skewness of the pro-
jected image equal to the desired skewness:

η(Ex + λEg) = µ3(Ex + λEg)
µ

3/2
2 (Ex + λEg)

= ηt . (16)

Using the fact thatµ1(Ex + λEg) = 0 whenµ1(Ex) = 0,
and substituting Eq. (15) into (16), we obtain:

ηt =
∑3

n=0 pnλ
n[∑2

n=0 qnλn
]3/2 . (17)

where

p3 = µ6− 3µ1/2
2 ηµ5+ 3µ2(η

2− 1)µ4

+µ3
2(2+ 3η2− η4)

p2 = 3
(
µ5− 2µ1/2

2 ηµ4+ µ5/2
2 η3

)
p1 = 3

(
µ4− µ2

2(1+ η2)
)

p0 = ηµ3/2
2

q2 = µ4− (1+ η2)µ2
2

q1 = 0

q0 = µ2

(18)

Squaring both sides of Eq. (17), yields the algebraic
equation:

6∑
n=0

anλ
n = 0, (19)

where

a6 = p2
3 − η2

t q3
2,

a5 = 2p3 p2

a4 = p2
2 + 2p3 p1− 3η2

t q2
2q0

a3 = 2(p3 p0+ p2 p1)

a2 = p2
1 + 2p2 p0− 3η2

t q2q2
0

a1 = 2p1 p0

a0 = p2
0 − η2

t q3
0

(20)

From the six solutions of Eq. (19) we choose the
minimum amplitude solution satisfying Eq. (16) in the
interval aroundλ = 0 whereη(λ) has positive slope.
When there is no solution within this interval, one of
its extreme values is chosen.
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Kurtosis. This adjustment is analogous to the skew-
ness case. Assumingµ1(Ex) = 0, we define a vector in
the direction of the gradient:

Eg ≡ Ex ¯ Ex ¯ Ex − αEx − µ3.

whereα = µ4/µ2. Applying Eq. (8) and the defini-
tion (13) we obtain

κt =
∑4

n=0 pnλ
n[∑2

n=0 qnλn
]2 , (21)

where:

p4 = µ12− 4αµ10− 4µ3µ9+ 6α2µ8+ 12αµ3µ7

+ 6µ2
3µ6− 4α3µ6− 12α2µ3µ5+ α4µ4

− 12αµ2
3µ4+ 4α3µ2

3+ 6α2µ2
3µ2− 3µ4

3

p3 = 4
(
µ10− 3αµ8− 3µ3µ7+ 3α2µ6+ 6αµ3µ5

+ 3µ2
3µ4− α3µ4− 3α2µ2

3− 3µ4µ
2
3

)
p2 = 6

(
µ8− 2αµ6− 2µ3µ5+α2µ4 (22)

+ (µ2+ 2α)µ2
3

)
p1 = 4

(
µ6− α2µ2− µ2

3

)
p0 = µ4

q2 = p1/4

q1 = 0

q0 = µ2

We now solve the fourth degree algebraic equation
given in (21), and follow the same criterion as with
the skewness for choosing a solution.

A.2. Adjusting Subband Auto-Correlation

AssumingL is a rectangular grid ofN × M pixels,
we will use the following estimator for the (circular)
autocorrelation of an imageEx:

A(n,m) = x(i, j )x(|i + n|N, | j +m|M), (23)

where|a + b|N indicates the sum ofa andb modulo
N. The partial derivatives of this statistic with respect
to the pixel at location(i, j ) are given by

∂A(n,m)

∂x(i, j )
= 1

|L| [x(|i + n|N, | j +m|M)
+ x(|i − n|N, | j −m|M)]. (24)

Following Eq. (10) we arrive at an expression for the
projected image:

x′(i, j ) = x(i, j )+ 1

|L|
∑

(n,m)∈N
λn,m

× [x(|i + n|N, | j +m|M)
+ x(|i − n|N, | j −m|M)], (25)

whereN is the neighborhood composed by all the (one-
sided, non-redundant) samples(n,m) of the autocorre-
lation we want to adjust (for example, if we choose to
fix the central 7×7 samples of the autocorrelation, then
|N | = (72+1)/2= 25) and{λn,m} is a set of unknown
real constants. We can write the previous expression as

x′(i, j ) = x(i, j )⊗ hEλ(i, j ), (26)

where⊗ indicates circular convolution andhEλ(i, j ) is
an even-symmetric kernel with spatial support equal to
a symmetrized version ofN . Thus, the autocorrelation
is adjusted by applying a zero-phase moving average
filter to the image.4

We can solve for the (non-redundant) samples of the
filter hEλ by setting the autocorrelation samples of the
updated image to be the desired ones:

A′(n,m) =
∑

(k,l )∈N

∑
(p,q)∈N

hEλ(k, l )hEλ(p,q)

× [ At (n+ p+ k,m+ q + l )

+ At (n− p+ k,m− q + l )

+ At (n+ p− k,m+ q − l )

+ At (n− p− k,m−q− l )],

∀(n,m)∈N . (27)

This system of|N | quadratic equations and|N | un-
knowns might have up to 2|N | valid solutions. As we
are interested in a filter that changes the image as little
as possible, a natural initial guess for the solution is
the identity filter,δ(i, j ) (the Kronecker delta). How-
ever, a better initial guess can be computed by solving
for the even symmetric kernelAh(n,m)with 2|N |−1
non-zero samples that satisfies

At (n,m) = A(n,m) ∗ Ah(n,m), (28)

for (n,m) ∈ N , where∗ indicates convolution.
Arranging the samples of the current autocorrela-

tion A(n,m) that influence the convolution result in
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a circulant matrix andAt and Ah in column vectors,
the previous expression can be written as a system of
|N | linear equations and|N | unknowns. When the re-
sulting Ah is positive definite (i.e., its DFT, which is
real, is non negative), this kernel can be interpreted
as Ah(n,m) = hEλ(n,m) ∗ hEλ(−n,−m), and we can
solve for ahEλ satisfying the constraints by comput-
ing the square root of its Fourier transform and inverse
transforming. In general, this Fourier spectrum will not
be positive, and we will have to use the square root of
its absolute value:

hEλ(i, j ) ' DFT−1
{√|DFT{Ah(i, j )}|}. (29)

Despite the use of this somewhat crude approximation,
we obtain accuracy typically greater 70 dB SNR after
only a few iterations of the synthesis loop.

A.3. Adjusting Subband Cross-Correlations

At the coarsest scale of the pyramid decomposition, we
need to adjust the cross-correlation of coefficient mag-
nitudes at allK orientations. Given the set of subbands
{xk(i, j ), k = 1 . . . K }, the elements of theK × K
correlation matrixC are computed as:

Cn,m = xn(i, j )xm(i, j ). (30)

The partial derivatives of these matrix elements with
respect to a coefficient of thekth subband are:

∂Cn,m

∂xk(i, j )
=



1

|L|xn(i, j ), m= k

1

|L|xm(i, j ), n = k

0, otherwise.

(31)

Applying the Eq. (8) for obtaining the gradient, vector-
izing, and dropping the scale factor yields:

Ex′n = Exn +
K∑

m=1

λn,mExm (32)

for n = 1 . . . K , whereλn,m = λm,n. That is, the up-
dated subbands are a symmetric linear combination of
the original subbands. Arranging ourK vectorsExk as
the rows of a matrixX, we can express the previous
equation as:

X′ = MX (33)

whereM is a symmetricK × K matrix containing the
λn,m. The cross-correlation of the original subbands
may be expressed in matrix form:C = 1

|L|XX T .
We must now solve forM that achieves the desired

cross-correlation. This may be expressed as:

1

|L|X
′(X′)T= 1

|L|MX (MX )T = MCM T = Ct . (34)

corresponding to a system ofK (K + 1)/2 quadratic
equations and the same number of unknowns (distinct
elements ofM ). As in the case of the autocorrelation,
we can obtain a good approximation for a solution of
this system using the following direct technique. First,
we compute the eigenvector factorization of both the
desired and the current correlation matrices:

C = VDV T Ct = VtDtVt
T , (35)

where theD matrices are diagonal with strictly positive
entries, and theV matrices are orthogonal. By substi-
tuting these eigenvector expansions into Eq. (34), it is
easy to verify that the complete set of solutions forM
are of the form:

M = VtDt
1/2OD−1/2VT , (36)

whereO is any orthonormal matrix. A solution that is
nearly optimal (specifically, it becomes symmetric as
C→ Ct) is:

O = Vt
TV. (37)

In contrast with the auto-correlation adjustment, this
solution provides an exact adjustment of the cross-
correlation.

A.4. Adjusting Cross-Correlation
with Fixed Subbands

Our sequential algorithm proceeds from coarse to fine
scales. At all scales but the coarsest, we need not ad-
just only the cross-correlation of coefficients across the
K orientations, but also the cross-correlation with the
previously adjusted subbands at the coarser scale. This
is done for both the coefficient magnitudes, and also
for the phase-doubled complex coefficients. We define
the cross-correlation matrixB of the subbands to be
adjusted with a set ofMs subbands{yk(i, j )} defined
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on the same latticeL:

Bn,m = xn(i, j )ym(i, j ). (38)

Differences in the sampling rates between the two sub-
bands are eliminated by upsampling and interpolating
the coarse-scale bands.

The gradient contains the following components:

∂Bn,m

∂xk(i, j )
=


1

|L| ym(i, j ), n = k

0, otherwise.
(39)

Combining these components with those computed
in the previous section, vectorizing, and discarding
scale factors, we obtain an expression for the updated
coefficients:

Ex′k = Exk +
K∑

n=1

λk,nExn +
Ms∑

m=1

µk,mEym, (40)

for k = 1 . . . K . As before,λk,n = λn,k, but note that
µk,m need not exhibit symmetry. Analogous to the de-
velopment of the previous section, we write this equa-
tion in a matrix form:

X′ = MX + KY (41)

whereM is an unknownK × K symmetric matrix, and
K is an unknownMs× K matrix. We must now solve
for M andK that achieve the desired cross-correlations:

1

|L|X
′(X′)T = 1

|L| [MXX TM T +MXY TK T

+KYX TM T+KYY TK T]

= MCM T+MBK T+KB TM T+KEK T

= Ct (42)

and

1

|L|X
′YT = 1

|L| [MXY T + KYY T ]

= MB + KE

= Bt, (43)

whereE = YY T . Solving Eq. (43) forK gives:

K = (Bt −MB)E−1. (44)

Substituting this into Eq. (42) gives a symmetric
quadratic constraint onM :

M [C− BE−1BT ]M T = Ct − BtE−1BT
t . (45)

This constraint is in the same form as Eq. (34), and thus
the solution forM may be found using the same eigen-
value technique. The solution forK is then obtained by
substitutingM into Eq. (44).
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Notes

1. We assume periodic boundary handling for simplicity.
2. Additional examples and source code are available on the internet

athttp://www.cns.nyu.edu/∼lcv/texture/.
3. Linear combinations of the statistical measurements of two dif-

ferent textures correspond to the statistics of an image divided
into two regions containing the two textures. Subband coeffi-
cients near the boundary will be corrupted, but in the limit as the
image size goes to infinity, their contribution to the statistics goes
to zero.

4. Accordingly, if we wanted to fix the autocorrelation using an
orthogonal projection, we would use the inverse operation: a
zero-phase auto-regressive (all pole) filter localized inN. But
the calculation of such a filter is more difficult than the moving
average approximation.
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