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We describe an information-theoretic framework for fitting neural spike responses with a Linear–Nonlinear–Poisson cascade
model. This framework unifies the spike-triggered average (STA) and spike-triggered covariance (STC) approaches to neural
characterization and recovers a set of linear filters that maximizemean and variance-dependent information between stimuli and
spike responses. The resulting approach has several useful properties, namely, (1) it recovers a set of linear filters sorted
according to their informativeness about the neural response; (2) it is both computationally efficient and robust, allowing recovery
of multiple linear filters from a data set of relatively modest size; (3) it provides an explicit ‘‘default’’ model of the nonlinear stage
mapping the filter responses to spike rate, in the form of a ratio of Gaussians; (4) it is equivalent to maximum likelihood estimation
of this default model but also converges to the correct filter estimates whenever the conditions for the consistency of STA or
STC analysis are met; and (5) it can be augmented with additional constraints on the filters, such as space–time separability.
We demonstrate the effectiveness of the method by applying it to simulated responses of a Hodgkin–Huxley neuron and the
recorded extracellular responses of macaque retinal ganglion cells and V1 cells.
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Introduction

One of the central problems in sensory neuroscience is
that of characterizing the neural code, or the mapping from
sensory stimuli to neural spike responses. The problem has
been investigated in a large number of sensory areas, using a
variety of specialized stimuli and experimental preparations,
but a general solution is intractable due to the high dimen-
sionality of both the stimulus and response spaces (Dayan &
Abbott, 2001; Rieke, Warland, de Ruyter van Steveninck, &
Bialek, 1997).

Recent work has explored ‘‘dimensionality-reduction’’
methods to simplify the problem of modeling the neural
response (Aguera y Arcas & Fairhall, 2003; Bialek, Rieke,
de Ruyter van Steveninck, & Warland, 1991; Brenner,
Bialek, & de Ruyter van Steveninck, 2000; de Ruyter van
Steveninck & Bialek, 1988; Paninski, 2003; Ringach,
Sapiro, & Shapley, 1997; Rust, Schwartz, Movshon, &
Simoncelli, 2005; Schwartz, Chichilnisky, & Simoncelli,
2002; Sharpee, Rust, & Bialek, 2004; Sharpee et al., 2006;
Touryan, Lau, & Dan, 2002). The concept is intuitive and
sensible: Although the space of all stimuli is enormous (e.g.,
the space of all images), most attributes of these stimuli
do not have any effect on a given neuron’s response. If we
can identify a low-dimensional space in which a neuron
computes its response (sometimes called a ‘‘feature space’’)
then the neural code can be characterized by describing

responses only within that space. Note that ‘‘classical’’ ex-
periments can also be viewed within this framework: Char-
acterization with dots, bars, or grating stimuli implicitly
assumes that a neuron’s behavior is determined by its re-
sponse to a set of canonical features.

Two basic approaches have been developed to estimate a
neural feature space. The first compares the mean and
covariance of the spike-triggered stimulus ensemble (i.e., the
set of stimuli that elicited a spike from the neuron) with those
of the full stimulus ensemble (Bialek et al., 1991; de Ruyter
van Steveninck & Bialek, 1988). Significant changes in
either the spike-triggered average (STA) or spike-triggered
covariance (STC) can be used to determine the subspace in
which the neuron computes its response. These methods are
relatively efficient to compute and have been demonstrated
on the H1 neuron of the fly (Bialek & de Ruyter van
Steveninck, 2005; Bialek et al., 1991; Brenner et al., 2000;
de Ruyter van Steveninck & Bialek, 1988), macaque retinal
ganglion cells (RGCs; Schwartz et al., 2002), and V1 cells
in both cat (Touryan et al., 2002) and monkey (Rust et al.,
2005). These methods are appealing because of their sim-
plicity, but they do not consider information from joint
changes in mean and variance, and they provide no abso-
lute measure of importance of the filters recovered. In ad-
dition, although filters can be recovered for subspaces of
arbitrary dimensionality, the estimation of the nonlinear
mapping from filter responses to firing rate becomes intrac-
table for subspaces of more than a few dimensions.
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A second approach to dimensionality reduction is to seek
‘‘maximally informative dimensions,’’ along which the
mutual information between stimulus and response is max-
imized (Paninski, 2003; Sharpee et al., 2004). This ap-
proach makes no explicit use of the STA or STC and has
the advantage that it is sensitive (in principle) to statistical
changes of any order. Unlike STA and STC analysis, it also
can provide consistent estimates with nonspherical and
non-Gaussian (e.g., naturalistic) stimuli. Unfortunately, ac-
curate estimation of mutual information requires a large
amount of data, and the mutual information function is rife
with local maxima, making reliable automated optimization
difficult to perform. As a result, these techniques are often
impractical in high dimensions, and published examples
have been restricted to the recovery of one-dimensional (1D)
or two-dimensional (2D) feature spaces (Paninski, 2003;
Sharpee et al., 2004; Sharpee et al., 2006).

In this article, we describe a new method for dimension-
ality reduction that occupies a middle ground between the
moment-based and information-theoretic approaches. Spe-
cifically, we maximize information based only on the first
and second moments of the spike-triggered stimulus en-
semble. This approach provides a unifying information-
theoretic framework for STA/STC analysis but remains
computationally tractable even in feature spaces of relatively
high dimensionality. The method is sensitive to interactions
between the STA and STC components and provides an
implicit or ‘‘default’’ model of the nonlinear function map-
ping the feature space to the neural response. We demon-
strate the method on simulated data from a Hodgkin–Huxley
(HH) model neuron, as well as physiological data from a
macaque V1 neuron and a macaque retinal ganglion cell
(RGC). Finally, we show an application of the framework
for estimating a model with space–time separable compo-
nents, which cannot be easily achieved with other estimators.

Spike-triggered analysis

Figure 1 shows the elements of a typical white noise ex-
periment and illustrates how dimensionality reduction can
be understood as a tool for fitting a neural encoding model.
Figure 1A depicts a discrete Gaussian white noise stimulus
(flickering bars), and Figure 1B shows a 2D representation
of this stimulus (space vs. time), along with the simulated
neural response. The first step of the analysis involves iden-
tifying the ‘‘spike-triggered stimulus ensemble,’’ the collec-
tion of stimuli associated with spikes. We assume that each
spike is causally associated with a ‘‘chunk’’ of the space–
time stimulus and that spikes are generated according to a
Poisson process whose rate is governed entirely by the pre-
ceding stimulus chunk, independent of the times of pre-
vious spikes.

In general, methods for dimensionality reduction of neu-
ral models proceed by looking for a linear subspace that
best captures the statistical differences between the spike-

triggered ensemble and the ‘‘raw’’ stimulus ensemble, the
collection of all stimulus vectors (Bialek & de Ruyter
van Steveninck, 2005; Bialek et al., 1991; de Ruyter van
Steveninck & Bialek, 1988; Simoncelli, Paninski, Pillow,
& Schwartz, 2004). Figure 1C shows an example where we
have reduced the stimulus to a 1D subspace by linear pro-
jection (i.e., by filtering the stimulus with a single linear
filter). Within this subspace, the mean of the STE is sig-
nificantly higher and its variance is significantly lower than
that of the raw stimulus ensemble. These differences indi-
cate that position along this axis in stimulus space (i.e., the
response of this linear filter) carries information about the
probability that the neuron will spike.

The neural response model is denoted P(spike|x): the
probability that a neuron will elicit a spike in response to a
stimulus x. As illustrated in Figures 1C and D, we can com-
pute this probability directly using Bayes rule:

P spikejxð Þ ¼ !
PðxjspikeÞ

PðxÞ ; ð1Þ

where ! is a constant proportional to the probability that a
spike occurs, P(spike). The encoding model can therefore
be computed as the ratio of two probability distributions,
and in the simple cases (e.g., Figure 1), we can estimate it
directly as a quotient of two histograms.

Unfortunately, the direct approach fails in high dimen-
sions because of the so-called ‘‘curse of dimensionality’’: As
the stimulus dimensionality increases, the amount of data in
each histogram bin falls exponentially. In these cases, we
proceed by assuming that the neuron is insensitive to a large
number of dimensions of the stimulus space, meaning that
P(x|spike) and P(x) do not differ except within a relatively
low dimensional subspace. Our first step is thus to find the
subspace that best captures these differences. We formalize
this as the search for a matrix B for which the true condi-
tional probability of spiking is closely approximated by the
conditional probability within the subspace spanned by the
columns of B:

PðspikejxÞ , PðspikejBTxÞ: ð2Þ

This dimensionality-reduction step can be regarded as the
first step in fitting a Linear–Nonlinear–Poisson (LNP) model
of the neural response. This model consists of (1) a bank of
linear filters (i.e., the columns of B); (2) a nonlinear combi-
nation rule, which converts the filter outputs (BTx) to an
instantaneous probability of spiking; and (3) inhomoge-
neous Poisson spiking.

Dimensionality reduction with STA and STC

The first and second moments of the STE can be used to
identify a subspace that is informative about the neural
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response. Specifically, if we assume that P(x) has zero mean,
then the STA,

2 ¼ 1

nsp

~
x ijspikef g

xi; ð3Þ

gives the direction in the stimulus space along which the
means of P(x|spike) and P(x) differ most. Similarly, the
STC,

0 ¼ 1

nsp

~
xijspikef g

xij2ð Þ xij2ð ÞT ; ð4Þ

can be used to find the directions in the stimulus space
along which the variance of P(x|spike) and P(x) differ
maximally.

STA/STC analysis can provide a basis B for a reduced-
dimensional model of the neural response consisting of the

STA (if it differs significantly from zero) and the ei-
genvectors of the STC whose associated eigenvalues differ
significantly from the variance of the raw ensemble. We
will refer to this latter group as the ‘‘significant’’ eigenvec-
tors of the STC or simply ‘‘STC axes.’’ For spike responses
generated by an LNP model, the STA and STC axes con-
verge asymptotically to span the correct subspace (i.e., the
subspace associated with B) if the raw stimulus distribution
P(x) is Gaussian and the instantaneous nonlinearity induces
a change in the mean, variance, or both along each dimen-
sion of this subspace (Bialek & de Ruyter van Steveninck,
2005; Bussgang, 1952; Paninski, 2003).

Although the STA/STC method is simple and efficient
to compute, it has several important drawbacks. Firstly, the
STA axis is typically not orthogonal to the STC axes and
may even lie within the span of the STC axes. Although the
STC can be orthogonalized with respect to the STA (e.g.,
Rust et al., 2005; Schwartz et al., 2002; Simoncelli et al.,
2004), this runs the risk of losing information, as we will
show in the following section. Secondly, STA/STC

Figure 1. Illustration of spike-triggered stimulus ensemble and dimensionality reduction for a 1D neural model. (A) Depiction of a
discretized white noise stimulus (e.g., flickering bars whose intensities are drawn from a Gaussian distribution on each temporal frame).
(B) Samples from the spike-triggered stimulus ensemble (red boxes), vectors consisting of a space–time stimulus ‘‘chunk’’ preceding each
spike. Here, the chunks have a duration of six frames and a spatial extent of eight bars. Each element of the spike-triggered stimulus
ensemble is therefore a 48-dimensional vector. (C) By projecting the raw stimulus and the spike-triggered stimulus onto a single axis in
the stimulus space, we can empirically measure the probability distributions of the raw (black) and spike-triggered (red) stimuli. (D) The 1D
response model is specified by the probability of spiking conditioned on the stimulus projection along this axis, which (according to Bayes’
rule) is just the ratio of the spike-triggered and raw distributions.
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analysis does not easily allow us to quantify information or
to know which axes of the subspace are most informative
(the STA, the large-variance STC axes, or the small-
variance STC axes). Finally, the basic STA/STC method-
ology does not specify a general means for estimating the
nonlinear function taking filter outputs to spike rate. Although
we can easily compute the nonlinearity along any single di-
mension using a ratio of two histograms (as demonstrated
in Figures 1C and D), this approach is impractical for sub-
spaces with more than a few dimensions.

Information-theoretic approach

These considerations motivate an information-theoretic
framework for dimensionality reduction, based on the infor-
mation contained only in the mean and covariance of the
STE. Specifically, we would like to define a single objec-
tive function that incorporates the information each of these
moments provides about the neural response. If we are ag-
nostic about higher order moments, the simplest assump-
tion we can make is that the STE is Gaussian, with mean
and covariance given by the STA and STC, respectively;
this is the maximum-entropy density for given mean and
variance (Cover & Thomas, 1991; Levine & Tribus, 1978).
A minimal-assumption model of the STE, or P(x|spike), can
therefore be written as

Q xð Þ ¼ 1

2:ð Þn
2j0j12

ej
1
2
xj2ð ÞT0j1 xj2ð Þ; ð5Þ

where n is the dimensionality of the stimulus space.
A natural choice for measuring statistical differences be-

tween the spike-triggered ensemble and the raw ensemble
is the Kullback–Leibler (KL) divergence, an information-
theoretic measure of the difference between two probability
distributions (Cover & Thomas, 1991):

D Q;Pð Þ ¼ XRn
Q xð Þlog

QðxÞ
PðxÞ dx ; ð6Þ

where P represents the distribution of the raw stimuli.
In the present case, we use Gaussian approximations for

both P and Q. P is assumed to have zero mean and has
identity covariance or can be made so by subtracting the
mean and ‘‘whitening’’ the stimulus space according to x =
00

j1
2(x0 j 20), where 20 and 00 are the mean and co-

variance of the original stimulus distribution P(x0). Under
these assumptions, Equation 6 reduces to

D Q;Pð Þ ¼ 1

2
Tr 0ð Þj logj0j þ 2T2j n
� �

; ð7Þ

where Tr(I) and |I| indicate matrix trace and determinant,
respectively. The KL divergence between P and Q within

a given subspace is given by:

D½B� Q;Pð Þ ¼ 1

2
Tr BT 0þ 22T

� �
B

� �
j logjBT0Bjjm

� �
;

ð8Þ

where B is a matrix whose m columns form an orthonormal
basis for the subspace.

The most informative subspace, therefore, is given by the
matrix B that maximizes Equation 8. If we want a 1D sub-
space, this objective function reduces to

D½b� Q;Pð Þ ¼ 1

2
bT0bj log bT0b

� �
þ bT2
� �

2j1
� �

;

ð9Þ

where b (the most informative filter) is a unit vector.
This function, depicted graphically in Figure 2, specifies

how changes in mean and variance of the STE trade off in
terms of information-theoretic significance. Figure 2A shows
KL divergence as a function of both the mean (bT2) and
standard deviation (

ffiffiffiffiffiffiffiffiffiffiffiffi
bT0b

p
) of the projected stimuli. KL

divergence grows as a symmetric function of the mean
around 0 but is an asymmetric function of the standard de-
viation around 1. This asymmetry is apparent in Figure 2B,
which shows a vertical slice through the function at a mean
value of 0.

The objective function of Equation 8 can be computed
directly from the STA and STC. That is, we can perform
optimization without the computational cost of operating
on the entire stimulus and spike train. Moreover, the objec-
tive function has a limited number of local maxima and
connects smoothly with the results of traditional STA/STC
analysis. For example, when the STC is the identity matrix,
the most informative axis is the STA, and when the STA is
zero, the most informative axis is either the smallest or
largest eigenvector of the STC (see Appendix A for a more
thorough discussion). We will refer to our approach as
‘‘information-theoretic spike-triggered average and covari-
ance’’ (iSTAC) analysis.

An important advantage of the iSTAC approach over
traditional STA/STC analysis is that it makes statistically
efficient use of changes in both mean and covariance of the
STE. Figure 3 illustrates this using simulations of a single-
filter LNP model, with a stimulus consisting of temporal
Gaussian white noise. The temporal filter b was a 20-
dimensional vector resembling the (biphasic) temporal
profile of a retinal receptive field. Simulations were per-
formed using three different point nonlinearities (Figure 3,
top row), each of which produces a change in both mean
and variance in the STE. A half-wave rectified linear func-
tion (left column) shifts the mean of the STE and reduces
its variance relative to the raw stimuli, meaning that both the
STA and the low-variance STC axis provide consistent esti-
mates for b. For the sigmoidal and quadratic nonlinearities
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Figure 2. KL divergence between the spike-triggered and raw stimulus distributions Q and P, restricted to a 1D subspace. (A) KL
divergence as a function of the mean and standard deviation of the projection of Q (Equation 9). (B) Vertical slice through the same
function (at zero mean), showing asymmetry as a function of standard deviation.

Figure 3. Comparison of STA/STC and iSTAC analysis for recovering a 1D subspace in simulation. Spike responses to a 100-Hz
Gaussian white noise temporal stimulus were generated by an LNP model with a single 20-dimensional filter, followed by one of three
different nonlinearities. Top row: Nonlinearities used for converting filter output to spike rate: (A) linear half-wave rectified, (B) sigmoidal,
and (C) quadratic. Middle row: Distribution of raw stimuli (black) and spike-triggered stimuli (red) along the filter axis for each of these
models. Bottom row: Error in STA, STC, and iSTAC estimates of the linear filter as a function of the number of raw stimulus samples. Error
was computed as the average angle between the true and estimated filter, using 100 independent simulations at each duration.
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(center and right columns, respectively), the STE has shifted
mean and increased variance relative to the raw stimulus;
hence, the STA and the large-variance STC axes can pro-
vide consistent estimates for b. The bottom row of plots
in Figure 3 shows the convergence of the STA, STC, and
iSTAC estimates as a function of the experiment duration.
The iSTAC estimate was computed by directly maximizing
Equation 9 for b, which gives the 1D subspace maximiz-
ing the KL divergence between P and Q. This optimization
took less than 1 s for each estimate and does not depend on
the amount of data, apart from the additional time required
to compute the STA and STC. Although STA, STC, and
iSTAC estimates all converge (i.e., are statistically consis-
tent) for these examples, iSTAC exhibits superior perfor-
mance in all three cases, due to its sensitivity to information
in both mean and covariance.

Application to the HH model

Aguera y Arcas, Fairhall, and Bialek (2003) have per-
formed an elegant dimensionality-reduction analysis of the
Hodgkin-Huxley model (Hodgkin & Huxley, 1952) with
STC analysis, examining how well model responses to
white noise could be captured by a low-dimensional sub-
space. They concluded that although the HH model can be
approximated with a 2D LNP model, there is no finite-
dimensional space that fully captures its behavior. Here, we
illustrate how the iSTAC approach can be used to supple-
ment and extend these conclusions.

The HH model consists of a four-dimensional nonlinear
differential equation that we simulated with a Gaussian

white noise input current, discretized in 1-ms bins. We used
a 100-ms portion of the stimulus preceding each spike to
define the spike-triggered ensemble. Figure 4A shows the
sorted eigenvalues of the STC matrix, computed from a sim-
ulated train with 108 time samples and roughly 106 spikes. A
substantial number of eigenvalues lie above or below 1, in-
dicating that the computation performed by the HH neuron
on its input is multidimensional (Aguera y Arcas et al.,
2003).

Nevertheless, if we desired a 1D approximation to the HH
model, we could ask: Which dimension of the stimulus space
preserves the most information about HH neuron’s re-
sponse? Equivalently, what filter provides the best descrip-
tion of the HH model’s temporal receptive field? Figure 4B
shows several candidate filters offered by traditional STA/
STC analysis, along with the solution offered by the iSTAC
approach. The iSTAC filter is intermediate between the STA
and the lowest variance eigenvectorVit lies in the space
spanned by these two vectors, but it preserves 10% more
information about spike times than either of these vectors
individually and roughly eight times more information than
the large-variance eigenvector.

The information-theoretic framework can also be used
to examine additional dimensions. Figure 4A shows the
eigenvalues of the STC, revealing a large number that de-
viate significantly from 1. We can use the iSTAC approach
to find a set of vectors ordered according to informative-
ness. For each dimensionality m, we computed the optimal
information-preserving subspace by maximizing Equation 8
for B (a 100 � m matrix), constraining the columns of B to
be orthonormal (see Appendix A for details of the optimiza-
tion procedure). Figure 4C shows the KL divergence between

Figure 4. Comparison of STA/STC and iSTAC analyses on simulated data from an HH model. (A) Eigenvalues of the STC matrix, showing
many eigenvalues larger and smaller than 1; circles highlight the largest (red) and smallest (blue) values. (B) Candidate vectors for
dimensionality reduction of the HH model to a 1D subspace: the STA (gray), eigenvectors associated with the largest (red) and smallest
(blue) eigenvalues, and the first iSTAC axis (black). The information preserved by these vectors is 1.52 bits (iSTAC), 1.38 bits (STA and
low-variance STC), and 0.18 bits (high-variance STC). (C) Information preserved by the optimal (iSTAC) subspace as a function of
dimensionality. Dashed line indicates the information available in the full 100-dimensional stimulus space.
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the two distributions projected into this optimal subspace,
as a function of m. Although the large number of ‘‘signifi-
cant’’ eigenvalues (Figure 4A) reveals that the HH computa-
tion is high dimensional, the information analysis indicates
that total information saturates quite rapidly with dimen-
sionality. Specifically, as shown in Figure 4C, a model us-
ing just two linear filters captures 94% of the information
available.

Application to V1

We have also applied iSTAC to data from a V1 complex
cell (data published in (Rust et al., 2005)). The stimulus
consisted of a set of adjacent black and white flickering
bars (i.e., binary white noise), aligned with the cell’s pre-
ferred orientation. Figures 5A–D show the results of STA/
STC analysis, with STA and STC eigenvectors displayed

Figure 5. Analysis of a V1 complex cell. The stimulus consisted of 16 black/white bars, aligned with the cell’s preferred orientation, each
flickering randomly at a rate of 100 Hz. The stimulus block was chosen to cover 12 time bins. (A) The STA plotted as a 12 � 16 image,
showing temporal (vertical) and spatial (horizontal) organization. (B and C) High- and low-variance STC eigenvectors. (D) Sorted
eigenvalues of the STC matrix. Four large and three small eigenvalues were determined to be statistically different from 1 (the variance of
the raw stimuli). (E) iSTAC dimensionality reduction. The iSTAC filters span nearly the same space as the STA and eigenvectors of the
STC but are orthogonal and sorted by informativeness. (F) Information preserved as a function of the dimensionality of the most
informative subspace. (G) Incremental information gain as a function of subspace dimensionality (difference between adjacent points in
F). The gray line shows a 95% confidence interval for the increase in KL divergence due to undersampling (i.e., noise in the STA and
STC), computed using nested bootstrap resampling.
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as grayscale space–time images. This cell exhibits a struc-
tured STA, high-variance eigenvectors tuned for left-moving
stimuli, and low-variance eigenvectors tuned for rightward-
moving stimuli.

This collection of significant STA and STC eigenvectors
suggests that an eight-dimensional subspace captures the
cell’s response to flickering bar stimuli. However, the anal-
ysis does not by itself tell us the relative significance of
the axes nor does it tell us the information-theoretic cost of
using a lower dimensional subspace. Figure 5E shows a
collection of (orthogonal) basis vectors, sorted in order of
their informativeness. The optimal k-dimensional subspace
is given by the collection: {1, 2, I, k}. The first two
iSTAC vectors closely resemble the first two high-variance
eigenvectors of the STC. The third iSTAC vector resembles
the STA (orthogonalized with respect to the first two), and
the remaining vectors closely match the remaining eigen-
vectors of the STC (with high-variance vectors preceding
the low-variance vectors in importance). Note, however,
that this ordering was not obvious a priori. Other V1 cells
from the same data set reveal a variety of orderings: In some
cells, the STA carries more information or less information
than all other filters, and in some, the low-variance axes
carry more information than all high-variance axes.

Note also that the ordering of filters is not necessarily the
same as if we sorted them by the amount of information
preserved in a 1D projection. The information-theoretic
criterion of Equation 8 takes into account correlations
between the projection of spike-triggered stimuli onto the
(k + 1)th dimension and the previous k dimensions. Such
correlations are important when the STA is not geometri-
cally aligned with the eigenvectors of the STC matrix. For
example, we often find that the second iSTAC filter carries
less information by itself, as compared with the third or
fourth filters, but gives rise to the most informative 2D sub-
space when grouped with the first.

Figure 5F shows the amount of information preserved by
the optimal k-dimensional subspace. Moving from a 1D to
a 2D representation increases information nearly as much
as moving from a zero-dimensional to a 1D representation
(increases of 0.27 and 0.24 bits, respectively), but moving
to larger dimensional subspaces does not contribute nearly
as much additional information, as illustrated in Figure 5G.
Note that although information continues to increase as a
function of subspace dimensionality, this increase can be
attributed to data limitations. The covariance matrix 0 is
an estimate of the true covariance, computed from a finite
set of samples. These samples have, by chance, slightly
smaller or greater variance than the raw stimuli along most
dimensions, resulting in an apparent increase in information
with each dimension included in the model. This same
phenomenon is responsible for the spread of ‘‘nonsignif-
icant’’ eigenvalues around 1 in Figure 5B.

Thus, we use a statistical test (specifically, a nested
hypothesis test) to determine when the information increase
is significant compared with that due to undersampling.

Details of this procedure are given in Appendix A. The gray
line in Figure 5G shows the result of this nested test per-
formed for each dimensionality. Although total information
continues to increase with dimensionality (Figures 5F and
G), for m 9 8, the amount added does not exceed the 95%
confidence level for the information increase we would
expect due to statistical error in estimation of mean and
covariance with this number of samples, and thus we
conclude that the cell’s response is captured by an eight-
dimensional model.

Application to retina

We also applied the iSTAC method to spiking data from
macaque RGCs (Chander & Chichilnisky, 2001; Chichilnisky,
2001). The stimulus again consisted of flickering bars, with
intensities drawn i.i.d. from a Gaussian distribution (i.e.,
Gaussian white noise). Figure 6 shows a comparison of
STA/STC and iSTAC dimensionality reduction for a sam-
ple cell. Figure 6A shows the STA of the neuron, which
exhibits canonical ON-type RGC receptive field: center-
surround spatial organization and a biphasic temporal pro-
file. STC analysis (Figures 6B–D) indicates that the neuron’s
response is inherently multidimensional, with two signifi-
cant high-variance eigenvectors and three significant low-
variance eigenvectors.

Figure 6E shows the significant iSTAC features (sorted
by informativeness). Although the basis provided by STA/
STC analysis contains six dimensions, the information-
theoretic analysis finds only five that are significant. The
first of these closely resembles both the STA and the
lowest-variance STC features, but the axis corresponding to
the difference between the two does not contribute mean-
ingful information. This is not the case for all RGC cells
we examined: Several exhibited the same dimensionality
under STA/STC and iSTAC analysis. Note also that iSTAC
Axes 3 and 5 resemble the sum and difference of low-
variance STC Axes 2 and 3, respectively. The information
preserved in a subspace, as a function of subspace dimen-
sionality, is shown in Figures 6F and G.

Modeling the nonlinear response

Dimensionality reduction provides a linear mapping of
the stimulus x to a feature vector x* = BTx, where B is a
basis for the feature space. For a complete model, we also
need a mapping from the feature vector x* to the proba-
bility of observing a spike, P(spike|x*). In low-dimensional
(1D or 2D) spaces, the nonlinearity can be estimated by
computing the quotient of (e.g., histograms of) the densi-
ties P(x*|spike) and P(x*) (see Figures 1C and D). For
higher dimensional feature spaces, however, this is infea-
sible due to the difficulty of estimating densities.
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In such situations, the information-theoretic iSTAC
framework provides a default model of the nonlinearity in
the form of a ‘‘ratio of Gaussians’’ (ROG):

P spikejxð Þ ¼ !
QðxÞ
PðxÞ ; ð10Þ

where Q(x) is a Gaussian density with mean and covari-
ance matching that of the spike-triggered ensemble, P(x)
is the prior distribution over raw stimuli, and ! is a pro-
portionality constant equal to P(spike) = nsp /nstim. Reduc-
ing dimensionality by a linear projection onto B preserves
Gaussianity of both numerator and denominator distribu-

tions; thus, the reduced-dimensional model of the neural
response, specified in feature space, is given by

P spikejx�ð Þ ¼ !
Q̂ðx�Þ
P̂ðx�Þ

; ð11Þ

where Q̂ is Gaussian with mean 2̂ = BT2 and covariance
0̂ = BT0B. A bit of algebra reduces this to an exponential
form:

Pðspikejx�Þ ¼ aex�TMx�þbTx� ; ð12Þ

where M = 1
2
(I-0̂j1) and b = 0̂j12̂.

Figure 6. STA/STC analysis and iSTAC analysis of an ON RGC in macaque retina. The stimulus consisted of 10 spatially adjacent bars, with
intensities on each frame drawn from a Gaussian white noise source, presented at a frame rate of 120 Hz. The stimulus vector for our analysis
was chosen to include 20 time bins, producing a stimulus space of dimensionality 200. (A) STA. (B) Eigenvalues of STC. To the right, STC ei-
genvectors associated with high (C) and low (D) variance. (E) Basis vectors of the iSTAC dimensionality reduction, sorted in order of their
informativeness. (F) Total information preserved and (G) incremental information added as a function of subspace dimensionality.
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Although an ROG might initially seem like a strange
choice of parametric model, we find that it provides a sur-
prisingly good fit to the data of many cells. Figure 7A shows
a comparison between the ROG model and a histogram
estimate of the nonlinearity along each dimension of the
(five-dimensional) feature space. For each plot, the stimuli
were projected onto feature vector bj, and the nonlinearity
was computed using the ROG (blue) and a ratio of densi-
ties estimated using histograms (dotted black; Chichilnisky,
2001). Note that, for each plot, the numerator of the ROG
model is a Gaussian with mean (bT

j2) and variance (bT
j0bj),

whereas the histogram estimate is computed using the 1D
projection of the stimuli: {bT

jx}. The model is seen to be

equally adept at describing the asymmetric, symmetric
excitatory, and symmetric suppressive behaviors found along
different axes.

Figure 7B shows an analysis of the nonlinearity as pro-
jected onto pairs of axes of the feature space. The grayscale
images represent the probability of spiking under the ROG
model. Conditional slices through these plots show compar-
isons of the model to histograms of the data (dashed lines).
The example in the center column (Feature 1 vs. Feature 3)
shows the most striking change in the nonlinearity because
of conditioning. For large positive projections onto Fea-
ture 3 (red line), the nonlinearity is steep and has a high
threshold, whereas for negative projections (blue line), the

Figure 7. Reconstruction of 1D (marginal) and 2D nonlinearities using the ROG model for the RGC shown in Figure 6. (A) Five vectors
discovered using iSTAC (above) and the 1D nonlinearity obtained by projecting the stimulus onto each of these axes (below). Blue traces
show the prediction of the ROG model, and dashed lines show the histogram-based estimate. (B) 2D nonlinearities obtained by projecting
onto pairs of feature vectors. The three grayscale images show the probability of spiking under the ROG model as a function of the
projection onto Feature Vectors 1 and 2 (left), 1 and 3 (middle), and 2 and 3 (right). Red, green, and blue lines indicate conditional ‘‘slices’’
through at 1.5, 0, and j1.5, respectively. These slices are plotted to the right of each image: Solid lines show ROG prediction, and dashed
lines show histogram estimates computed using stimuli whose projection onto the ordinate feature vector was within T0.1 of the slice
value.
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nonlinearity is shallow with a lower threshold. Note that
these dependencies in spike probability could not have
been predicted from the marginal spike probabilities shown
in Figure 7A for Features 1 and 3.

Agreement across multiple 1D and 2D projections and
slices suggests that the ROG model provides a reasonably
good approximation of RGC responses. We have examined
similar projections onto linear combinations of these axes
(i.e., rotations of the feature space) and found similarly good
agreement. In other cell types (such as the V1 cells described
previously), the ROG model may prove less accurate, and
we may need to introduce a different model of the nonlinear
mapping from feature space to spike rate. Even in such
cases, the ROG model provides a first approximation of the
nonlinearity, with the advantage that it is completely
determined by the filters used for dimensionality reduction
(i.e., it requires no additional parameter fitting). This is par-
ticularly useful when the subspace dimensionality is greater
than 2 and nonparametric nonlinearity reconstruction is not
feasible.

As we will show in Appendix B, dimensionality reduction
using iSTAC analysis is asymptotically optimal if the
response nonlinearity is an ROG. Specifically, for responses
generated by an ROG model, iSTAC analysis performs a
maximum likelihood (ML) estimate of the model parame-
ters. This generalizes the optimality conditions for STA and
STC analysis: The STA is an ML estimate when the
response nonlinearity is exponential (i.e., P and Q have
identical covariance but differ in mean; Paninski, 2004) and,
as shown here, STC analysis corresponds to ML estimation
when the nonlinearity is the ratio of two zero-mean
Gaussians (P and Q have the same mean but differing co-
variance). Thus, iSTAC analysis generalizes the optimality
of STA and STC. It is also consistent and unbiased under the
same conditions as STA and STC analysis, meaning that it
converges to the correct subspace whenever the raw stimulus
is Gaussian and the nonlinearity affects STE’s mean,
variance, or both. The ROG description also provides an
important litmus test for the possible suboptimality of these
moment-based approaches. If the estimated nonlinearity is
poorly fit by an ROG, there may be a significant statistical
advantage to dimensionality-reduction techniques that are
sensitive to higher order moments (e.g., Paninski, 2003;
Sharpee et al., 2004).

Extension: Analysis of space–time
separable models

Finally, the iSTAC framework can be extended to incor-
porate additional constraints on the filters recovered, which
we illustrate with an application to a model with space–
time separable elements. Figures 8D and E shows an
example of this approach: The spatial and temporal sec-
tions of the iSTAC filters estimated for the RGC cell
(Figure 6, blue traces) exhibit only a small number of dis-
tinct profiles, suggesting that we can reduce model complex-

ity by using only a small number of spatial and temporal
waveforms.

A space–time separable filter is one that can be specified as
the outer product of a temporal filter h and a spatial filter g:

hgT ¼

h1g1 h1g2 > h1gng

h2g1 h2g2 > h2gng

s s G s
hnh

g1 hnh
g2 > hnh

gng

2
664

3
775; ð13Þ

where nh and ng are the number of spatial and temporal ele-
ments of the raw stimulus, respectively. Note that this greatly
reduces the number of filter parameters from that of stimulus
dimensionality n (equal to nh � ng) to nh + ng. By stacking
the columns of hgT to form a single column vector,

b ¼

hg1

hg2

s
hgng

2
664

3
775 ¼

h

h

G

h

2
664

3
775g ¼ Lh½ �g; ð14Þ

where Lh is an n � ng block-diagonal matrix, with each
block given by the column vector h.

Suppose now that we wanted to find the temporal filter h
that preserves maximal information about the response. Fil-
tering each spatial element of the stimulus with h is equiv-
alent to projecting each stimulus x onto the columns of Lh;
this operation produces an ng-dimensional vector, Lh

Tx,
with one dimension for each spatial element of the stim-
ulus. From this derivation, it is obvious that Lh is a special
form of the dimensionality-reducing matrix B that we con-
sidered previously. Therefore, we can find the most infor-
mative h simply by maximizing KL divergence, using Lh

in place of B in Equation 8. Note that we could not directly
estimate such a temporal filter using STA or STC analysis:
Although we could find a space–time separable fit to either
the STA or the eigenvectors of the STC, this provides no
unique solution nor does it combine information from all of
the filters (STA and the significant eigenvectors) simulta-
neously. The more general information-theoretic estimators
also cannot be tractably applied to this problem. The matrix
Lh reduces dimensionality to an ng-dimensional feature
space, which is too high-dimensional (assuming the stim-
ulus contains more than a few spatial elements) for esti-
mating mutual information directly.

If one temporal filter does not suffice to describe the re-
sponse, we can find multiple filters using the same approach:
Each temporal filter hi is inserted into a dimensionality-
reducing matrix Lhi, and the concatenation of these matrices,
[Lh1 I Lhk], preserves more dimensions of the original stim-
ulus space and can be inserted into Equation 8 in place
of B. Figure 8 shows an application of this approach to the
RGC shown in Figures 6 and 7. Figure 8A shows the two
most informative temporal filters, which were found to be
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sufficient for preserving the information about the response.
We then performed an identical analysis to find a set of
maximally informative spatial filters (i.e., by exchanging
the roles of h and g in the previous analysis) and found that
four filters were required to preserve spatial information
about the response, as shown in Figure 8B.

Finally, we can combine these temporal and spatial fil-
ters to obtain a set of constrained iSTAC filters; these
should resemble the original filters but obey the additional
constraint that they are composed only of the spatial and

temporal filters obtained from the space–time separable
analysis. This constraint implies that each filter b can
written as

b ¼~
nh

i¼1

~
ng

j¼1

hig
T
j

� �
wij; ð15Þ

where hig
T
j indicates the outer product of the i temporal filter

with the jth spatial filter, and {wij} is a set of linear weights,

Figure 8. Dimensionality reduction with space/time-constrained iSTAC. (A) Temporal dimensionality reduction finds that the temporal
dependence of the response can be well characterized using two filters. The black line represents the first (more informative) filter. (B)
Spatial dimensionality reduction indicates that four filters can characterize spatial dependence. The informativeness of each filter is
indicated by grayscale level (lighter traces = less informative). (C) iSTAC filters constrained to live in the space spanned by the spatial and
temporal filters in A and B. These compare directly with the iSTAC filters in Figure 6E. (D) Temporal sections of the original iSTAC filters
(Figure 6) and the space/time-constrained filters shown in C. (E) Spatial sections of the original and the space/time-constrained iSTAC
filters. Spatial and temporal similarity across sections and across filters suggests that the small number of spatial and temporal filters
discovered provides a parsimonious description of the neural feature space.
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which we fit by maximizing KL divergence. Figure 8C shows
the set of constrained iSTAC filters obtained for this cell, each
of which is constructed using the spatial and temporal
components shown in Figures 8A and B and a set of weights.
For comparison, we can plot these alongside the original filters
obtained with iSTAC analysis (Figure 6). Figures 8D and E
show temporal and spatial sections of the original iSTAC
filters (blue) and the space/time-constrained filters (red),
indicating basic agreement between the two methods. The
constrained filters, however, are much smoother and require
far fewer parameters to describe: A set of five 300-element
filters (20 temporal � 15 spatial dimensions) was reduced to a
set of filters constructed from two temporal filters and four
spatial filters and a set of weights (eight for each of
the five filters), resulting to a reduction from 1,500 to
140 parameters.

Discussion

We have described a methodology for fitting an LNP
model to extracellular data, in which we maximize the
information between stimulus and response, assuming an
ROG response model. The model parameters are fully con-
strained by the mean and covariance of the raw and spike-
triggered stimulus ensembles, and thus it is seen to occupy
a middle ground between STA/STC and information maxi-
mization methods for dimensionality reduction while pro-
viding some advantages over each. In addition, our method
provides a default model, in the form of an ROG, for the
nonlinearity that maps linear responses to firing rates.

As with STA/STC analysis, the restriction to a model that
is characterized by first and second moments is what
guarantees tractability of the fitting procedure. However,
this also means that the method is blind to variations that
manifest themselves only in higher order moments. It should
be possible to augment the method to include higher order
moments, but these will necessarily increase the data
required for accurate estimation and are also likely to
increase the chances of getting stuck in local minima during
fitting.

Although we found that the ROG model provides a
surprisingly good account of data from RGCs, it is unlikely
to provide an accurate description for all cells. For example,
we find that the fits are not nearly as good for V1 responses.
However, we note that the ROG model is not essential to our
analysis, and it is easy to envision generalizations in this
regard. For example, the ROG model can be raised to an
unknown power, allowing the model to fit nonlinearities that
accelerate more steeply than those shown in Figure 7. More
generally, one could introduce any parametric nonlinearity
to operate on the feature space, as long as the parameter-
fitting problem is tractable.

Appendix A: Information
maximization

iSTAC analysis provides a natural generalization of STA
and STC analysis, which we will show by proving that
iSTAC reduces either to the STA or to the STC analysis in
the case that either the STC or the STA provides no infor-
mation about the response. Specifically:

& When the STC is the identity matrix, iSTAC recovers
the same subspace as STA. The proof is simple: If STC
0 is the identity matrix, then the first two terms in
Equation 8 are constant, and we obtain maximal KL
divergence by taking B as a unit vector proportional
to 2, the STA. Note that in this case, all information
is captured by this 1D subspace; hence, there is no ad-
vantage to using a higher dimensional feature space.

& When the STA is 0, iSTAC recovers the same subspace
as the significant eigenvectors of the STC. To prove this,
letA = BT0B, and the KL divergence reduces to Tr[A] j
log|A| plus a constant. Note that the first term of this
expression is the sum of the eigenvalues of A and that
the second is the negative sum of the log eigenvalues
of A. These eigenvalues, in turn, represent the variance
of the STE along each major axis preserved by the ba-
sis B. If we diagonalize 0 using its eigenvectors, it is
easy to show that the function is maximized by setting
B to contain the eigenvectors of 0 for which the corre-
sponding eigenvalues Ai are greater than or less than 1.
The information contributed by each eigenvector is
equal to Ai j log(Ai) j 1, which is the function plotted
in Figure 2B, and monotonically increases as Ai moves
away from a value of 1. This means that extrema (high
or low eigenvalues) of the STC will also be maxima in
the iSTAC analysis, and thus, the iSTAC basis will be
the same as the STC basis. Moreover, if we wish to
preserve only j axes of the stimulus space, the most in-
formative j-dimensional subspace is generated by the
eigenvectors whose corresponding eigenvalues Ai give
the j largest values of Ai j log(Ai).

When both the STA and STC contain meaningful infor-
mation about the neural response, as in all real and simu-
lated examples presented here, we desire a basis that
maximizes the full objective function of Equation 8. The
objective function can be rewritten simply as:

f ðBÞ ¼ Tr½BTð0þ 22TÞB�j logkBT0Bk: ðA1Þ

Note that the first term is the sum of the eigenvalues of
(0 + 22T) and that the second term is the sum of the log
eigenvalues of 0 within the subspace preserved by B.
A simple intuition (verified by hand inspection in low
dimensions) suggests that this objective function has only n
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local maxima and/or saddle points on the unit hypersphere,
which are intermediate between the eigenvectors of (0 +
22T) and 0.

For numerical optimization, we also made use of the
analytic gradient of the objective function, which is given by

¯f

¯B
¼ 2 0þ 22Tj0BBT0j1

� �
B: ðA2Þ

We performed the optimization by growing B incremen-
tally, starting with the maximally informative 1D basis and
adding columns so that KL divergence is maximized for
each dimensionality. The optimal k-dimensional basis
includes the (kj1)-dimensional basis provided by the pre-
vious step of the algorithm; thus, it is possible to think of
the optimal basis as consisting of the first k vectors from
a fixed, ordered set (as shown in Figures 5, 6, and 8). To
ensure that the optimization converges to the true global
optimum at each step, we use several initialization points,
selected from a set of the significant eigenvectors of 0 and
(0 + 22T).

To determine the number of significant subspace dimen-
sions, we performed a nested bootstrap test, analogous to
that described for STC analysis in Rust et al. (2005),
Schwartz et al. (2002), and Simoncelli et al. (2004). The
test at step k examines whether the incremental information
that arises from increasing dimensionality from k j 1 to k
is significantly above that expected from random sampling.
To quantify the latter, we performed 1,000 bootstrap re-
samplings of the STE by randomly time shifting the spike
train relative to the stimulus (removing stimulus depen-
dence of the response but preserving spike train statistics)
and computed the STA and STC of the shifted samples.
We then computed the KL divergence of the most informa-
tive k-dimensional subspace while setting the mean and co-
variance in the first k j 1 dimensions to be those given by
the true STA and STC. We use these 1,000 estimates to
generate an empirical distribution of the incremental
information provided by the kth dimension and compute a
95% confidence level (gray line plotted in Figures 5 and 6).
If the incremental information computed from the actual
data fails to surpass this significance level, we conclude that
the neural response is captured by the first k j 1 dimen-
sions. Otherwise, we proceed by repeating the whole test for
k + 1 dimensions.

Appendix B: Relationship to ML

It is interesting to note that maximizing KL divergence
between Q and P is asymptotically equivalent to finding the
ROG model parameters that maximize the likelihood of the
spike train given the stimuli. We assume that spikes are
generated according to an inhomogeneous Poisson process,

and thus, the likelihood of observing k spikes for a stimulus
x is given by

p kjxð Þ ¼ 1

k!
rðxÞkejrðxÞ; ðB1Þ

where r(x) is the instantaneous firing rate. The average
log-likelihood of set of spike data {ki, xi}, for i Z [1, N] is
given by

L ki; xif gð Þ ¼ 1

N
~

i

ki log r xið Þj r xið Þ½ � þ c; ðB2Þ

where c is a constant that does not depend on r(x).
We assume that the spike rate is determined by the ROG:

r xð Þ ¼ !
QðxÞ
PðxÞ : ðB3Þ

We substitute this into Equation B2 and take the limit as
the amount of data goes to infinity:

LN Y X Q xð Þlog
QðxÞ
PðxÞ dx jX P xð ÞQðxÞ

PðxÞ dx ðB4Þ

¼ DðQ;PÞj1 ðB5Þ

Therefore, any parameter of Q and P that maximizes KL
divergence will also (in the limit of large data) maximize
the Poisson likelihood of the data under the model.

One corollary of this result is that STC analysis is asymp-
totically optimal (i.e., equivalent to ML) when the response
function r(x) is a ratio of two zero-mean Gaussians. This
follows from the conjunction of the second point in the
previous section (equivalence of STC and iSTAC when the
expected mean of the STE is zero) and the optimality of
iSTAC under an ROG model. The corollary that the STA is
asymptotically optimal when r(x) is exponential has been
shown previously (Paninski, 2004) but can be derived
similarly from the fact that the ratio of two Gaussians with
identical covariance but shifted means is exponential.

Although it is not optimal for other nonlinearities, iSTAC
analysis is both unbiased and consistent whenever the raw
stimulus distribution is Gaussian, and the nonlinearity affects
the STE’s mean, variance, or both. This follows directly
from the unbiasedness and consistency of the STA and STC
eigenvectors under the same conditions, which have been
shown previously (Bialek & de Ruyter van Steveninck,
2005; Bussgang, 1952; Paninski, 2003). If we have an LNP
neuron with a set of linearly independent filters and a non-
linearity that affects the mean, variance, or both along each
axis of the subspace spanned by these filters, then the ex-
pected STA and STC eigenvectors span the same space
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(unbiasedness) and converge asymptotically to this subspace
(consistency). Unbiasedness and consistency of iSTAC anal-
ysis result from the fact that the expected and asymptotic KL
divergence along axes outside this subspace is zero, meaning
that the expected and asymptotic maximizer of Equation 8 is
indeed the correct subspace.
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