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Spatio-temporal correlations and visual signalling in a
complete neuronal population
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Statistical dependencies in the responses of sensory neurons gov-
ern both the amount of stimulus information conveyed and the
means by which downstream neurons can extract it. Although a
variety of measurements indicate the existence of such
dependencies1–3, their origin and importance for neural coding
are poorly understood. Here we analyse the functional significance
of correlated firing in a complete population of macaque parasol
retinal ganglion cells using a model of multi-neuron spike res-
ponses4,5. The model, with parameters fit directly to physiological
data, simultaneously captures both the stimulus dependence and
detailed spatio-temporal correlations in population responses,
and provides two insights into the structure of the neural code.
First, neural encoding at the population level is less noisy than one
would expect from the variability of individual neurons: spike
times are more precise, and can be predicted more accurately when
the spiking of neighbouring neurons is taken into account.
Second, correlations provide additional sensory information:
optimal, model-based decoding that exploits the response correla-
tion structure extracts 20% more information about the visual
scene than decoding under the assumption of independence, and
preserves 40% more visual information than optimal linear decod-
ing6. This model-based approach reveals the role of correlated
activity in the retinal coding of visual stimuli, and provides a
general framework for understanding the importance of corre-
lated activity in populations of neurons.

How does the spiking activity of a neural population represent the
sensory environment? The answer depends critically on the structure
of neuronal correlations, or the tendency of groups of neurons to fire
temporally coordinated spike patterns. The statistics of such patterns
have been studied in a variety of brain areas, and their significance in
the processing and representation of sensory information has been
debated extensively2,3,7–13.

Previous studies have examined visual coding by pairs of neurons11

and the statistics of simultaneous firing patterns in larger neural
populations14,15. However, no previous approach has addressed
how correlated spiking activity in complete neural populations
depends on the pattern of visual stimulation, or has answered the
question of how such dependencies affect the encoding of visual
stimuli.

Here we introduce a model-based methodology for studying this
problem. We describe the encoding of stimuli in the spike trains of a
neural population with a generalized linear model (Fig. 1a), a gen-
eralization of the well-known linear–nonlinear–Poisson (LNP) cas-
cade model4,5,16,17. In this model, each cell’s input is described by a set
of linear filters: a stimulus filter, or spatio-temporal receptive field; a
post-spike filter, which captures dependencies on spike-train history

(for example, refractoriness, burstiness and adaptation); and a set of
coupling filters, which capture dependencies on the recent spiking of
other cells. For each neuron, the summed filter responses are expo-
nentiated to obtain an instantaneous spike rate. This is equivalent to
exponentiating the filter outputs and then multiplying; the exponen-
tiated post-spike and coupling filters (as plotted in Fig. 1) may there-
fore be interpreted as spike-induced gain adjustments of the neuron’s
firing rate.

Although this model is strictly phenomenological, its components
can be loosely compared to biophysical mechanisms: the stimulus
filter approximates the spatio-temporal integration of light in the
outer retina and passive dendritic filtering; the post-spike filter
mimics voltage-activated currents following a spike; coupling filters
resemble synaptic or electrical interactions between cells (and can
mimic the effects of shared input noise); and the exponential non-
linearity implements a ‘soft threshold’, converting membrane poten-
tial to instantaneous spike probability. Note that the post-spike and
coupling filters, which allow stochastic spiking in one cell to affect
subsequent population activity, give rise to shared, non-Poisson vari-
ability in the model response.

We fit the model to data recorded in vitro from a population of 27
ON and OFF parasol ganglion cells (RGCs) in a small patch of iso-
lated macaque monkey retina, stimulated with 120-Hz spatio-tem-
poral binary white noise. The receptive fields of each of the two cell
types formed a complete mosaic covering a small region of visual
space (Fig. 1b), indicating that every parasol cell in this region was
recorded15,18. Such complete recordings, which have not been
achieved elsewhere in the mammalian nervous system, are essential
for understanding visual coding in neural populations.

The model contains many parameters that specify the shapes of all
filters, but fitting by maximizing likelihood remains highly tractable5.
A penalty on coupling filters was used to obtain a minimally sufficient
set of coupling filters, which yields an estimate of the network’s
functional connectivity19,20.

Figure 1 shows the estimated filters describing input to example
ON and OFF cells. The stimulus filters exhibit centre-surround
receptive field organization consistent with previous characteriza-
tions of parasol cells. Post-spike filters show the time course of recov-
ery from refractoriness after a spike, and coupling filters show the
effects of spikes from nearby cells: for the ON cell (top), spikes in
neighbouring ON cells elicit a large, transient excitation (increasing
the instantaneous spike rate by a factor of three), whereas spikes in
nearby OFF cells elicit suppression. These effects are reversed in the
OFF cell, which is excited/suppressed by spikes in neighbouring OFF/
ON cells. Both populations exhibit approximate nearest-neighbour
connectivity, with coupling strength falling as a function of distance
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between receptive field centres15. We found that fitted stimulus filters
have smaller surrounds than the spike-triggered average, indicating
that a portion of the classical surround can be explained by interac-
tions between cells21 (see Supplementary Information).

To assess accuracy in capturing the statistical dependencies in
population responses, we compared the pairwise cross-correlation
function (CCF) of RGCs and simulated model spike trains (Fig. 2).
For nearby ON–ON and OFF–OFF pairs, the CCF exhibits a sharp
peak at zero, indicating the prevalence of synchronous spikes; how-
ever, for ON–OFF pairs, a trough at zero indicates an absence of
synchrony. For all 351 possible pairings, the model accurately repro-
duces the CCF (Fig. 2a–c, e, f).

To examine whether inter-neuronal coupling was necessary to
capture the response correlation structure, we re-fitted the model
without coupling filters (that is, so that each cell’s response depends
only on the stimulus and its own spike-train history). This
‘uncoupled model’ assumes that cells encode the stimulus indepen-
dently, although correlations may still arise from the overlap of
stimulus filters. However, the uncoupled model fails to reproduce
the sharp CCF peaks observed in the data. These peaks are also absent
from CCFs computed on trial-shuffled data, indicating that fast-
timescale correlations are not stimulus-induced and therefore cannot
be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspect-
ing correlations in three-neuron groups: triplet CCFs show the spike
rate of one cell as a function of the relative time to spikes in two other
cells (Fig. 2e–g)15. For adjacent neurons of the same type, triplet CCFs
have substantial peaks at zero (‘triplet synchrony’), which are well
matched by the full model.

Although the full and uncoupled models differ substantially in
their statistical dependencies, the two models predict average light
responses in individual cells with nearly identical accuracy, capturing
80–95% of the variance in the peri-stimulus time histogram (PSTH)
in 26 out of 27 cells (Fig. 3a–c). Both models therefore accurately
describe average single-cell responses to new stimuli. However, the
full model achieves higher accuracy, predicting multi-neuronal spike
responses on a single trial (8 6 3% more bits per spike, Fig. 3d). This
discrepancy can be explained by the fact that noise is shared across

neurons. Shared variability means that population activity carries
information about a single cell’s response (owing to coupling
between cells) beyond that provided by the stimulus alone.
Individual neurons therefore appear less noisy when conditioned
on spiking activity in the rest of the population than they appear in
raster plots.

We measured the effect of correlations on single-trial, single-cell
spike-train prediction by using the model to draw samples of a single
cell’s response given both the stimulus and the spiking activity in the
rest of the population on a single trial (Fig. 3e, f). Averaging the
resulting raster plot gives a prediction of the cell’s single-trial spike
rate, or ‘population-conditioned’ PSTH for a single trial. We com-
pared these predictions with the cell’s true spike times (binned at
2 ms) across all trials and found that on nearly every trial, the model-
based prediction is more highly correlated with the observed spikes
than the neuron’s full PSTH (Fig. 3g). Note that the full PSTH
achieves the highest correlation possible for any trial-independent
prediction. Thus, by exploiting the correlation structure, the coupled
model predicts single-neuron spike times more accurately than any
independent encoding model.

Although the full model accurately captures dependencies in the
activity of RGCs, it is not obvious a priori whether these dependencies
affect the amount of sensory information conveyed by RGC res-
ponses. In principle, the correlation structure could be necessary to
predict the responses, but not to extract the stimulus information
that the responses carry13. To examine this issue directly, we used the
full and uncoupled models to perform Bayesian decoding of the
population response (Fig. 4a), which optimally reconstructs stimuli
given an accurate description of the encoding process. For compar-
ison, we also performed Bayesian decoding under a Poisson (that is,
LNP) model and optimal linear decoding6.

Each decoding method was used to estimate short (150-ms) seg-
ments of the stimulus given all relevant spike times from the full popu-
lation (Fig. 4b). Bayesian decoding under the coupled model recovers
20% more information than Bayesian decoding under the uncoupled
model, indicating that knowledge of the correlation structure is critical
for extracting all sensory information contained in the population
response. This improvement was invariant to enhancements of the
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Figure 1 | Multi-neuron encoding model and fitted parameters. a, Model
schematic for two coupled neurons: each neuron has a stimulus filter, a post-
spike filter and coupling filters that capture dependencies on spiking in other
neurons. Summed filter output passes through an exponential nonlinearity
to produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF
retinal ganglion cell receptive fields, tiling a small region of visual space.
Ellipses represent 1 s.d. of a Gaussian fit to each receptive field centre; the
square grid indicates stimulus pixels. c–e, Parameters for an example ON
cell. c, Temporal and spatial components of centre (red) and surround (blue)
filter components, the difference of which is the full stimulus filter.

d, Exponentiated post-spike filter, which may be interpreted as multiplying
the spike rate after a spike at time zero. It produces a brief refractory period
and gradual recovery (with a slight overshoot). e, Connectivity and coupling
filters from other cells in the population. The black filled ellipse is this cell’s
RF centre, and blue and red lines show connections from neighbouring OFF
and ON cells, respectively (line thickness indicates coupling strength).
Below, exponentiated coupling filters show the multiplicative effect on this
cell’s spike rate after a spike in a neighbouring cell. f–h, Analogous plots for
an example OFF cell.
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model’s stimulus filters and nonlinearities (see Supplementary
Information), indicating that the difference in performance arises spe-
cifically from the coupled model’s ability to incorporate the correlation
structure. Our results also show that spike history is relevant for decod-
ing (a Poisson model preserves 6% less information than the
uncoupled model22) and that restricting to a linear decoder further
reduces the information that can be recovered from RGC responses.

Decoding analysis can also be used to examine the coding fidelity
of specific stimulus features. As a simple illustration, we examined
the temporal frequency spectrum of reconstructed stimuli and found
that the response correlation structure is most important for decod-
ing those stimulus frequencies (6–20 Hz) that are encoded with high-
est fidelity (Fig. 4c).

These results demonstrate that the responses of a population of
retinal ganglion cells are well described by a generalized linear model,
and that correlations in the response can be exploited to recover 20%
more visual information than if responses are regarded as independ-
ent given the stimulus. In contrast, previous studies have reported
this information gain to be less than 10% for pairs of neurons9,12.
However, pairwise analyses provide little evidence about the import-
ance of correlations across an entire population. Second-order cor-
relations between pairs of neurons could give rise to either much
larger (scaling with the number of neurons n) or much smaller (fall-
ing as 1/n) gains for a full population (see Supplementary
Information). To compare more directly with previous findings,

we performed Bayesian decoding using isolated pairs of neurons
from the same population; we found a #10% gain in sensory
information when correlations were included (see Supplementary
Information). This is consistent with previous findings, and shows
that the information gain for a complete population is larger than
that observed for pairs. We also compared the model to a pairwise
maximum-entropy model, which has recently been shown to capture
the instantaneous spiking statistics of groups of retinal ganglion
cells14,15. The coupled model exhibits similar accuracy in capturing
these statistics, but has the advantage that it accounts for the tem-
poral correlation structure and stimulus dependence of responses,
which are essential for assessing the effect of correlations on sensory
coding.

Although it provides an accurate functional description of corre-
lated spike responses, the generalized linear model does not reveal the
biophysical mechanisms underlying the statistical dependencies
between neurons: coupling does not necessarily imply anatomical
connections between cells, but could (for example) reflect depend-
encies due to shared input noise1. The model also lacks several
mechanisms known to exist in retinal ganglion cells (for example,
contrast gain-control23), which may be required for characterizing
responses to a wider variety of stimuli. One additional caveat is that
Bayesian decoding provides a tool for measuring the sensory
information available in the population response, but it does not
reveal whether the brain makes use of this information.
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Figure 2 | Analysis of response correlations. a–c, Example CCFs of retinal
responses, and simulated responses of the full and uncoupled models, for
two ON cells (a), two OFF cells (b) and an ON–OFF pair (c). The baseline is
subtracted so that units are in spikes per s above (or below) the cell’s mean
rate. d, Receptive field mosaic overlaid with arbitrary labels. Dark grey
indicates cells shown in Fig. 1; light grey indicates cells used for triple
correlations (h, i). e, CCFs between all ON pairs, where the i,jth plot shows
the CCF between cell i and cell j. The grey box indicates the CCF plotted in

a. f, g, CCFs between all OFF–OFF pairs (f) and all ON–OFF pairs (g; abscissa
height is 30 Hz). h, Third-order (triplet) CCF between three adjacent ON
cells, showing the instantaneous spike rate of cell 5 as a function of the
relative spike time in cells 4 and 8 (left, RGCs; middle, full model; right,
uncoupled model). i, Analogous triplet CCF for OFF cells 15, 16 and 22.
j, Comparison of the triplet CCF peak in RGC and model responses (full
model, black; uncoupled, grey) for randomly selected triplets of adjacent ON
(open) and OFF (filled) cells.

NATURE | Vol 454 | 21 August 2008 LETTERS

997

 ©2008 Macmillan Publishers Limited. All rights reserved



Physiological interpretations of the model and mechanisms for
neural read-out of sensory information in higher brain areas are thus
important directions for future research.

Nevertheless, the generalized linear model offers a concise, com-
putationally tractable description of the population encoding pro-
cess, and provides the first generative description of the space–time
dependencies in stimulus-induced population activity. It allows us to
quantify the relative contributions of stimulus, spike history and

network interactions to the encoding and decoding of visual stimuli,
and clarifies the relationship between single-cell and population vari-
ability. More generally, the model can be used to assess which features
of the visual environment are encoded with highest and lowest fidel-
ity, and to determine how the structure of the neural code constrains
perceptual capabilities. We expect this framework to extend to other
brain areas, and to have an important role in revealing the informa-
tion processing capabilities of spiking neural populations4,19,24,25.
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Figure 4 | Decoding performance comparison. a, Shown is a Bayesian
decoding schematic: to estimate an unknown stimulus segment from a set of
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p(s) is multiplied by the model-defined likelihood p(r | s) to obtain the
posterior p(s | r). The posterior mean is the Bayes’ least-squares stimulus
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preserves 20% more information than the uncoupled model, which indicates
that there is additional sensory information available from the population
response when correlations are taken into account. Error bars show 95%
confidence intervals based on 2,000 bootstrap resamplings of 3,000 decoded
stimulus segments. c, Log SNR decomposed as a function of temporal
frequency for various decoding methods (Poisson omitted for clarity).
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METHODS SUMMARY
Data. Multi-electrode extracellular recordings were obtained in vitro from a

segment of isolated, peripheral macaque monkey (Macaca mulatta) retina, and

analysis was restricted to two cell types (ON and OFF parasol)15,26,27. A standard

spike-sorting procedure, followed by a specialized statistical method for detecting

simultaneous spikes, was used to sort spikes (see ref. 28). The retina was stimu-

lated with a photopic, achromatic, optically reduced spatio-temporal binary white

noise stimulus refreshing at 120 Hz, with a root-mean-square contrast of 96%.

Fitting. Model parameters were fitted to 7 min of spike responses to a non-

repeating stimulus. Each cell’s parameters consisted of a stimulus filter (para-

metrized as a rank-2 matrix), a spike-history filter, a set of incoming coupling
filters and a constant. Temporal filters were represented in a basis of cosine

‘bumps’22. Parameters for the uncoupled and Poisson (LNP) models were fitted

independently. Parameters were fitted by penalized maximum likelihood4,5, with

an L1 penalty on the vector length of coupling filters to eliminate unnecessary

connections.

Encoding. Spike prediction was cross-validated using the log-likelihood of 5 min

of novel spiking data (scaled to units of bits per s). Repeat rasters were obtained

using 200 presentations of a novel 10-s stimulus. Population-conditional rasters

were obtained from the coupled model by sampling the model-defined prob-

ability distribution over the neuron’s response given the stimulus and surround-

ing-population activity on a single trial29.

Decoding. Population responses were decoded using the Bayes’ least-squares

estimator (posterior mean) to reconstruct 18-sample single-pixel stimulus seg-

ments (cross-validation data). Linear decoding was performed using the optimal

linear estimator6. Decoding performance was quantified using the log signal-to-

noise ratio (SNR) of each technique, which gives an estimate of mutual informa-

tion. Breakdown by temporal frequency was obtained by computing the Fourier

power spectra of the stimuli and residuals and then computing log SNR.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Recording. Multi-electrode extracellular recordings were obtained in vitro from

a segment of isolated, peripheral macaque monkey retina, using preparation and

recording methods described previously15,26. Analysis was restricted to two

physiologically defined classes of cells; on the basis of light response properties

and density, these were identified as ON and OFF parasol cells27. The cells shown

were recorded in a square region of retina covered by 76 electrodes. A standard

clustering-based spike-sorting procedure (see refs 15, 26) was used to estimate

the number of units, and least-squares regression of the estimated spike times

against multi-electrode voltage signal was used to estimate multi-electrode spike
waveforms for each unit. Although this approach correctly and efficiently iden-

tifies isolated spikes, when two cells fire within a 1–2-ms window, the clustering

approach can fail to identify the presence of both spikes. We solved this problem

by using estimates of the elementary waveforms to detect the superposition of

spikes. We performed maximum a posteriori estimation under the model that the

multi-electrode voltage signal was the linear superposition of Gaussian white

noise and the spike trains convolved with their associated spike waveforms, with

a sparse (exponential) prior distribution on the spike trains. This corresponds to

a tractable quadratic optimization problem under linear inequality constraints,

which can be solved efficiently using existing methods. The real-valued solution

vector was then binarized by greedily inserting spikes whenever the reduction in

mean-squared error between predicted and actual voltage exceeded a thresh-

old28. This procedure correctly identified simultaneous spikes in simulated data

sets and corrected obvious cross-correlation artefacts appearing in real data

sorted with standard clustering techniques.

Stimuli. The retina was stimulated with a photopic, achromatic image of a

cathode ray tube display, refreshing at 120 Hz. The stimulus was a spatio-tem-

poral pseudo-random binary sequence, where the intensity of each pixel was
drawn independently from one of two values on each frame. The stimulus pixel

size was 120 3 120mm on the retina, and contrast (standard deviation divided by

mean) was 96%.

Fitting. Model parameters were fitted by maximizing likelihood5 using 7 min of

spiking data recorded during presentation of a non-repeating stimulus. The

parameters for each cell consisted of a stimulus filter k, a spike-history filter h,

a set of incoming coupling filters {li} and a constant (specifying the log of the

baseline firing rate) m. The filter k was a 750-dimensional vector (5 3 5 spatial

pixels 3 30 time bins), parametrized using a lower-dimensional representation

as a rank-2 matrix: k(x, y, t) 5 ks,1(x, y)kt,1(t) 2 ks,2(x, y)kt,2(t), with ks,i(x, y)

denoting a spatial filter (25 parameters) and kt,i(t) a temporal filter (10 para-

meters), giving 2 3 35 5 70 parameters. A rank-3 representation did not

improve performance. These filters closely resembled a time-varying differ-

ence-of-Gaussians30; spatial filters were well-approximated (in a least-squares

sense) by Gaussians, which were used to plot spatial ellipses shown in Fig. 1 and

to summarize receptive field properties (Supplementary Figs 2 and 3). Gaussians

fit to receptive field centres and surrounds had average standard deviations of

0.25 pixels and 0.7 pixels (1.0 pixels for the uncoupled model), respectively.
Temporal filters h and {li} and the temporal components of k were represented

using a basis of raised cosine ‘bumps’ of the form bj(t) 5

(1/2)cos(alog[t 1 c] 2 wj) 1 (1/2) for t such that alog(t 1 c) g [wj 2 p, wj 1 p]

and 0 elsewhere, with constants a and c set by hand to watch the structure

observed in auto- and cross-correlation functions, and p/2 spacing between

the wj (see Supplementary Information). This basis allows for the representation

of fine temporal structure near the time of a spike and coarser/smoother depend-

ency at later times (see ref. 22). The h filter was represented with ten such basis

vectors, and the li coupling filters were represented with four. The ‘uncoupled

model’ was fitted independently without coupling filters {li}, and the inhomo-

geneous Poisson model (Fig. 4) was fitted without {li} or h.

Conditional intensity (spike rate) is given by l tð Þ~exp k:xzh:yzðP
ili
:yi

� �
zmÞ, where x is the stimulus, y the cell’s own spike-train history, m

is the cell’s baseline log-firing rate, and {yi} the spike-train histories of

other cells at time t. The population log-likelihood is the sum over single-cell

log-likelihoods, each given by L~
P

log l tsp

� �
{l tð Þdt , where tsp denotes the

set of spike times and the integral is taken over the length of the experiment4,5.

We added a penalty of the form {a
Ð P

i li tð Þ2
�� ��1=2

dt to eliminate unnecessary

coupling filters (using a constrained Newton–Raphson algorithm to maximize

the penalized log-likelihood), which regularizes and prevents overfitting. The

regularization parameter a was selected by means of cross-validation on a novel

5-min data set, but results were robust with respect to both a and the choice of

basis. (This reduced the number of coupling filters from 702 to 243 and reco-

vered a roughly pairwise-adjacent structure; see Supplementary Information.)

Correlations. Spike responses of full and uncoupled models were simulated

with the same 20-min stimulus (144,000 samples) presented experimentally.

Pairwise cross-correlations were computed in 1-ms bins, according to

C(t) 5 [Æy1(t)y2(t 1 t)æ 2 Æy1(t)æ Æy2(t)æ]/(Æy2(t)ædt), where y1(t) denotes the

spike response of the first neuron in bins of width dt, and Æ?æ denotes averaging

over t. Triplet correlations were computed in 5-ms bins according to

C(t1, t2) 5 [Æy1(t)y2(t 1 t1) y3(t 1 t2)æ 2 Æy1(t)æ Æy2(t)æ Æy3(t)æ]/(Æy2(t)æ Æy3(t)ædt).

Encoding. Spike-train prediction was validated using the log-likelihood of novel

spike trains under both models, computed on 5 min of data not used for fitting or

setting a. The difference of log-likelihood under the model and log-likelihood

under a homogeneous Poisson process,
P

log �ll tsp

� �
{
Ð

�ll tð Þdt (where
�ll~nsp

�
T is the mean spike rate), divided by nsp, gives prediction accuracy in

bits per spike for each cell25. Repeat rasters were obtained using 200 presentations

of a novel 10-s stimulus, and the time-varying average response (PSTH) was

computed in 1-ms bins, smoothed with a Gaussian kernel of width s 5 2 ms.

Conditional rasters were obtained from the coupled model by holding the res-

ponses of all but one neuron fixed, and sampling from the model-induced

probability distribution on the remaining neuron’s response. Samples were

obtained by the Metropolis–Hastings algorithm, with spike ‘proposals’ drawn

from a point process model as described in ref. 29. We kept only every 100th

output sample of the algorithm to ensure independent samples.

Decoding. We decoded the population response using the Bayes’ least-squares

estimator, computed under each model (fully coupled, uncoupled with spike-

history terms, and inhomogeneous Poisson) using 6,000 different 18-sample

single-pixel stimulus segments (validation data that were not used for fitting).

Each stimulus xi (an 18-dimensional binary vector, given by the time series of

light intensities for a centrally located stimulus pixel) was decoded by first

extracting yi, the multi-neuronal spike response portion that was causally influ-

enced by this stimulus. For each model, and for every one of the 218 possible

binary xj, we then computed pj 5 p(yijxj), the likelihood of the observed popu-

lation response given that it was generated by stimulus xj. By Bayes’ rule, the

posterior is p(xjjyi) / p(yijxj)p(xj), and the prior p(xj) here is constant across

binary stimuli. Thus, the posterior is proportional to pj, and the Bayes’ least-

squares estimate is given by x̂xi~
P

pj xj

� �� P
pj

� �
. We also performed decoding

on longer (30-sample) stimulus segments, where exhaustive evaluation of these

sums is no longer tractable: in this case we used Gibbs sampling from p(xjjyi) to

approximately evaluate the sum. The results obtained using both methods were

similar.

Linear decoding was performed using the optimal linear estimator6, with the

same training data as for model fitting. Decoding performance was quantified

using the log SNR of each technique: log xix
T
i

� ��� ��. rir
T
j

D E� �
, where ri~x̂xi{xi

denotes the residual error for decoding stimulus vector xi, and jÆ?æj denotes

averaging over i followed by matrix determinant. Breakdown by temporal

frequency was obtained by computing the Fourier power spectra of the stimuli

~xxi vð Þ2 and residuals ~rri vð Þ2, and computing log SNR according to

log ~xxi vð Þ2
� ��

~rr vð Þ2
� �� �

. Integrating this log SNR across frequency,

(1/2)#log SNR(v)dv, gives a commonly used estimate of the mutual informa-

tion between the stimulus and the spike-train response6, which is equivalent to

the quantity shown in Fig. 4b.

30. Meister, M. & Berry, M. J. The neural code of the retina. Neuron 22, 435–450
(1999).
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