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Image Denoising Using Scale Mixtures of
Gaussians in the Wavelet Domain
Javier Portilla, Vasily Strela, Martin J. Wainwright, and Eero P. Simoncelli

Abstract—We describe a method for removing noise from digital
images, based on a statistical model of the coefficients of an over-
complete multiscale oriented basis. Neighborhoods of coefficients
at adjacent positions and scales are modeled as the product of two
independent random variables: a Gaussian vector and a hidden
positive scalar multiplier. The latter modulates the local variance of
the coefficients in the neighborhood, and is thus able to account for
the empirically observed correlation between the coefficient am-
plitudes. Under this model, the Bayesian least squares estimate of
each coefficient reduces to a weighted average of the local linear
estimates over all possible values of the hidden multiplier variable.
We demonstrate through simulations with images contaminated by
additive white Gaussian noise that the performance of this method
substantially surpasses that of previously published methods, both
visually and in terms of mean squared error.

Index Terms—Bayesian estimation, Gaussian scale mixtures,
hidden Markov model, natural images, noise removal, overcom-
plete representations, statistical models, steerable pyramid.

T HE artifacts arising from many imaging devices are quite
different from the images that they contaminate, and this

difference allows humans to “see past” the artifacts to the under-
lying image. The goal of image restoration is to relieve human
observers from this task (and perhaps even to improve upon their
abilities) by reconstructing a plausible estimate of the original
image from the distorted or noisy observation. A prior proba-
bility model for both the noise and for uncorrupted images is of
central importance for this application.

Modeling the statistics of natural images is a challenging task,
partly because of the high dimensionality of the signal. Two

Manuscript received September 29, 2002; revised April 28, 2003. During
the development of this work, V. Strela was on leave from Drexel University,
and was supported by an AMS Centennial Fellowship. M. J. Wainwright was
supported by a NSERC-1967 Fellowship. J. Portilla and E. P. Simoncelli
were supported by an NSF CAREER grant and Alfred P. Sloan Fellowship to
E. P. Simoncelli, and by the Howard Hughes Medical Institute. J. Portilla was
also supported by an FPI fellowship, and subsequently by a “Ramón y Cajal”
grant (both from the Spanish government). The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Mario
A. T. Figueiredo.

J. Portilla is with the Department of Computer Science and Artificial In-
telligence, Universidad de Granada, 18071 Granada, Spain (e-mail: javier@
decsai.ugr.es).

V. Strela is with the Department of Mathematics and Computer Science,
Drexel University, Philadelphia, PA 19104 USA (e-mail: vstrela@mcs.drexel.
edu).

M. J. Wainwright is with the Electrical Engineering and Computer Science
Department, University of California at Berkeley, Berkeley, CA 94720 USA
(e-mail: wainwrig@eecs.berkeley.edu).

E. P. Simoncelli is with the Center for Neural Science and the Courant
Institute for Mathematical Sciences, New York University, New York, NY
10003 USA (e-mail: eero.simoncelli@nyu.edu).

Digital Object Identifier 10.1109/TIP.2003.818640

basic assumptions are commonly made in order to reduce di-
mensionality. The first is that the probability structure may be
definedlocally. Typically, one makes a Markov assumption, that
the probability density of a pixel, when conditioned on a set
of neighbors, is independent of the pixels beyond the neigh-
borhood. The second is an assumption of spatialhomogeneity:
the distribution of values in a neighborhood is the same for all
such neighborhoods, regardless of absolute spatial position. The
Markov random field model that results from these two assump-
tions is commonly simplified by assuming the distributions are
Gaussian. This last assumption is problematic for image mod-
eling, where the complexity of local structures is not well de-
scribed by Gaussian densities.

The power of statistical image models can be substantially
improved by transforming the signal from the pixel domain to
a new representation. Over the past decade, it has become stan-
dard to initiate computer-vision and image processing tasks by
decomposing the image with a set of multiscale bandpass ori-
ented filters. This kind of representation, loosely referred to as a
wavelet decomposition, is effective at decoupling the high-order
statistical features of natural images. In addition, it shares some
basic properties of neural responses in the primary visual cortex
of mammals which are presumably adapted to efficiently repre-
sent the visually relevant features of images.

A number of researchers have developed homogeneous local
probability models for images in multiscale oriented represen-
tations. Specifically, the marginal distributions of wavelet co-
efficients are highly kurtotic, and can be described using suit-
able long-tailed distributions. Recent work has investigated the
dependencies between coefficients, and found that the ampli-
tudes of coefficients of similar position, orientation and scale
are highly correlated. These higher order dependencies, as well
as the higher order marginal statistics, may be modeled by aug-
menting a simple parametric model for local dependencies (e.g.,
Gaussian) with a set of “hidden” random variables that govern
the parameters (e.g., variance). Such hidden Markov models
have become widely used, for example, in speech processing.

In this article, we develop a model for neighborhoods of ori-
ented pyramid coefficients based on aGaussian scale mixture
[1]: the product of a Gaussian random vector, and an inde-
pendent hidden random scalar multiplier. We have previously
demonstrated that this model can account for both marginal
and pairwise joint distributions of wavelet coefficients [2], [3].
Here, we develop a local denoising solution as a Bayesian
least squares estimator, and demonstrate the performance of
this method on images corrupted by simulated additive white
Gaussian noise of known variance.

1057-7149/03$17.00 © 2003 IEEE
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I. BACKGROUND: STATISTICAL IMAGE

MODELS AND DENOISING

Contemporary models of image statistics are rooted in the
television engineering of the 1950s (see [4] for review), which
relied on a characterization of the autocovariance function for
purposes of optimal signal representation and transmission. This
work, and nearly all work since, assumes that image statistics are
spatially homogeneous (i.e., strict-sense stationary). Another
common assumption in image modeling is that the statistics
are invariant, when suitably normalized, to changes in spatial
scale. The translation- and scale-invariance assumptions, cou-
pled with an assumption of Gaussianity, provides the baseline
model found throughout the engineering literature: images are
samples of a Gaussian random field, with variance falling as

in the frequency domain. In the context of denoising, if one
assumes the noise is additive and independent of the signal, and
is also a Gaussian sample, then the optimal estimator is linear.

A. Modeling Non-Gaussian Image Properties

In recent years, models have been developed to account for
non-Gaussian behaviors of image statistics. One can see from
casual observation that individual images are highly inhomo-
geneous: they typically contain many regions that are smooth,
interspersed with “features” such as contours, or surface mark-
ings. This is reflected in the observed marginal distributions of
bandpass filter responses, which show a large peak at zero, and
tails that fall significantly slower than a Gaussian of the same
variance [5]–[7] [see Fig. 1(a)]. When one seeks a linear trans-
formation that maximizes the non-Gaussianity1 of the marginal
responses, the result is a basis set of bandpass oriented filters of
different sizes spanning roughly an octave in bandwidth, e.g.,
[8], [9].

Due to the combination of these qualitative properties, as well
as an elegant mathematical framework, multiscale oriented sub-
band decompositions have emerged as the representations of
choice for many image processing applications. Within the sub-
bands of these representations, the kurtotic behaviors of coeffi-
cients allow one to remove noise using a point nonlinearity. Such
approaches have become quite popular in the image denoising
literature, and typically are chosen to perform a type of thresh-
olding operation, suppressing low-amplitude values while re-
taining high-amplitude values. The concept was developed orig-
inally in the television engineering literature (where it is known
as “coring,” e.g., [10]), and specific shrinkage functions have
been derived under a variety of formulations, including minimax
optimality under a smoothness condition [11], [12], [57], and
Bayesian estimation with non-Gaussian priors, e.g., [13]–[19],
[58].

In addition to the non-Gaussian marginal behavior, the re-
sponses of bandpass filters exhibit important non-Gaussianjoint
statistical behavior. In particular, even when they are second-
order decorrelated, the coefficients corresponding to pairs of
basis functions of similar position, orientation and scale ex-
hibit striking dependencies [20], [21]. Casual observation indi-
cates that large-amplitude coefficients are sparsely distributed

1Different authors have used different measures of non-Gaussianity, but have
obtained similar results.

(a) (b)

(c) (d)

Fig. 1. Comparison of coefficient statistics from an example image subband
(a vertical subband of theBoats image, left panels) with those arising from
simulation of a local GSM model (right panels). Model parameters (covariance
matrix and the multiplier prior density) are estimated by maximizing the
likelihood of the observed set of wavelet coefficients. (a,b) Log marginal
histograms. (c,d) Conditional histograms of two spatially adjacent coefficients.
Brightness corresponds to probability, except that each column has been
independently rescaled to fill the range of display intensities.

throughout the image, and tend to occur in clusters. The condi-
tional histograms of pairs of coefficients indicates that the stan-
dard deviation of a coefficient scales roughly linearly with the
amplitude of nearby coefficients [2], [21], [22] [see Fig. 1(c)].

The dependency between local coefficient amplitudes, as well
as the associated marginal behaviors, can be modeled using a
random field with a spatially fluctuating variance. A particularly
useful example arises from the product of a Gaussian vector and
a hidden scalar multiplier, known as aGaussian scale mixture
[1] (GSM). GSM distributions represent an important subset
of theelliptically symmetric distributions, which are those that
can be defined as functions of a quadratic norm of the random
vector. Embedded in a random field, these kinds of models have
been found useful in the speech-processing community [23].
A related set of models, known as autoregressive conditional
heteroskedastic (ARCH) models, e.g., [24], have proven useful
for many real signals that suffer from abrupt fluctuations, fol-
lowed by relative “calm” periods (stock market prices, for ex-
ample). These kinds of ideas have also been found effective in
describing visual images. For example, Baraniuk and colleagues
used a 2-state hidden multiplier variable to characterize the two
modes of behavior corresponding to smooth or low-contrast tex-
tured regions and features [25], [26]. Our own work, as well as
that of others, assumes that the local variance is governed by a
continuous multiplier variable [2], [3], [27], [28]. This model
can capture the strongly leptokurtotic behavior of the marginal
densities of natural image wavelet coefficients, as well as the
correlation in their local amplitudes, as illustrated in Fig. 1.
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B. Empirical Bayes Denoising Using Variance-Adaptive
Models

More than 20 years ago, Lee [29] suggested a two-step proce-
dure for image denoising, in which one first estimates the local
signal variance from a neighborhood of observed pixels, and
then (proceeding as if this were the true variance) applies the
standard linear least squares (LLS) solution. This method is a
type of empirical Bayesestimator [30], in that a parameter of
the local model is first estimated from the data, and this esti-
mate is subsequently used to estimate the signal. This two-step
denoising solution can be applied to any of the variance-adap-
tive models described in Section I-A, and is substantially more
powerful when applied in a multiscale oriented representation.
Specifically, a number of authors have estimated the local vari-
ance from a collection of wavelet coefficients at nearby posi-
tions, scales, and/or orientations, and then used these estimated
variances in order to denoise the coefficients [16], [21], [28],
[31]–[33].

Solutions based on GSM models, with different prior as-
sumptions about the hidden variables, have produced some of
the most effective methods for removing homogeneous additive
noise from natural images to date. Our initial work in this
area developed a maximum likelihood (ML) estimator [34].
Mihçak et al. used a maximum a posteriori (MAP) estimator
based on an exponential marginal prior [28], as did Li and
Orchard [35], whereas Portillaet al. used a lognormal prior
[36]. Wainwright et al. developed a tree-structured Markov
model to provide a global description for the set of multiplier
variables [3]. Despite these successes, the two-step empirical
Bayes approach is suboptimal, even when the local variance
estimator is optimal, because the second step does not take into
account the uncertainty associated with the variance estimated
in the first step. In this paper, we derive a least squares optimal
single-step Bayesian estimator.

II. I MAGE PROBABILITY MODEL

As described in Section I, multiscale representations provide
a useful front-end for representing the structures of visual
images. But the widely used orthonormal or biorthogonal
wavelet representations are problematic for many applications,
including denoising. Specifically, they are critically sampled
(the number of coefficients is equal to the number of image
pixels), and this constraint leads to disturbing visual artifacts
(i.e., “aliasing” or “ringing”). A widely followed solution to
this problem is to use basis functions designed for orthogonal or
biorthogonal systems, but to reduce or eliminate the decimation
of the subbands, e.g., [37].

Once the constraint of critical sampling has been dropped,
however, there is no need to limit oneself to these basis func-
tions. Significant improvement comes from the use of repre-
sentations with a higher degree of redundancy, as well as in-
creased selectivity in orientation [16], [19], [34], [38]. For the
current paper, we have used a particular variant of an overcom-
plete tight frame representation known as asteerable pyramid
[38], [39]. The basis functions of this multiscale linear decom-
position are spatially localized, oriented, and span roughly one

octave in bandwidth. They are polar-separable in the Fourier do-
main, and are related by translation, dilation, and rotation. Other
authors have developed representations with similar properties
[19], [40]–[42]. Details of the steerable pyramid representation
are provided in Appendix A.

A. Gaussian Scale Mixtures

Consider an image decomposed into oriented subbands
at multiple scales. We denote as the coefficient
corresponding to a linear basis function at scale, orientation
, and centered at spatial location . We denote as

a neighborhoodof coefficients clustered around
this reference coefficient2 . In general, the neighborhood may
include coefficients from other subbands (i.e., corresponding
to basis functions at nearby scales and orientations), as well as
from the same subband. In our case, we use a neighborhood
of coefficients drawn from two subbands at adjacent scales,
thus taking advantage of the strong statistical coupling ob-
served through scale in multiscale representations. Details are
provided in Section IV.

We assume the coefficients within each local neighborhood
around a reference coefficient of a pyramid subband are charac-
terized by a Gaussian scale mixture (GSM) model. Formally, a
random vector is a Gaussian scale mixture [1] if and only if it
can be expressed as the product of a zero-mean Gaussian vector

and an independent positive scalar random variable

(1)

where indicates equality in distribution. The variableis
known as themultiplier. The vector is thus an infinite mix-
ture of Gaussian vectors, whose density is determined by the
covariance matrix of vector and the mixing density,

(2)

where is the dimensionality of and (in our case, the size of
the neighborhood). Without loss of generality, one can assume

, which implies .
The conditions under which a random vector may be repre-

sented using a GSM have been studied [1]. The GSM family
includes a variety of well-known families of random variables
such as the -stable family (including the Cauchy distribution),
the generalized Gaussian (or stretched exponential) family
and the symmetrized Gamma family [3]. GSM densities
are symmetric and zero-mean, and they have leptokurtotic
marginal densities (i.e., heavier tails than a Gaussian). A key
property of the GSM model is that the density ofis Gaussian
when conditioned on . Also, the normalized vector is
Gaussian.

2For notational simplicity, we drop the superscriptss; o and indices(n;m)
in the following development.
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B. GSM Model for the Wavelet Coefficients

As explained in Section I and illustrated in Fig. 1, a GSM
model can account for both the shape of wavelet coefficient
marginals and the strong correlation between the amplitudes
of neighbor coefficients [2], [3]. In order to construct a global
model for images from this local description, one must specify
both the neighborhood structure of the coefficients, and the dis-
tribution of the multipliers. The definition of (and calculations
using) the global model is considerably simplified by parti-
tioning the coefficients into nonoverlapping neighborhoods.
One can then specify either a marginal model for the multipliers
(treating them as independent variables) [43], or specify a joint
density over the full set of multipliers [3]. Unfortunately, the
use of disjoint neighborhoods leads to noticeable denoising
artifacts at the discontinuities introduced by the neighborhood
boundaries.

An alternative approach is to use a GSM as a local description
of the behavior of the cluster of coefficients centered at each co-
efficient in the pyramid. Since the neighborhoods overlap, each
coefficient will be a member of many neighborhoods. The local
model implicitly defines a global (Markov) model, described by
the conditional density of a coefficient in the cluster given its
surrounding neighborhood, assuming conditional independence
on the rest of the coefficients. But the structure of the resulting
model is such that performing statistical inference (i.e., com-
puting Bayes estimates) in an exact way is quite challenging.
In this paper, we simply solve the estimation problem for the
reference coefficient at the center of each neighborhood inde-
pendently.

C. Prior Density for Multiplier

To complete the model, we need to specify the probability
density, , of the multiplier. Several authors have sug-
gested the generalized Gaussian (stretched exponential) family
of densities as an appropriate description of wavelet coefficient
marginal densities [7], [13], [17]:
where the scaling variablecontrols the width of the distribu-
tion, and the exponent controls the shape (in particular, the
heaviness of the tails), and is typically estimated to lie in the
range for image subbands. Although these can be ex-
pressed as GSM’s, the density of the associated multiplier has
no closed form expression, and thus this solution is difficult to
implement.

In previous work [36], we noted that for the case ,
the density of the log coefficient magnitude, , may be
written as a convolution of the densities of and .
Since the density of is known, this means that estimation
of the density of may be framed as a deconvolution
problem. The resulting estimated density may be approximated
by a Gaussian, corresponding to a lognormal prior for the. This
solution has two important drawbacks. First, it is only extrapo-
lable to the case when all the neighbors have the same
marginal statistics, which, in practice requires they all belong to
the same subband. Second, it is estimated from the noise-free
coefficients, and it is difficult to extend it for use in the noisy
case.

We have also investigated a more direct maximum likeli-
hood approach for estimating a nonparametric from an
observed set of neighborhood vectors

(3)

where the sum is over the neighborhoods. Note that the estimate,
, must be constrained to positive values, and must have unit

area. We have developed an efficient algorithm for computing
this solution numerically. One advantage of the ML solution is
that it is easily extended for use with the noisy observations, by
replacing with the noisy observation.

A fourth choice is a so-callednoninformative prior[44],
which has the advantage that it does not require the fitting of
any parameters to the noisy observation. Such solutions have
been used in establishing marginal priors for image denoising
[45]. We have examined the most widely used solution, known
as Jeffrey’s prior (see [44]). In the context of estimating the
multiplier from coefficients , this takes the form:

where is the Fisher information matrix. Computing this for
the GSM model is straightforward

Taking the square root of the expectation, and using the fact that
we obtain Jeffrey’s prior

(4)

which corresponds to a constant prior on . Note that this
is an improper probability density. Nevertheless it is common to
ignore this fact as long as it does not create computational prob-
lems at the estimation stage. In our case, we have set the prior
to zero in the interval to prevent such problems, where

is a small positive constant (see Section IV for details).
Of the four alternatives described above, we have found (as

expected) that the ML-estimated nonparametric prior produces
the best results for denoising the pyramid coefficients. But a
least squares optimal estimate for the pyramid coefficients does
not necessarily lead to a least-squares optimal estimate for the
image pixels, since the pyramid representation is overcomplete.
We were surprised to find that the noninformative prior typi-
cally leads to better denoising performance in the image domain
(roughly , on average). Given that it is also simpler
and more efficient to implement, we have used it for all of the
results shown in Sections III–V.
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III. I MAGE DENOISING

Our procedure for image denoising uses the same top-level
structure as most previously published approaches: 1) decom-
pose the image into pyramid subbands at different scales and
orientations; 2) denoise each subband, except for the lowpass
residual band; and 3) invert the pyramid transform, obtaining the
denoised image. We assume the image is corrupted by indepen-
dent additive white Gaussian noise of known variance (note that
the method can also handle nonwhite Gaussian noise of known
covariance). A vector corresponding to a neighborhood of
observed coefficients of the pyramid representation can be ex-
pressed as

(5)

Note that the assumed GSM structure of the coefficients,
coupled with the assumption of independent additive Gaussian
noise, means that the three random variables on the right side
of (5) are independent.

Both and are zero-mean Gaussian vectors, with associ-
ated covariance matrices and . The density of the ob-
served neighborhood vector conditioned onis a zero-mean
Gaussian, with covariance

(6)

The neighborhood noise covariance, , is obtained by decom-
posing a delta function into pyramid sub-
bands, where are the image dimensions. This signal
has the same power spectrum as the noise, but it is free from
random fluctuations. Elements of may then be computed di-
rectly as sample covariances (i.e., by averaging the products of
pairs of coefficients over all the neighborhoods of the subband).
This procedure is easily generalized for nonwhite noise, by re-
placing the delta function with the inverse Fourier transform of
the square root of the noise power spectral density. Note that
the entire procedure may be performed off-line, as it is signal-
independent.

Given , the signal covariance can be computed from
the observation covariance matrix . We compute from

by taking expectations over:

Without loss of generality, we set , resulting in:

(7)

We force to be positive semidefinite by performing an eigen-
vector decomposition and setting any possible negative eigen-
values (nonexisting or negligible, in most cases) to zero.

A. Bayes Least Squares Estimator

For each neighborhood, we wish to estimate, the reference
coefficient at the center of the neighborhood, from, the set of

observed (noisy) coefficients. The Bayes least squares (BLS)
estimate is just the conditional mean

(8)

where we have assumed uniform convergence in order to ex-
change the order of integration. Thus, the solution is the average
of the Bayes least squares estimate ofwhen conditioned on,
weighted by the posterior density, . We now describe each
of these individual components.

B. Local Wiener Estimate

The key advantage of the GSM model is that the coefficient
neighborhood vector is Gaussian when conditioned on. This
fact, coupled with the assumption of additive Gaussian noise
means that the expected value inside the integral of (8) is simply
a local linear (Wiener) estimate. Writing this for the full neigh-
borhood vector

(9)

We can simplify the dependence of this expression onby
diagonalizing the matrix . Specifically, let be the
symmetric square root of the positive definite matrix (i.e.,

), and let be the eigenvector/eigenvalue ex-
pansion of the matrix . Then

(10)

Note this diagonalization does not depend on, and thus need
only be computed once for each subband. We can now simplify
(9) as follows:

(11)

where , and . Finally, we restrict the
estimate to the reference coefficient, as needed for the solution
of (8)

(12)

where represents an element (-th row, -th column) of the
matrix , are the diagonal elements of, the elements
of , and is the index of the reference coefficient within the
neighborhood vector.
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C. Posterior Distribution of the Multiplier

The other component of the solution given in (8) is the distri-
bution of the multiplier, conditioned on the observed neighbor-
hood values. We use Bayes’ rule to compute this

(13)

As discussed in Section II-C, we choose a noninformative Jef-
frey’s prior, corrected at the origin, for the function . The
conditional density is given in (6), and its computation
may be simplified using the relationship in (10) and the defini-
tion of

(14)

Summarizing our denoising algorithm

1) Decompose the image into subbands.
2) For each subband (except the lowpass

residual):

a) Compute neighborhood noise covari-
ance, , from the image-domain
noise covariance.

b) Estimate noisy neighborhood covari-
ance, .

c) Estimate from and using
(7) .

d) Compute and ( Section III-B ).
e) For each neighborhood:

i) For each value in the inte-
gration range:

A) Compute using
(12) .

B) Compute using (14) .

ii) Compute using (13)
and (4) .

iii) Compute numerically
using (8) .

3) Reconstruct the denoised image from
the processed subbands and the lowpass
residual.

IV. I MPLEMENTATION

We decompose the image into subbands using a specialized
variant of the steerable pyramid. The representation consists
of oriented bandpass bands at 8 orientations and 5 scales, 8
oriented highpass residual subbands, and one lowpass (nonori-
ented) residual band, for a total of 49 subbands. A detailed de-
scription of the decomposition is given in Appendix A.

We have hand-optimized the neighborhood structure (i.e.,
choice of spatial positions, scales and orientations). A 33

region surrounding the reference coefficient, together with the
coefficient at the same location and orientation at the next coarser
scale (theparent), maximizes the denoising performance, on
average. Inclusion of parent coefficient has been found to
provide a significant improvement in performance in a number
of applications, e.g., [21], [22], [25], [26], [46]. Note that
since the parent subband is sampled at half the density of
the reference subband, it must be upsampled and interpolated
in order to obtain values for neighborhoods at every choice
of reference coefficient. Two exceptions must be applied:
1) the highpass oriented subbands, whose parents have the
same number of samples as them (no interpolation is required
for those parents); and 2) the subbands at the coarsest scale,
which have no parent subband (we simply use the 33 spatial
neighborhood for those subbands). Note that in terms of image
pixels, the spatial extent of the neighborhood depends on the
scale of the subband (the basis functions grow in size as)
as is appropriate under the assumption that image statistics are
scale-invariant [47], [48].

In our implementation, the integral of (8) is computed nu-
merically. The range and sample spacing for this integration are
chosen as a compromise between accuracy and computational
cost. Specifically, we sample with logarithmically uniform
spacing, which we have observed to require fewer samples, for
the same quality, than linear sampling. Note also that Jeffrey’s
improper prior for is a constant under a logarithmic represen-
tation. We use only samples of over an interval

using steps of size 2. We have chosen
and . The value is

chosen as the minimal value that guarantees in practice that the
right-tails of all the posteriors are properly covered by the in-
tegration interval. In contrast, plays the role of ensuring
that the left tail of the posterior is integrable. We have hand-op-
timized to maximize the performance of the algorithm,
and have found that denoising performance is relatively insen-
sitive to changes in this parameter. Only slightly worse results
( to ) result from choosing within
the interval , and reasonable performance (
to ) is obtained with values as low as (which cor-
responds to ).

The computational cost of the pyramid transform
(both forward and inverse) scales as ,
where are the dimensions of the image. The com-
putational cost of the estimation procedure scales as

where
are the dimensions of the spatial subband neighborhood

(3 in our case), the dimensions of the bandpass convolu-
tion kernels (roughly 9 in our implementation), the full size
of the neighborhood (10 in our case),the number of orienta-
tions, and the number of samples used for the distributions
over . The terms added to the image dimensions correspond
to the padded boundary region that must be estimated in order
to properly reconstruct the image. As a guide, running times in
our current unoptimized Matlab implementation, on a Linux
workstation with 1.7 GHz Intel Pentium-III CPU, are roughly
40 seconds for 256 256 images. Finally, the primary memory
cost is due to storage of the pyramid coefficients (roughly

floating point numbers).
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TABLE I
DENOISING PERFORMANCE EXPRESSED ASPEAK SIGNAL-TO-NOISE RATIO, 20 log (255=� ) IN DB, WHERE � IS THE ERROR

STANDARD DEVIATION. EVERY ENTRY IS THE AVERAGE USING EIGHT DIFFERENT NOISE SAMPLES. LAST COLUMN SHOWS THE

ESTIMATED STANDARD DEVIATION OF THESERESULTS FOREACH NOISE LEVEL

(a) (b)

Fig. 2. Nonlinear estimation functions resulting from restriction of our method to smaller neighborhoods. (a) Neighborhood of size one (reference coefficient
only) and (b) neighborhood of size two (reference coefficient plus parent).

V. RESULTS

We have tested our method on a set of 8-bit grayscale test
images, of size 512 512 and 256 256 pixels, each contami-
nated with computer-generated additive Gaussian white noise at
10 different variances. Further information about the images is
provided in Appendix B. Table I shows error variances of the de-
noised images, expressed as peak signal-to-noise ratios (PSNR)
in decibels, for the full range of input noise levels. Note that for
all images, there is very little improvement at the lowest noise
level. This makes sense, since the “clean” images in fact include
quantization errors, and have an implicit PSNR of 58.9 dB. At
the other extreme, improvement is substantial (roughly 17 dB in
the best cases).

A. Comparison to Model Variants

In order to understand the relative contribution of various as-
pects of our method, we considered two restricted versions of
our model that are representative of the two primary denoising
concepts found in the literature. The first is a Gaussian model,
arising from the restriction of our model to a prior density
which is a delta function concentrated at one. This model is not

variance-adaptive, and, thus, is globally Gaussian. Note, though,
that the signal covariance is modeled only locally (over the ex-
tent of the neighborhood) for each pyramid subband. As such,
this denoising solution may be viewed as a regularized version
of the classical linear (Wiener filter) solution. In order to imple-
ment this, we simply estimate each coefficient using (12), with

set to one.

The second restricted form of our model uses a neighborhood
containing only the reference coefficient (i.e., 11). Under
these conditions, the model describes only the marginal density
of the coefficients, and the estimator reduces to application of a
scalar function to the observed noisy coefficients. The function
resulting from the reduction of our model to a single-element
neighborhood is shown in Fig. 2(a). This is similar to the BLS
solutions derived in [13], [16] for a generalized Gaussian prior,
except that it is independent of the clean signal statistics, and
its normalized form scales with the noise standard
deviation of the subband, (as in [11]).

It is also instructive to examine the nonlinear estimator asso-
ciated with the case of two neighbors. Fig. 2(b) shows the es-
timator obtained as a function of the reference coefficient and
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(a) (b)

(c) (d)

Fig. 3. Performance of other denoising methods relative to our method. Curves depict PSNR differences (in dB), averaged over three representative images
(Lena, Barbara, andBoats) as a function of input PSNR. (a) Comparison to two restricted cases: A nonadaptive (globally Gaussian) GSM model resulting from
usingp (z) = �(z � 1) (diamonds), and a GSM model with a neighborhood of size one (circles). (b) Comparison to hard-thresholding in an undecimated
(minimum-phase, Daubechies 8-tap, 5 scales) wavelet decomposition (diamonds) [37], and a local variance-adaptive method in the image domain (circles) [29],
as implemented by Matlab’swiener2function. Parameters for both methods have been optimized for each image and noise level: a threshold level for the first
method, and a neighborhood size (ranging from 3 to 11) for the second. (c) Two denoising algorithms applied to our steerable pyramid representation: adaptive
Wiener [29], using a hand-optimized size of neighborhood (19� 19 for all the images and noise levels) (circles), and hard-thresholding, optimizing the threshold
for every image and noise level (diamonds). (d) Application of our BLS-GSM estimation method to coefficients of two different representations: an undecimated
minimum-phase Daubechies 8-tap wavelet, using 5 scales (diamonds), and the same decomposition in its original decimated version (circles).

a coarse-scale (parent) coefficient. Loosely speaking, the refer-
ence coefficient is suppressed only when both its own amplitude
and the parent’s amplitude are small. Adjacent neighbors in the
same subband have a similar effect on the estimation. Sendur
and Selesnick have recently developed a MAP estimator based
on a circular-symmetric Laplacian density model for a coeffi-
cient and its parent [49], [50]. Their resulting shrinkage func-
tion is qualitatively similar to that of Fig. 2(b), except that ours
is smoother and, due to covariance adaptation, its “dead zone”
is not necessary aligned with the input axes.

Fig. 3(a) shows a comparison of our full model and the two
reduced forms explained above. Note that the 1-D shrinkage
solution outperforms the jointly Gaussian (nonadaptive) solu-
tion, which still provides relatively good results, especially at
low SNR rates. The full model (adaptive and context-sensitive)
incorporates the advantages of the two subcases, and thus out-
performs both of them.

We have also examined the relative importance of other as-
pects of our method. Table II shows the decrease in PSNR that
results when each of a set of features is removed. The first
three columns correspond to features of the representation, the
next two to features of the model, and the last to the estimation
method. Within the first group, decreasing the number of orien-
tation bands from to (Ori8) leads to a significant

drop in performance. We have also found that further increasing
the number of orientations leads to additional PSNR improve-
ment, at the expense of considerable computational and storage
cost. The second column (OrHPR) shows the effect of not par-
titioning the highpass residual band into oriented components
(the standard form of the pyramid, as used in our previous de-
noising work [34], [36], has only a single nonoriented highpass
residual band). The third column (Bdry) shows the reduction in
performance that results when switching from mirror-reflected
extension to periodic boundary handling.

The first feature of the model we examined is the inclusion
of the coarse-scale parent coefficient in the neighborhood. The
fourth column (Prnt) shows that eliminating the coarse-scale
parent from the neighborhood decreases performance signifi-
cantly only at high noise levels. This should not be taken to
mean that the parent coefficient does not provide information
about the reference coefficient, but that the information is some-
what redundant with that provided by the other neighbors [22].
The next column (Cov), demonstrates the result of assuming un-
correlated Gaussian vectors in describing both noise and signal.
The coefficients in our representation are strongly correlated,
both because of inherent spectral features of the image and be-
cause of the redundancy induced by the overcomplete repre-
sentation, and ignoring this correlation in the model leads to a
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TABLE II
REDUCTION IN DENOISING PERFORMANCE(DB) RESULTING FROM REMOVAL

OF MODEL COMPONENTS, SHOWN AT 3 DIFFERENTNOISE CONTAMINATION

RATES. RESULTS ARE AVERAGED OVER LENA, BARBARA, AND BOATS.
SEE TEXT FOR FURTHER INFORMATION

significant loss in performance. The last column (BLS) demon-
strates a substantial reduction in performance when we replace
the full BLS estimator with the two-step estimator (MAP esti-
mation of the local multiplier, followed by linear estimation of
the coefficient), as used in [36].

B. Comparison to Standard Methods

We have compared our method to two well-known and
widely-available denoising algorithms: a local variance-adap-
tive method in the pixel domain [29] (as implemented by the
Matlab function wiener2), and a hard thresholding method
using an undecimated representation [37] with five scales based
on the minimum-phase Daubechies 8-tap wavelet filter. In both
cases, a single parameter (the neighborhood size or a common
threshold for all the subbands) was optimized independently for
each image at each noise level. Results are shown in Fig. 3(b).
Our method is seen to clearly outperform the other two over the
entire range of noise levels. We also see the superiority of the
two multiscale methods over the pixel-domain method. Fig. 4
provides a visual comparison of example images denoised
using these two algorithms. Our method produces artifacts that
are significantly less visible, and at the same time is able to
better preserve the features of the original image.

It is natural to ask to what extent the results in the previous
comparison are due to the representation (steerable pyramid) as
opposed to the estimation method itself (BLS-GSM). In order to
answer this, we have performed two more sets of experiments,
comparing the performance of different combinations of repre-
sentation and estimator. First, we have applied the two estima-
tion methods used in Fig. 3(b) to the coefficients of the steer-
able pyramid representation. For the adaptive Wiener method
[29], we have found that the hand-optimized neighborhood size
within the subbands is roughly 1919—much larger than in
the pixel domain. For the translation invariant hard-thresholding
method [37], we have optimized a common threshold for each
image and noise level (note that the steerable pyramid subband
impulse responses are not normalized in energy, so the common
threshold needs to be properly re-scaled for each subband). Re-
sults are plotted in Fig. 3(c). It is clear that the use of the new
representation improves the results and reduces the difference
between the methods. The adaptive Wiener method is even seen
to outperform ours at very high input SNR’s. But significant
differences in performance remain, and these are due entirely to
the use of the BLS-GSM estimation method.

In a second experiment, we compared the performance of
our estimation method when applied to coefficients of two dif-

(a)

(b)

Fig. 4. Comparison of denoising results on two images (cropped to 128� 128
for visibility of the artifacts). (a)Boats image. Top-left: original image.
Top-right: noisy image,PSNR = 22:11 dB (� = 20). Bottom-left:
denoising result using adaptive local Wiener in the image domain [29],
PSNR = 28:0 dB. Bottom-right: our method,PSNR = 30:4 dB.
(b) Fingerprint image. Top-left: original image. Top-right: noisy image,
PSNR = 8:1 dB (� = 100). Bottom-left: denoising result using hard
thresholding in an undecimated wavelet [37] with a single optimized threshold,
PSNR = 19:0 dB. Bottom-right: our method,PSNR = 21:2 dB.

ferent representations. We have chosen the most widely-used
multiscale representations: the decimated and undecimated ver-
sions of a separable wavelet decomposition. In order to use the
BLS-GSM method under an aliasing-free version of an orthog-
onal wavelet, we have used two fully undecimated levels for the
two highest frequency scales, and have decimated by factors of
two the rest of scales, producing very little aliasing and recon-
struction error. This representation is analogous to the steerable
pyramid: both the highpass oriented subbands and the bandpass
highest frequency oriented subbands are kept at full resolution,
and the rest are downsampled in a dyadic scheme. Results are
plotted in Fig. 3(d), and indicate a somewhat modest decrease
in performance when replacing the steerable pyramid with an
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(a) (b)

(c) (d)

Fig. 5. Comparison of denoising performance of several recently published methods. Curves depict output PSNR as a function of input PSNR. Square symbols
indicate our results, taken from Table I. (a,b) circles [32]; crosses [35]; asterisk [52]3; (c,d) crosses [31]; diamonds [51].

undecimated separable wavelet transform. The decrease is sub-
stantial, however, in the case of the critically sampled represen-
tation. From the comparison of the outcomes of both sets of ex-
periments, one may conclude that both our representation and
estimation strategy contribute significantly to the performance
advantage shown in Fig. 3(b).

C. Comparison to State-of-the-Art Methods

Finally, we have compared our method to some of the best
available published results, and these are shown in Fig. 5. Since
there are many different versions of the test images available
on the Internet, whenever it was possible we have verified di-
rectly with the authors that we are using the same images ([35],
[50]–[52]), or have used other authors’ data included in previous
comparisons from those authors ([31], [32]) (see Appendix B

for more details about the origin of the images). Fig. 6 pro-
vides a visual comparison of an example image (Barbara) de-
noised using the algorithm of Liet al. [35], which is based on a
variance-adaptive model in an overcomplete separable wavelet
representation. Note that the noisy images were created using
different samples of noise, and thus the artifacts in the two im-
ages appear at different locations. Our method is seen to provide
fewer artifacts as well as better preservation of edges and other
details. The separation of diagonal orientations in the steerable
pyramid allows more selective removal of the noise in diago-
nally oriented image regions (see parallel diagonal lines on the
left side of the face).

3These two plotted PSNR values have been obtained by Starck using the
standard Lena image provided by us, which differs from the version used in
[52].

Eero Simoncelli
Accidentally deleted by publisher:
  "diamonds [50];"

Eero Simoncelli

Eero Simoncelli
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Fig. 6. Comparison of denoising results onBarbara image (cropped to 150� 150 for visibility of the artifacts). From left to right and top to bottom: Original
image; Noisy image (� = 25, PSNR = 20:2 dB); Results of Liet al. [35] (PSNR = 28:2 dB); Our method (PSNR = 29:1 dB).

VI. CONCLUSIONS

We have presented a denoising method based on a local
Gaussian scale mixture model in an overcomplete oriented
pyramid representation. Our statistical model differs from
previous models in a number of important ways. First, many
previous models have been based on either separable orthogonal
wavelets, or redundant versions of such wavelets. In contrast,
our model is based on an overcomplete tight frame that is free
from aliasing, and that includes basis functions that are selective
for oblique orientations. The increased redundancy of the rep-
resentation and the higher ability to discriminate orientations
results in improved performance. Second, our model explicitly
incorporates the covariance between neighboring coefficients
(for both signal and noise), as opposed to considering only
marginal responses or local variance. Thus, the model captures
correlations induced by the overcomplete representation as
well as correlations inherent in the underlying image, and it
can handle Gaussian noise of arbitrary power spectral density.
Third, we have included a neighbor from the same orientation
and spatial location at a coarser scale (aparent), as opposed to
considering only spatial neighbors within each subband. This
modeling choice is consistent with the empirical findings of
strong statistical dependence across scale in natural images,
e.g., [4], [46]. Note, however, that the inclusion of the parent
results in only a modest increase in performance compared to
the other elements shown in Table II. We believe the impact of
including a parent is limited by the simplicity of our model,

which only characterizes the correlation of the coefficients and
the correlation of their amplitudes (see below).

In addition to these modeling differences, there are also dif-
ferences between our denoising method and previous methods
based on continuous hidden-variable models [3], [28], [32],
[34], [36]. First, we compute the full optimal local Bayesian
least squares solution, as opposed to first estimating the local
variance, and then using this to estimate the coefficient. We
have shown empirically that this approach yields an important
improvement in the results. Also, we use the vectorial form of
the LLS solution (9), so taking full advantage of the information
provided by the covariance modeling of signal and noise. These
enhancements, together with a convenient choice for the prior
of the hidden multiplier (a noninformative prior, independent
of the observed signal), result in a substantial improvement
in the quality of the denoised images, while keeping the
computational cost reasonably low.

We are currently working on several extensions of the
estimator presented here. First, we have begun developing
a variant of this method to denoise color images taken with
a commercial digital camera [53]. We find that the sensor
noise of such cameras has two important features that must
be characterized through calibration measurements: spatial
and cross-channel correlation, and signal-dependence. We are
also extending the denoising solution to address the complete
image restoration problem, by incorporating a model of image
blur [54]. Finally, we are developing an ML estimator for the
noise variance, when the normalized power spectral density
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Fig. 7. (a) System diagram for the extended version of the steerable pyramid used in this paper [38]. The input image is first split into a lowpass band and a set
of highpass oriented bands. The lowpass band is then split into a lower-frequency band and a set of oriented subbands. The pyramid recursion consists of inserting
the diagram contents of the shaded region at the lowpass branch (solid circle). (b) Basis function corresponding to an example oriented subband, and idealized
depiction of the frequency domain partition(K = 8; J = 2), with gray region corresponding to this basis function.

of the noise is assumed known. Preliminary results of these
extensions appear very promising.

We believe that the current image model can be improved in
a number of ways. It would be desirable to develop a method
for efficiently estimating a prior for the multiplier by maxi-
mizing the joint likelihood of the observed subbands, as op-
posed to the somewhat heuristic choice of noninformative prior
(corrected at the origin) we have presented. Similarly, it would
also be desirable to minimize the expected quadratic error in
the image domain, instead of doing it for the subband coeffi-
cients. In addition, it is worth exploring the transformation of
the local GSM model into an explicit Markov model with over-
lapping neighborhoods, as opposed to the nonoverlapping tree-
structured models previously developed [3], [25]. This concep-
tual simplification would facilitate other applications requiring
a conditional local density model (e.g., synthesis or coding). Fi-
nally, from a longer-term perspective, major improvements are
likely to come from statistical models that capture important
structural properties of local image features, by including addi-
tional dependencies such as phase congruency between the co-
efficients of complex multiscale oriented transforms, e.g., [55],
[56].

APPENDIX A
STEERABLE PYRAMID

We use a transform known as asteerable pyramid[38],
[39] to decompose images into frequency subbands. The
transform is implemented in the Fourier domain, allowing
exact reconstruction of the image from the subbands, as well
as a flexible choice of the number of orientations and
scales . A software implementation (in Matlab) is avail-
able at http://www.cns.nyu.edu/~lcv/software.html. As with
conventional orthogonal wavelet decompositions, the pyramid
is implemented by recursively splitting an image into a set of
oriented subbands, and a lowpass residual band which is sub-
sampled by a factor of two along both axes. Unlike conventional

orthogonal wavelet decompositions, the oriented bands are not
subsampled, and the subsampling of the lowpass band does
not produce aliasing artifacts, as the lowpass filter is designed
to obey the Nyquist sampling criterion. When performing
convolutions, the boundaries are handled by mirror extension
(reflection) of the image, thereby maintaining continuity. Since
it is a tight frame, the transformation may be inverted by con-
volving each subband with its associated complex-conjugated
filter and adding the results. The redundancy factor of this
overcomplete representation is (for ) .

The system diagram for the transform is shown in Fig. 7(a).
The filters are polar-separable in the Fourier domain, where they
may be written as:

where are polar frequency coordinates, and

The recursive procedure is initialized by splitting the input
image into lowpass and oriented highpass portions, using the
following filters:

Fig. 7(b) also shows the impulse response of an example band-
pass oriented filter (for ), at the highest resolution level,
together with its (purely imaginary) Fourier transform.
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APPENDIX B
ORIGIN OF THE TEST IMAGES

All 8-bit grayscale test images used in obtaining our results
are available on the Internet from http://decsai.ugr.es/~javier/de-
noise. Five of the images, commonly known asLena, Barbara,
Boats, HouseandPeppers, are widely used in the image pro-
cessing literature. Unfortunately, most test images are available
in more than one version, with differences between them due to
cropping, scanning, resizing, compression or conversion from
color to gray-level. In the versions used in this paper the first
three are 512 512 and the last two are 256256. We also
included a 512 512 image of a fingerprint, which unlike the
other images, is a homogeneous texture.

Among the several versions of 512512~8-bit gray-level
Lena, we chose the one that seems the most standard, from
http://www.ece.rice.edu/~wakin/images/Lena512.bmp. For
the comparison of Fig. 5(a), Starck generously offered to
run his algorithm on our test image, and Li [35] and Sendur
[50] kindly confirmed they were using the same version of
the image. TheBarbara image was obtained from Schmidt’s
standard test images database at http://jiu.sourceforge.net/tes-
timages/index.html. This version had been previously used
in [35], where, in turn, there is a comparison to [32]. It has
also been used in [50]. TheBoats image was taken from
University of Southern California SIPI image database at
http://sipi.usc.edu/services/database/database.cgi. This same
version has been used in [50]. TheHouseandPeppersimages
were kindly provided by Pižurica, for proper comparison to her
results reported in [51].
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