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We describe a novel method of removing additive white

noise of known variance from photographic images. The

method is based on a characterization of statistical prop-

erties of natural images represented in a complex wavelet

decomposition. Specifically, we decompose the noisy

image into wavelet subbands, estimate the autocorre-

lation of both the noise-free raw coefficients and their

magnitudes within each subband, impose these statistics

by projecting onto the space of images having the de-

sired autocorrelations, and reconstruct an image from

the modified wavelet coefficients. This process is ap-

plied repeatedly, and can be accelerated to produce opti-

mal results in only a few iterations. Denoising results

compare favorably to three reference methods, both per-

ceptually and in terms of mean squared error.

The set of natural images fill a very small fraction
of the space of all possible images. Modeling the prop-
erties of this set has an enormous importance for many
image processing tasks, such as compression or denois-
ing. Typically, such models are statistical, and make
use of simplifying assumptions such as stationarity, and
spatial localization (e.g., Markov random fields).

In this paper, we consider an image to be a sam-
ple of a random field that is parameterized by a small
set of statistics. In a very high-dimensional space such
as that of all digitized images, the samples of such a
random field lie close to the hypersurface of images
sharing the same sample statistics, and we can approx-
imate the probability density as a uniform distribution
over this hypersurface [13]. Thus, assuming the random
field parameters are known, the statistical description
is replaced by a deterministic one. In this context, an
image corrupted by noise is an N -dimensional vector
(N the number of pixels) that has been displaced from
its original position to a point outside of its associated
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hypersurface. The problem of estimating the original
(noise-free) image involves first estimating the parame-
ters of the hypersurface, and then finding an image on
the hypersurface that is close to the observed (noisy)
image. Specifically, if one assumes the corrupting noise
is Gaussian and white, then the maximum a posteriori
(MAP) estimate corresponds to choosing the image on
the hypersurface that is closest (in a Euclidean sense)
to the observed image. Our method realizes an approx-
imation to this estimate.

1. IMAGE REPRESENTATION

Our model is based on a set of measurements on the co-
efficients of a multi-scale multi-orientation image rep-
resentation known as a steerable pyramid [10]. This
representation performs a local spectral decomposition
of the image using oriented bandpass, self-similar ker-
nels, roughly one octave in bandwidth. It exhibits a
number of desirable mathematical properties (it is a
tight frame, with translation- and rotation-invariant
subbands), and has been used successfully in a num-
ber of image processing problems, including noise re-
moval [9]. The use of this representation is also mo-
tivated by our knowledge of mammalian visual sys-
tems, in which cortical neurons perform a decomposi-
tion of the visual input using localized oriented recep-
tive fields. Since human vision is the ultimate criterion
of the quality of our processed images, it is desirable
to use a set of visually relevant measurements. Re-
cently, we have developed extensions of the steerable
pyramid to utilize complex basis kernels, in which the
real and imaginary parts are in quadrature phase [7].
Quadrature-pair subbands can be used to detect local
features of the image, such as lines and edges, in a spa-
tially shift-invariant way, and they have been widely
used both for modeling complex cells in the visual cor-
tex, and in local energy/phase models by the computer
vision community. For the results of this paper, we



have used 4 scales and 4 orientation, along with high-
pass and low-pass residual subbands.

2. MAGNITUDE CORRELATION

A number of recent denoising methods using joint statis-
tics of the subband coefficients have demonstrated bet-
ter performance than those based on the wavelet coeffi-
cient marginal statistics [e.g., 9, 2, 6, 11]. In particular,
we have shown that the magnitudes of pairs of wavelet
coefficients are highly correlated [8, 1]. This correla-
tion, mainly caused by features such as lines, edges,
and corners, arises between spatial neighbors, and also
between coefficients corresponding to different scales
and orientations. In a recent work, we used such mea-
surements to capture and reproduce texture [7]. In this
paper, we focus only on the spatial correlation (auto-
correlation) of the coefficient magnitudes within each
subband.

Figure 1(a) shows the magnitude of the output of a
complex subband tuned to high frequencies in the ver-
tical direction when applied to a natural image. Note
that the large-magnitude coefficients in the subband
are primarily arranged in lines following the orientation
of the subband. Figure 1(b) shows the central part (in
our experiments we have used a 17×17 neighborhood)
of the estimated autocorrelation (AC) function. The
strong vertical correlation of vertically aligned coeffi-
cients is apparent. This behavior is not trivially due
to the subband filter, but comes from the special statis-
tics of the natural images: Figures 1(c) and (d) show
that adding white noise to the image yields a weaker
alignment of the magnitudes.

Reversing this reasoning, one would expect to re-
move a substantial amount of noise in a image cor-
rupted by Gaussian noise by forcing the AC of the co-
efficient magnitudes in each subband to match the one
we would obtain with a noise-free sample (assuming we
can estimate such an AC). For the results shown in this
paper, we have estimated and adjusted the AC for both
the complex subbands and their magnitudes.

3. PARAMETER ESTIMATION

Given a noisy image, and assuming known noise vari-
ance, we must estimate the autocorrelation parameters
of each subband. The estimation of the original AC of
the complex subbands from the observed one is triv-
ially solved by subtracting the AC of the added noise
from each subband1. But the complex magnitude oper-
ation is nonlinear, and an analytic form for the ML es-

1Note that this is not the identity due to the overcompleteness
of the Steerable Pyramid.
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Figure 1. Wavelet coefficient magnitudes (left) and
their autocovariance (right), without (top) and with
(bottom) added Gaussian noise. Coefficients are
taken from a single vertical subband of a decom-
position of the “Einstein” image.

timate of its autocorrelation appears to be intractable.
Instead, we have tried to predict the AC functions of
the uncorrupted subbands by incorporating a prior. In
particular, we have used: 1) the observed normalized
AC in the i-th subband, aO,i; 2) the AC corresponding
to an input image of univariate Gaussian white noise,
aN,i and 3) a generic (prior) AC, aP,i, obtained by
averaging the AC computed from 53 (256 × 256) nor-
malized reference images. We have observed that the
contribution of these last two measurements is roughly
proportional to the relative amount of noise, suggesting
the following estimator:

aE,i = aO,i + ri (λP aP,i − λNaN,i) ,

where ri = σ2

Ni
/σ2

Oi
, and λN and λP are chosen to max-

imize the SNR over the training set. We use a similar
form of estimate to compute an overall scale factor for
aE,i. This heuristic estimator provides a good fit to the
uncorrupted AC training data (SNR of roughly 25 dB).
Comparison between denoising results obtained using
the AC of the original (clean) image in place of the
estimated ones results in only a small improvement in
the quality of the cleaned images (roughly 0.3 dB SNR,
see Figure 3).
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noisy Estimator
image Linear LocWiener Thresh MagCorr

17.33 25.02 25.48 25.86 26.96
20.53 26.34 27.27 27.45 28.46
24.76 28.31 29.62 29.78 30.29
28.80 30.70 32.05 31.63 32.23

Table 1. Denoising results for four estimators,
and four different levels of additive Gaussian noise
added to the “Einstein” image. All values indi-
cate peak signal-to-noise ratio (PSNR) in decibels
(20 log

10
(255/σerror)).

4. PROJECTION ALGORITHM

Our method is based on a projection of the observed
noisy image onto the surface consisting of all images
satisfying the same deterministic constraints as we have
estimated for the original. Alternated projections onto
constraint sets have been used previously for restora-
tion [12, 5], and also for texture synthesis [4, 7]. For
our purposes here, we must impose on every subband
and its associated magnitude response the AC parame-
ters we have estimated. Our technique consists of solv-
ing for the M × N kernel h(α, β), that satisfies

aE,i(n,m) =
∑

α,β

h(α, β)aO,i(n − α,m − β),

for the pairs (n,m) within a 17×17 local neighborhood.
We then filter the subband in the Fourier domain by
multiplying with the absolute value of the square root
of the kernel’s Fourier transform.

We impose this adjustment in parallel on both the
complex signals and their magnitudes for each sub-
band, and then form the estimated coefficients by com-
bining the modified magnitude responses with the phase
of the modified complex samples. Finally, we invert the
real part of the wavelet pyramid, reconstructing an es-
timated image. This procedure is then repeated. In
order to accelerate the method, on each iteration we
amplify the correction made to the estimated image by
adding a fraction (specifically 4/5) of the difference be-
tween the current and the previous estimated images.
The method typically produces optimal results after
only two or three iterations. In our MatLab imple-
mentation in a standard 300Mhz workstation, denois-
ing of 512×512 images requires roughly three minutes.

5. RESULTS

We have first applied this algorithm to a natural im-
age (not included in our training set), and we have
compared the results of our technique with three oth-
ers: 1) Linear: the coefficients are multiplied by an
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Figure 3. Graphical results comparison (image
“Lenna”). From top to bottom. Dashed line: Upper
bound for MagCorr (no estimation error). Squares:
SAWT using an over-complete representation [2].
Circles: MagCorr. Xs: 5x5 LAWMAP [6]. Dia-
monds: locWiener (MatLab’s wiener2 function).
Pluses: Thresh [3].

optimal constant for every subband; 2) LocWiener, a
local Wiener estimator as implemented in the wiener2

function of the MatLab software package; 3) Thresh,
optimal threshold application for every subband ([3], as
shown in [9]). Figure 2 shows a cropped version of the
resulting images. We believe that our model (panel (f))
produces sharper edges and retains more detail, provid-
ing a closer resemblance to the original than the other
three methods. Table 1 shows the noise level of the pro-
cessed images (in decibels) as a function of the PSNR
level of the input image, for the 4 compared methods.

Finally, we have compared the performance of our
method with two state-of-the-art techniques [2, 6] using
the image “Lenna”, with the same set of noise variance
values used in [6]. Figure 3 shows a plot of these results,
where the abscissa represents the PSNR of the noisy
image and the ordinate the PSNR of the denoised im-
age. We have also included in this graphic (dashed line)
the upper bound performance of our method assuming
known original AC constraints, as well as the results
obtained with the Thresh and LocWiener methods ex-
plained before. Our own results (upper continuous line
with circles) lie in between those of [2] and [6]. Next in
performance is LocWiener and the last one is Thresh.
Considering the simplicity of the proposed method, we
believe these results are very encouraging for exploring
other forms of denoising via constraint projection.
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(a) (b) (c)

(d) (e) (f)

Figure 2. (a): Original “Einstein” image (cropped). (b): Noisy image (PSNR 20.5dB). (c): Linear least-squares
estimator (26.3dB). (d): Local Wiener estimation (27.3dB). (e): Optimal thresholding (27.4dB). (f): Magnitude
correlation model (28.46dB).
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