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We describe an information-theoretic framework for fitting neural spike re-

sponses with a Linear-Nonlinear-Poisson cascade model. This framework unifies

the spike-triggered average and spike-triggered covariance approaches to neural

characterization, and recovers a set of linear filters that maximize mean and

variance-dependent information between stimuli and spike responses. The re-

sulting approach has several useful properties: (1) it recovers a set of linear

filters sorted according to their informativeness about the neural response; (2)

it is both computationally efficient and robust, allowing recovery of multiple lin-

ear filters from a data set of relatively modest size; (3) it provides an explicit

“default” model of the nonlinear stage mapping the filter responses to spike rate,

in the form of a ratio of Gaussians. (4) it is equivalent to maximum likelihood

estimation of this default model, but also converges to the correct filter estimates

whenever the conditions for the consistency of spike-triggered average or covari-

ance analysis are met; (5) it can be augmented with additional constraints, such

as space-time separability, on the filters. We demonstrate the effectiveness of

the method by applying it to simulated responses of a Hodgkin-Huxley neuron,

and the recorded extracellular responses of macaque retinal ganglion cells and

V1 cells.

Keywords: neural coding, white noise analysis, reverse correlation, receptive field, infor-

mation theory, neural modeling

One of the central problems in sensory neuroscience is that of characterizing the neural

code, or the mapping from sensory stimuli to neural spike responses. The problem has been
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investigated in a large number of sensory areas, using a variety of specialized stimuli and

experimental preparations, but a general solution is intractable due to the high dimension-

ality of both the stimulus and response spaces (Rieke, Warland, de Ruyter van Steveninck,

& Bialek, 1997; Dayan & Abbott, 2001).

Recent work has explored “dimensionality reduction” methods to simplify the problem of

modeling the neural response (de Ruyter van Steveninck & Bialek, 1988; Bialek, Rieke, de

Ruyter van Steveninck, & Warland, 1991; Ringach, Sapiro, & Shapley, 1997; Brenner, Bialek,

& de Ruyter van Steveninck, 2000; Schwartz, Chichilnisky, & Simoncelli, 2002; Touryan,

Lau, & Dan, 2002; Aguera y Arcas & Fairhall, 2003; Paninski, 2003; T. Sharpee, Rust, &

Bialek, 2004; Rust, Schwartz, Movshon, & Simoncelli, 2005; T. O. Sharpee et al., 2006).

The concept is intuitive and sensible: although the space of all stimuli is enormous (e.g.

the space of all images), most attributes of these stimuli do not have any effect on a given

neuron’s response. If we can identify a low-dimensional space in which a neuron computes

its response—a “feature space”, then the neural code can be characterized by describing

responses only within that space. Note that “classical” experiments can also be be viewed

within this framework: characterization with dots, bars, or grating stimuli implicitly assumes

that a neuron’s behavior is determined by its response to set of canonical features.

Two basic approaches have been developed to estimate a neural feature space. The first

compares the mean and covariance of the spike-triggered stimulus ensemble (i.e., the set

of stimuli that elicited a spike from the neuron) with those of the full stimulus ensemble

(de Ruyter van Steveninck & Bialek, 1988; Bialek et al., 1991). Significant changes in

either the spike-triggered average (STA) or spike-triggered covariance (STC) can be used

to determine the subspace in which the neuron computes its response. These methods

are relatively efficient to compute and have been demonstrated on the H1 neuron of the

fly (de Ruyter van Steveninck & Bialek, 1988; Bialek et al., 1991; Brenner et al., 2000;

Bialek & de Ruyter van Steveninck, 2005), macaque retinal ganglion cells (Schwartz et al.,

2002) and V1 cells in both cat (Touryan et al., 2002) and monkey (Rust et al., 2005). These

methods are appealing because of their simplicity, but they do not consider information from

joint changes in mean and variance, and they provide no absolute measure of importance

of the filters recovered. And although filters can be recovered for subspaces of arbitrary

dimensionality, the estimation of the nonlinear mapping from filter responses to firing rate

becomes intractable for subspaces of more than a few dimensions.

A second approach to dimensionality reduction is to seek “maximally informative dimen-

sions”, along which the mutual information between stimulus and response is maximized

(Paninski, 2003; T. Sharpee et al., 2004). This approach makes no explicit use of the STA

or STC, and has the advantage that it is sensitive (in principle) to statistical changes of

any order. Unlike STA and STC analysis, it also can provide consistent estimates with non-

spherical and non-Gaussian (e.g., naturalistic) stimuli. Unfortunately, accurate estimation
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of mutual information requires a large amount of data, and the mutual information function

is rife with local maxima, making reliable automated optimization difficult to perform. As

a result, these techniques are often impractical in high dimensions, and published examples

have been restricted to the recovery of one or two-dimensional feature spaces (Paninski, 2003;

T. Sharpee et al., 2004; T. O. Sharpee et al., 2006).

In this paper, we describe a new method for dimensionality reduction that occupies a middle

ground between the moment-based and information-theoretic approaches. Specifically, we

maximize information based only on the first and second moments of the spike-triggered

stimulus ensemble. This approach provides a unifying information-theoretic framework for

STA/STC analysis but remains computationally tractable, even in feature spaces of relatively

high dimensionality. The method is sensitive to interactions between the STA and STC

components, and provides an implicit or “default” model of the nonlinear function mapping

the feature space to the neural response. We demonstrate the method on simulated data from

a Hodgkin-Huxley model neuron, as well as physiological data from a macaque V1 neuron

and a macaque retinal ganglion cell. Finally, we show an application of the framework for

estimating a model with space-time separable components, which cannot be easily achieved

with other estimators.

Spike-triggered Analysis

Figure 1 shows the elements of a typical white noise experiment and illustrates how di-

mensionality reduction can be understood as a tool for fitting a neural encoding model.

Figure 1A depicts a discrete Gaussian white noise stimulus (flickering bars), and 1B shows

a two-dimensional representation of this stimulus (space vs. time), along with the simulated

neural response. The first step of the analysis involves identifying the “spike-triggered stim-

ulus ensemble”, the collection of stimuli associated with spikes. We assume that each spike

is causally associated a “chunk” of the space-time stimulus, and that spikes are generated

according to a Poisson process in which the instantaneous spike rate is governed entirely by

the preceding stimulus chunk, independent of the times of previous spikes.

In general, methods for dimensionality reduction of neural models proceed by looking for

a linear subspace that best captures the statistical differences between the spike-triggered

ensemble and the “raw” stimulus ensemble, i.e. the collection of all stimulus vectors (de

Ruyter van Steveninck & Bialek, 1988; Bialek et al., 1991; Simoncelli, Paninski, Pillow,

& Schwartz, 2004; Bialek & de Ruyter van Steveninck, 2005). Fig. 1C shows an example

where we have reduced the stimulus to a one-dimensional subspace by linear projection (i.e.

by filtering the stimulus with a single linear filter). Within this subspace, the mean of the

STE is significantly higher and its variance is significantly lower that of the raw stimulus
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Figure 1: Illustration of spike-triggered stimulus ensemble and dimensionality reduction
for a one-dimensional neural model. (A) Depiction of a discretized white-noise stimulus
(e.g., flickering bars whose intensities are drawn from a Gaussian distribution on each tem-
poral frame). (B) Samples from the spike-triggered stimulus ensemble (red boxes), vectors
consisting of a space-time stimulus “chunk” preceding each spike. Here, the chunks have
a duration of 6 frames and a spatial extent of 8 bars. Each element of the spike-triggered
stimulus ensemble is therefore a 48-dimensional vector. (C) By projecting the raw stimulus
and the spike-triggered stimulus onto a single axis in the stimulus space, we can empirically
measure the probability distributions of the raw (black) and spike-triggered (red) stimuli.
(D) The one-dimensional response model is specified by the probability of spiking condi-
tioned on the stimulus projection along this axis, which (according to Bayes rule) is just
the ratio of the spike-triggered and raw distributions.

ensemble. These differences indicate that position along this axis in stimulus space (i.e. the

response of this linear filter) carries information about of the probability that the neuron

will spike.

The neural response model is denoted P (spike|x): the probability that a neuron will elicit a

spike in response to a stimulus x. As illustrated in fig. 1C-D, we can compute this probability

directly using Bayes’ rule:

P (spike|x) = α
P (x|spike)

P (x)
, (1)

where α is a constant inversely proportional to the probability that a spike occurs, P (spike).

The encoding model can therefore be computed as the ratio of two probability distributions,

and in the simple cases (e.g., Fig. 1) we can estimate directly as a quotient of two histograms.
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Unfortunately, the direct approach fails in high dimensions because of the so-called “curse

of dimensionality”: as the stimulus dimensionality increases, the amount of data in each

histogram bin falls exponentially. In these cases, we proceed by assuming that the neuron is

insensitive to a large number of dimensions of the stimulus space, meaning that P (x|spike)

and P (x) do not differ except within a relatively low-dimensional subspace. Our first step is

thus to find the subspace that best captures these differences. We formalize this as the search

for a matrix B for which the true conditional probability of spiking is closely approximated

by the conditional probability within a lower-dimensional subspace spanned by the columns

of B:

P (spike|x) ≈ P (spike|BT

x). (2)

This dimensionality-reduction step can be regarded as the first step in fitting a Linear-

Nonlinear-Poisson (LNP) model of the neural response. This model consists of: (1) a bank

of linear filters (i.e., the columns of B); (2) a nonlinear combination rule, which converts the

filter outputs (B
T
x) to an instantaneous probability of spiking; (3) inhomogeneous Poisson

spiking.

Dimensionality reduction with STA and STC

The first and second moments of the STE can be used to identify a subspace that is infor-

mative about the neural response. Specifically, if we assume that P (x) has zero mean, then

the spike-triggered average,

µ =
1

nsp

∑
{xi|spike}

xi, (3)

gives the direction in the stimulus space along which the means of P (x|spike) and P (x) differ

most. Similarly, the spike-triggered covariance,

Λ =
1

nsp

∑
{xi|spike}

(xi − µ)(xi − µ)
T

. (4)

can be used to find the directions in the stimulus space along which the variance of P (x|spike)

and P (x) differ maximally.

Traditional STA/STC analysis can provide a basis B for a reduced-dimensional model of the

neural response consisting of the STA (if it differs significantly from zero), and the eigen-

vectors of the STC whose associated eigenvalues differ significantly from the variance of the

raw ensemble. We will refer to this latter group as the “significant” eigenvectors of the STC,

or simply “STC axes”. For spike responses generated by an LNP model, the STA and STC

axes converge asymptotically to the correct subspace (i.e. the subspace associated with B) if

the raw stimulus distribution P (x) is Gaussian and the instantaneous nonlinearity induces a
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change in the mean and/or variance along each dimension of this subspace (Bussgang, 1952;

Paninski, 2003; Bialek & de Ruyter van Steveninck, 2005).

Although the STA/STC method is simple and efficient to compute, it has several important

drawbacks. Firstly, the STA axis is typically not orthogonal to the STC axes, and may

even lie within the span of the STC axes. Although the STC can be orthogonalized with

respect to the STA (e.g., (Schwartz et al., 2002; Simoncelli et al., 2004; Rust et al., 2005)),

this runs the risk of losing information, as we will show in the following section. Secondly,

STA/STC analysis does not easily allow us to quantify information or to know which axes of

the subspace are most informative (the STA, the large-variance or small-variance STC axes).

Finally, the basic STA/STC methodology does not specify a general means for estimating

the nonlinear function taking filter outputs to spike rate. Although we can easily compute

the nonlinearity along any single dimension using a ratio of two histograms (as demonstrated

in Fig. 1C-D), this approach is impractical for subspaces with more than two dimensions.

Information-Theoretic Approach

These considerations motivate an information-theoretic framework for dimensionality re-

duction, based on the information contained only in the mean and covariance of the STE.

Specifically, we would like to define a single objective function that incorporates the infor-

mation each of these moments provides about the neural response. If we are agnostic about

higher-order moments, the simplest assumption we can make is that the STE is Gaussian,

with mean and covariance given by the STA and STC, respectively; this is the maximum-

entropy density for given mean and variance (Levine & Tribus, 1978; Cover & Thomas,

1991). A minimal-assumption model of the STE, or P (x|spike), can therefore be written as

Q(x) =
1

(2π)
n
2 |Λ| 12 e−

1
2
(x−µ)

T
Λ
−1

(x−µ), (5)

where n is the dimensionality of the stimulus space.

A natural choice for measuring statistical differences between the spike-triggered ensemble

and the raw ensemble is the Kullback-Leibler (KL) divergence, an information-theoretic

measure of the difference between two probability distributions (Cover & Thomas, 1991):

D(Q, P ) =

∫
Rn

Q(x) log
Q(x)

P (x)
dx, (6)

where P represents the distribution of the raw stimuli.

In the present case, we assume that Q and P are both Gaussian; P is zero-mean and has

identity covariance, or can be made so by subtracting the mean and “whitening” the stimulus
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Figure 2: KL divergence between the spike-triggered and raw stimulus distributions Q and
P , restricted to a 1D subspace. (A) KL divergence as a function of the mean and standard
deviation of the projection of Q (eq. 9). (B) Vertical slice through the same function (at
zero mean), showing asymmetry as a function of standard deviation.

space according to x = Λ0
− 1

2 (x0 − µ0), where µ0 and Λ0 are the mean and covariance of the

original stimulus distribution P (x0). Under these assumptions, equation 6 reduces to

D(Q, P ) =
1

2

(
Tr(Λ) − log |Λ| + µ

T

µ − n
)

, (7)

where Tr(·) and | · | indicate matrix trace and determinant, respectively. The KL divergence

between P and Q within a given subspace is given by:

D[B](Q, P ) =
1

2

(
Tr[B

T

(Λ + µµ
T

)B] − log |BT

ΛB| − m
)

, (8)

where B is a matrix whose m columns form an orthonormal basis for the subspace.

The most informative subspace, therefore, is given by the matrix B that maximizes eq. (8).

If we want a one-dimensional subspace, this objective function reduces to

D[b](Q, P ) =
1

2

(
b

T

Λb− log(b
T

Λb) + (b
T

µ)2 − 1
)

. (9)

where b (the most-informative filter) is a unit vector.

This function, depicted graphically in Fig. 2, specifies how changes in mean and variance of

the STE trade off in terms of information-theoretic significance. Fig. 2A shows KL divergence

as a function of both the mean (b
T
µ) and standard deviation (

√
bT Λb) of the projected

stimuli. KL divergence grows as a symmetric function of the mean around zero, but is an

asymmetric function of the standard deviation around one. This asymmetry is apparent in

Fig. 2B, which shows a vertical slice through the function at a mean value of zero.

The objective function of eq. (8) can be computed directly from the STA and STC. That

is, we can perform optimization without the computational cost of operating on the entire

7
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Figure 3: Comparison of STA/STC and iSTAC analysis for recovering a 1-dimensional
subspace in simulation. Spike responses to a 100-Hz Gaussian white noise temporal stimulus
were generated by an LNP model with a single 20-dimensional filter, followed by one of three
different nonlinearities. Top: nonlinearities used for converting filter output to spike rate:
(A) linear half-wave rectified; (B) sigmoidal; (C) quadratic. Middle: distribution of raw
stimuli (black) and spike-triggered stimuli (red) along the filter axis, for each of these models.
Bottom: Error in STA, STC and iSTAC estimates of the linear filter, as a function of the
number of raw stimulus samples. Error was computed as the average angle between the
true and estimated filter, using 100 independent simulations at each duration.

stimulus and spike train. Moreover, the objective function has a limited number of local

maxima, and connects smoothly with the results of traditional STA/STC analysis. For

example, when the STC is the identity matrix, the most informative axis is the STA. And

when the STA is zero, the most informative axis is either the smallest or largest eigenvector

of the STC (see Appendix A for a more thorough discussion). We will refer to our approach

as “information-theoretic Spike-Triggered Average and Covariance” (or iSTAC) analysis.

An important advantage of the iSTAC approach over traditional STA/STC analysis is that

it makes statistically efficient use of changes in both mean and covariance of the STE.

Figure 3 illustrates this using simulations of a single-filter LNP model, with a stimulus

consisting of temporal Gaussian white noise. The temporal filter b was a 20-dimensional

vector resembling the (biphasic) temporal profile of a retinal ganglion cell receptive field.

Simulations were performed using three different point nonlinearities (Fig. 3, top row), each

of which produces a change in both mean and variance in the STE. A half-wave rectified

linear function (left column) shifts the mean of the STE and reduces its variance relative

to the raw stimuli, meaning that both the STA and the low-variance STC axis provide

consistent estimates for b. For the sigmoidal and quadratic nonlinearities (center and right
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Figure 4: Comparison of STA/STC and iSTAC analyses on simulated data from a Hodgkin
Huxley model. (A) Eigenvalues of the STC matrix, showing many eigenvalues larger and
smaller than 1; circles highlight the largest (red) and smallest (blue) values. (B) Candidate
vectors for dimensionality reduction of the HH model to a 1D subspace: the STA (gray),
eigenvectors associated with largest (red) and smallest (blue) eigenvalues, and the first
iSTAC axis (black). The information preserved by these vectors is 1.52 bits (iSTAC), 1.38
bits (STA and low-variance STC), and 0.18 bits (high-variance STC). (C) Information
preserved by the optimal (iSTAC) subspace as a function of dimensionality. Dashed line
indicates the information available in the full 100-dimensional stimulus space.

columns, respectively), the STE has shifted mean and increased variance relative to the raw

stimulus, so the STA and the large-variance STC axes can provide consistent estimates for

b. The bottom row of plots in Fig. 3 shows the convergence of the STA, STC, and iSTAC

estimates as a function of the experiment duration. The iSTAC estimate was computed by

directly maximizing equation (9) for b, which gives the 1-D subspace maximizing the KL

divergence between P and Q. This optimization took less than a second for each estimate,

and does not depend on the amount of data, apart from the additional time required to

compute the STA and STC. Although STA, STC and iSTAC estimates all converge (i.e., are

statistically consistent) for these examples, iSTAC exhibits superior performance in all three

cases, due to its sensitivity to information in both mean and covariance.

Application to Hodgkin-Huxley Model

Aguera y Arcas et al have performed an elegant dimensionality-reduction analysis of this

model with STC analysis, examining how well responses of a Hodgkin-Huxley (HH) model

(Hodgkin & Huxley, 1952) to white noise could be captured by a low-dimensional subspace

(Aguera y Arcas, Fairhall, & Bialek, 2003). They concluded that although the HH model can

be approximated with a two-dimensional LNP model, there is no finite-dimensional space

that fully captures its behavior. Here we illustrate how the iSTAC approach can be used to

supplement and extend these conclusions.

9



The HH model consists of a four-dimensional nonlinear differential equation, which we simu-

lated with a Gaussian white noise input current, discretized in 1-ms bins. We used a 100-ms

portion of the stimulus preceding each spike to define the spike-triggered ensemble. Figure

4A shows the sorted eigenvalues of the STC matrix, computed from a simulated train with

108 time samples and roughly 106 spikes. A substantial number of eigenvalues lie above

or below 1, indicating that the computation performed by the HH neuron on its input is

many-dimensional (Aguera y Arcas et al., 2003).

Nevertheless, if we desired a one-dimensional approximation to the HH model, we could ask:

which dimension of the stimulus space preserves the most information about HH neuron’s

response? Equivalently, what filter provides the best description of the HH model’s temporal

receptive field? Figure 4B shows several candidate filters offered by traditional STA/STC

analysis, along with the solution offered by the iSTAC approach. The iSTAC filter is inter-

mediate between the STA and the lowest-variance eigenvector—it lies in the space spanned

by these two vectors, but it preserves 10% more information about spike times than either

of these vectors individually, and roughly 8 times more information than the large-variance

eigenvector.

The information-theoretic framework can also be used to examine additional dimensions.

Figure 4A shows the eigenvalues of the STC, revealing a large number that deviate signifi-

cantly from 1. We can use the iSTAC approach to find a set of vectors ordered according to in-

formativeness. For each dimensionality m, we computed the optimal information-preserving

subspace by maximizing eq. 8 for B (a 100×m matrix), constraining the columns of B to be

orthonormal (see Appendix A for details of the optimization procedure). Figure 4C shows

the KL divergence between the two distributions projected into this optimal subspace, as

a function of m. Although the large number of “significant” eigenvalues (Fig. 4A) reveals

that the HH computation is high-dimensional, the information analysis indicates that total

information saturates quite rapidly with dimensionality. Specifically, as shown in Fig. 4C, a

model using just two linear filters captures 94% of the information available.

Application to V1

We have also applied iSTAC to data from a V1 complex cell (data published in (Rust et

al., 2005)). The stimulus consisted of a set of adjacent black and white flickering bars (i.e.,

binary white noise), aligned with the cell’s preferred orientation. Fig. 5A-D shows the results

of traditional STA/STC analysis, with STA and STC eigenvectors displayed as grayscale

space-time images. This cell exhibits a structured STA, high-variance eigenvectors tuned for

left-moving stimuli, and low-variance eigenvectors tuned for rightward-moving stimuli.

This collection of significant STA and STC eigenvectors suggests that an 8-dimensional
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Figure 5: Analysis of a V1 complex cell. The stimulus consisted of 16 black/white bars,
aligned with the cell’s preferred orientation, each flickering randomly at a rate of 100Hz.
The stimulus block was chosen to cover 12 time bins. (A) The STA plotted as a 12 × 16
image, showing temporal (vertical) and spatial (horizontal) organization. (B-C) High and
low-variance STC eigenvectors. (D) Sorted eigenvalues of the STC matrix. Four large and
three small eigenvalues were determined to be statistically different from 1 (the variance
of the raw stimuli). (E) iSTAC dimensionality reduction. The iSTAC filters span nearly
the same space as the STA and eigenvectors of the STC, but are orthogonal and sorted
by informativeness. (F) Information preserved as a function of the dimensionality of the
most informative subspace. (G) Incremental information gain as a function of subspace
dimensionality (difference between adjacent points in F). Gray line shows a 95% confidence
interval for the increase in KL divergence due to undersampling (i.e. noise in the STA and
STC), computed using nested bootstrap resampling.

subspace captures the cell’s response to flickering bar stimuli. However, the analysis does not

by itself tell us the relative significance of the axes, nor does it tell us the information-theoretic
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cost of using a lower-dimensional subspace. Panel 5E shows a collection of (orthogonal)

basis vectors, sorted in order of their informativeness. The optimal k-dimensional subspace

is given by the collection: {1, 2, . . . , k}. The first two iSTAC vectors closely resemble the

first two high-variance eigenvectors of the STC. The third iSTAC vector resembles the STA

(orthogonalized with respect to the first two) and the remaining vectors closely match the

remaining eigenvectors of the STC (with high-variance vectors preceding the low-variance

vectors in importance). Note, however, that this ordering was not obvious a priori. Other

V1 cells from the same dataset reveal a variety of orderings: in some cells, the STA carries

more information or less information than all other filters, and in some the low-variance axes

carry more information than all high-variance axes.

Note also that the ordering of filters is not necessarily the same as if we sorted them by the

amount of information preserved in a 1-dimensional projection. The information-theoretic

criterion of eq. 8 takes into account correlations between the projection of spike-triggered

stimuli onto the (k + 1)’th dimension and the previous k dimensions. Such correlations

are important when the STA is not geometrically aligned with the eigenvectors of the STC

matrix. For example, we often find that the second iSTAC filter carries less information by

itself than the third or fourth filters, but gives rise to the most informative 2D subspace

when grouped with the first.

Fig. 5F shows the amount of information preserved by the optimal k-dimensional subspace.

Moving from a one- to a two-dimensional representation increases information nearly as much

as moving from a zero to a one-dimensional representation (increases of 0.27 and 0.24 bits, re-

spectively). But moving to larger-dimensional subspaces does not contribute nearly as much

additional information, as illustrated in Fig. 5G. Note that although information continues

to increase as a function of subspace dimensionality, this increase can be attributed to data

limitations. The covariance matrix Λ is an estimate of the true covariance, computed from

a finite set of samples. These samples have, by chance, slightly smaller or greater variance

than the raw stimuli along most dimensions, resulting in an apparent increase in information

with each dimension included in the model. This same phenomenon is responsible for the

spread of “non-significant” eigenvalues around one in Fig. 5B.

Thus, we use a statistical test (specifically, a nested hypothesis test) to determine when

the information increase is significant compared to that due to the under-sampling. Details

of this procedure are given in Appendix A. The gray line in Fig. 5G shows the result of

this nested test performed for each dimensionality. Although total information continues to

increase with dimensionality (Fig. 5F and G), for m > 8 the amount added does not exceed

95% confidence level for the information increase we would expect due to statistical error in

estimation of mean and covariance with this number of samples, and so we conclude that

the cell’s response is captured by an 8-dimensional model.
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Figure 6: STA/STC analysis and iSTAC analysis of an ON retinal ganglion cell in macaque
retina. The stimulus consisted of 10 spatially adjacent bars, with intensities on each frame
drawn from a Gaussian white noise source, presented at a frame rate of 120 Hz. The
stimulus vector for our analysis was chosen to include 20 time bins, producing a stimulus
space of dimensionality 200. (A) Spike-triggered average (B) Eigenvalues of STC. To the
right, STC eigenvectors associated with high (C) and low (D) variance. (E) Basis vectors
of the iSTAC dimensionality reduction, sorted in order of their informativeness. (F) Total
information preserved (above) and incremental information added (below) as a function of
subspace dimensionality. Gray line shows a 95% confidence interval for the increase in KL
due to undersampling.

Application to retina

We also applied the iSTAC method to spiking data from macaque retinal ganglion cells

(RGCs) (Chichilnisky, 2001; Chander & Chichilnisky, 2001). The stimulus again consisted

of flickering bars, with intensities drawn i.i.d. from a Gaussian distribution (i.e. Gaussian

white noise). Figure 6 shows a comparison of traditional STA/STC and iSTAC dimension-
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ality reduction for an example cell. Panel A shows the STA of the neuron, which exhibits

canonical ON-type RGC receptive field: center-surround spatial organization and a biphasic

temporal profile. STC analysis (Fig. 6B-D) indicates that the neuron’s response is inher-

ently multidimensional, with two significant high-variance and three significant low-variance

eigenvectors.

Figure 6E shows the significant iSTAC features (sorted by informativeness). Although the

basis provided by STA/STC analysis contains six dimensions, the information-theoretic anal-

ysis finds only five that are significant. The first of these closely resembles both the STA and

the lowest-variance STC features, but the axis corresponding to the difference between the

two does not contribute meaningful information. This is not the case for all RGC cells we

examined: several exhibited the same dimensionality under STA/STC and iSTAC analysis.

Note also that iSTAC axes 3 and 5 resemble the sum and difference of low-variance STC axes

2 and 3, respectively. The information preserved in a subspace, as a function of subspace

dimensionality, is shown in Fig.6F-G.

Modeling the nonlinear response

Dimensionality reduction provides a linear mapping of the stimulus x to a feature vector

x∗ = B
T
x, where B is a basis for the feature space. For a complete model, we also need

a mapping from the feature vector x∗ to the probability of observing a spike, P (spike|x∗).
In low (one or two) dimensional spaces, the nonlinearity can be estimated by computing

the quotient of (e.g. histograms of) the densities P (x∗|spike) and P (x∗) (see Fig. 1C-D).

For higher-dimensional feature spaces, however, this is infeasible due to the difficulty of

estimating densities in many dimensions.

In such situations, the information-theoretic iSTAC framework provides a default model of

the nonlinearity in the form of a “ratio of Gaussians”:

P (spike|x) = α
Q(x)

P (x)
, (10)

where Q(x) is a Gaussian density with mean and covariance matching that of the spike-

triggered ensemble, P (x) is the prior distribution over raw stimuli, and α is a proportionality

constant equal to P (spike) = nsp/nstim. Reducing dimensionality by a linear projection onto

B preserves Gaussianity of both numerator and denominator distributions, so the reduced-

dimensional model of the neural response, specified in feature space, is given by

P (spike|x∗) = α
Q̂(x∗)

P̂ (x∗)
, (11)

where Q̂ is Gaussian with mean µ̂ = B
T
µ and covariance Λ̂ = B

T
ΛB. A bit of algebra

14
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Figure 7: Reconstruction of 1D (marginal) and 2D nonlinearities using the ratio-of-
Gaussians model, for the RGC shown in Fig. 6. (A) Five vectors discovered using iSTAC
(above), and the 1D nonlinearity obtained by projecting the stimulus onto each of these
axes (below). Blue traces show the prediction of the ROG model, and dashed lines shows
the histogram-based estimate. (B) 2D nonlinearities obtained by projecting onto pairs of
feature vectors. The three grayscale images show the probability of spiking under the ROG
model, as a function of the projection onto feature vectors 1 and 2 (left), 1 and 3 (middle)
and 2 and 3 (right). Red, green and blue lines indicate conditional “slices” through at 1.5,
0, and −1.5, respectively. These slices are plotted to the right of each image: solid lines
show ROG prediction, and dashed lines show histogram estimates computed using stimuli
whose projection onto the ordinate feature vector was within ±0.1 of the slice value.

reduces this to an exponential form:

P (spike|x∗) = aex∗T
Mx∗+b

T
x∗

, (12)

where M = 1
2
(I − Λ̂

−1
), and b = Λ̂

−1
µ̂.

Although a ratio-of-Gaussians (ROG) might initially seem like a strange choice of parametric

model, we find that it provides a surprisingly good fit to the data of many cells. Figure 7A
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shows a comparison between the ROG model and a histogram estimate of the nonlinearity

along each dimension of the (5-dimensional) feature space. For each plot, the stimuli were

projected onto that feature vector bj, and the nonlinearity was computed using the ROG

(blue) and a ratio of densities estimated using histograms (dotted black) (Chichilnisky, 2001).

Note that, for each plot, the numerator of the ROG model is a Gaussian with mean (b
T

j µ)

and variance (b
T

j Λbj), while the histogram estimate is computed using the 1D projection of

the stimuli: {bT

j x}. The model is seen to be equally adept at describing the asymmetric,

symmetric excitatory, and symmetric suppressive behaviors found along different axes.

Figure 7B shows an analysis of the nonlinearity as projected onto pairs of axes of the feature

space. The grayscale images represent the probability of spiking under the ROG model.

Conditional slices through these plots show comparisons of the model to histograms of the

data (dashed lines). The example in the center column (features 1 vs. 3) shows the most

striking change in the nonlinearity as a result of conditioning. For large positive projections

onto feature 3 (red line), the nonlinearity is steep and has a high threshold, whereas for

negative projections (blue line), the nonlinearity is shallow with a lower threshold. Note

that these dependencies in spike probability could not have been predicted from the marginal

spike probabilities shown in Figure 7A for features 1 and 3.

Agreement across multiple one- and two-dimensional projections and slices suggests that the

ROG model provides a reasonably good approximation of RGC responses. We have examined

similar projections onto linear combinations of these axes (i.e. rotations of the feature space)

and found similarly good agreement. In other cell types (such as the V1 cells described

previously), the ROG model may prove less accurate, and we may need to introduce a

different model of the nonlinear mapping from feature space to spike rate. Even in such cases,

the ROG model provides a first approximation of the nonlinearity, with the advantage that

it is completely determined by the filters used for dimensionality reduction (i.e. it requires no

additional parameter fitting). This is particularly useful when the subspace dimensionality

is greater than two and nonparametric nonlinearity reconstruction is not feasible.

As we show in Appendix B, dimensionality reduction using iSTAC analysis is asymptotically

optimal if the response nonlinearity is a ratio-of-Gaussians. That is, for responses generated

by an ROG model, iSTAC analysis performs a maximum likelihood (ML) estimate of the

model parameters. This generalizes the optimality conditions for STA and STC analysis:

The STA is an ML estimate when the response nonlinearity is exponential (i.e. P and Q

have identical covariance but differ in mean); and, as shown here, STC analysis corresponds

to ML estimation when the nonlinearity is the ratio of two zero-mean Gaussians (P and

Q have the same identical means but differing covariance) (Paninski, 2004). Thus, iSTAC

analysis combines the optimality of STA and STC. It is also consistent and unbiased under

the same conditions as STA and STC analysis, meaning that it converges to the correct sub-

space whenever the raw stimulus is Gaussian and the nonlinearity affects the mean and/or
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variance of the STE. The ratio-of-Gaussians description also provides an important litmus

test for the possible sub-optimality of these moment-based approaches. If the estimated

nonlinearity is poorly fit by a ratio-of-Gaussians, there may be a significant statistical ad-

vantage to dimensionality-reduction techniques that are sensitive to higher-order moments

(e.g. (Paninski, 2003; T. Sharpee et al., 2004)).

Extension: analysis of space-time separable models

Finally, the iSTAC framework can be extended to incorporate additional constraints on the

filters recovered, which we illustrate with an application to a model with space-time separable

elements. Fig. 8D and E illustrate one motivation for this approach: the spatial and temporal

sections of the iSTAC filters estimated for the RGC cell (Fig. 6, blue traces) exhibit only a

small number of distinct profiles, suggesting that we can reduce model complexity by using

only a small number of spatial and temporal waveforms.

A space-time separable filter is one that can be specified as the outer product of a temporal

filter h and a spatial filter g:

hg
T

=




h1g1 h1g2 · · · h1gng

h2g1 h2g2 · · · h2gng

...
...

. . .
...

hnh
g1 hnh

g2 · · · hnh
gng


 , (13)

where nh and ng are the number of spatial and temporal elements of the raw stimulus,

respectively. Note that this greatly reduces the number of filter parameters from that of

stimulus dimensionality n (equal to nh × ng) to nh + ng. By stacking the columns of hg
T

to

form a single column vector, we obtain a filter in the original stimulus space, which we can

denote:

b =




hg1

hg2

...

hgng


 =




h

h
. . .

h


g =

[
Lh

]
g, (14)

where Lh is an n×ng block-diagonal matrix, with each block given by the column-vector h.

Suppose now that we wanted to find the temporal filter h that preserves maximal information

about the response. Filtering each spatial element of the stimulus with h is equivalent

to projecting each stimulus x by onto the columns of Lh; this operation produces a ng-

dimensional vector, L
T

hx, with one dimension for each spatial element of the stimulus. From

this derivation, it is obvious that Lh is a special form of the dimensionality-reducing matrix

B that we considered previously . Therefore, we can find the most informative h simply by

maximizing KL divergence, using Lh in place of B in equation (8). Note that we could not
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Figure 8: Dimensionality reduction with space-time constrained iSTAC. (A) Temporal
dimensionality reduction finds that the temporal dependence of the response can be well
characterized using two filters. Black line is the first (more informative) filter. (B) Spatial
dimensionality reduction indicates that four filters can characterize spatial dependence. The
informativeness of each filter is indicated by grayscale level (lighter traces = less informa-
tive). (C) iSTAC filters constrained to live in the space spanned by the spatial and temporal
filters in (A) and (B). These compare directly with the iSTAC filters in fig. 6E. (D) Tem-
poral sections of the original iSTAC filters (Fig. 6) and the space-time constrained filters
shown in (C). (E)Spatial sections of the original and the space-time constrained iSTAC
filters. Spatial and temporal similarity across sections and across filters suggests that the
small number of spatial and temporal filters discovered provide a parsimonious description
of the neural feature space.

directly estimate such a temporal filter using STA or STC analysis: although we could find

a space-time separable fit to either the STA or the eigenvectors of the STC, this provides

no unique solution, nor does it combine information from all of the filters (STA and the

significant eigenvectors) simultaneously. The more general information-theoretic estimators

also cannot be tractably applied to this problem. The matrix Lh reduces dimensionality to a

ng-dimensional feature space, which is too high-dimensional (assuming the stimulus contains
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more than a few spatial elements) for estimating mutual information directly.

If one temporal filter does not suffice to describe the response, we can find multiple filters

using the same approach: each temporal filter hi is inserted into a dimensionality-reducing

matrix Lhi
, and the concatenation of these matrices, [Lh1 · · ·Lhk

], preserves more dimensions

of the original stimulus space and can be inserted into equation (8) in place of B. Figure 8

shows an application of this approach to the retinal ganglion cell shown in Figs. 6 and 7.

Plot 8A shows the two most informative temporal filters, which were found to be sufficient

for preserving the information about the response. We then performed an identical analysis

to find a set of maximally-informative spatial filters (i.e. by exchanging the roles of h and

g in the previous analysis), and found that four filters were required to preserve spatial

information about the response, shown in 8B.

Finally, we can combine these temporal and spatial filters to obtain a set of constrained

iSTAC filters,; these should resemble the original filters, but obey the additional constraint

that they are composed only of the spatial and temporal filters obtained from the space-time

separable analysis. This constraint implies that each filter B can written as the weighted

sum of the spatial and temporal filters hi and gj. Thus

b =

nh∑
i=1

ng∑
j=1

(
hig

T

j

)
wij (15)

where {wij} is a set of linear weights, which we fit by maximizing KL divergence. Figure 8C

shows the set of constrained iSTAC filters obtained for this cell, each of which is constructed

using the spatial and temporal components shown in 8A and B and a set of weights. For

comparison, we can plot these alongside the original filters obtained with iSTAC analysis

(Fig. 6). Figure 8D-E shows temporal and spatial sections of the original iSTAC filters

(blue) and the space-time constrained filters (red), indicating basic agreement between the

two methods. The constrained filters, however, are much smoother and require far fewer

parameters to describe: a set of five 300-element filters (20 temporal × 15 spatial dimensions)

has been reduced to a set of filters constructed from two temporal filters and four spatial

filters, and a set of weights (eight for each of five filter), giving a reduction from 1500 to 140

parameters.

Discussion

We have described a methodology for fitting an LNP model to extracellular data, in which

we maximize the mutual information between stimulus and response, assuming a ratio-of-

Gaussians response model. The model parameters are fully constrained by the mean and

covariance of the raw and spike-triggered stimulus ensembles, and thus it is seen to occupy a
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middle ground between STA/STC and information maximization methods for dimensionality

reduction, while providing some advantages over each. In addition, our method provides a

default model, in the form of a ratio-of-Gaussians, for the nonlinearity that maps linear

responses to firing rates.

As with STA/STC analysis, the restriction to a model that is characterized by first and

second moments is what guarantees tractability of the fitting procedure. But this also

means that the method is blind to variations that manifest themselves only in higher-order

moments. It should be possible to augment the method to include higher-order moments,

but these will necessarily increase the data required for accurate estimation, and are also

likely to increase the chances of getting stuck in local minima during fitting.

Although we found that the ratio-of-Gaussians model provides a surprisingly good account

of data from retinal ganglion cells, it is unlikely to provide an accurate description for all

cells. For example, we find that the fits are not nearly as good for V1 responses. But we note

that the ratio-of-Gaussians model is not essential to our analysis, and it is easy to envision

generalizations in this regard. For example, the ROG model can be raised to an unknown

power, allowing the model to fit nonlinearities that accelerate more steeply than those shown

in Fig. 7). More generally, one could introduce any parametric nonlinearity to operate on

the feature space, as long as the parameter fitting problem is tractable.
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A Information Maximization

iSTAC analysis provides a natural generalization of STA and STC analysis, which we show

by proving that iSTAC reduces either to the STA or to STC analysis in the case that either

the STC or the STA provides no information about the response. Specifically:

• When the STC is the identity matrix, iSTAC recovers the same subspace as STA. The

proof is simple: if spike-triggered covariance Λ is the identity matrix, then the first

two terms in eq. (8) are constant, and we obtain maximal KL divergence by taking B

as a unit vector proportional to µ, the STA. Note that in this case, all information is
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captured by this 1D subspace, so there is no advantage to using a higher-dimensional

feature space.

• When the STA is zero, iSTAC recovers the same subspace as the significant eigenvectors

of the STC. To prove this, Let A = B
T
ΛB, and the KL divergence reduces to Tr[A]−

log |A| plus a constant. Note that the first term of this expression is the sum of

the eigenvalues of A, and the second is the negative sum of the log eigenvalues of

A. These eigenvalues, in turn, represent the variance of the STE along each major

axis preserved by the basis B. If we diagonalize Λ using its eigenvectors, it is easy

to show the function is maximized by setting B to contain the eigenvectors of the

Λ for which the corresponding eigenvalues σi are greater than or less than 1. The

information contributed by each eigenvector is equal to σi − log(σi) − 1, which is the

function plotted in figure 2B, and monotonically increases as σi moves away from a

value of one. This means that extrema (high or low eigenvalues) of the STC will also

be maxima in the iSTAC analysis, and thus, the iSTAC basis will be the same as

the STC basis. Moreover, if we wish to preserve only j axes of the stimulus space,

the most informative j-dimensional subspace is generated by the eigenvectors whose

corresponding eigenvalues σi give the j largest values of σi − log(σi).

When both the STA and STC contain meaningful information about the neural response, as

occurred in all real and simulated examples presented here, we desire a basis that maximizes

the full objective function of eq. (8). The objective function can be rewritten simply as:

f(B) = Tr[B
T

(Λ + µµ
T

)B] − log |BT

ΛB|. (16)

Note that the first term is the sum of the eigenvalues of (Λ+µµ
T
) and second term is the sum

of the log eigenvalues of Λ within the subspace preserved by B. A simple intuition (verified

by hand inspection in low-dimensions) suggests that this objective function has only n local

maxima and/or saddle points on the unit hyper-sphere, which are intermediate between the

eigenvectors of (Λ + µµ
T
) and Λ.

For numerical optimization, we also made use of the analytic gradient of the objective func-

tion, which is given by
∂f

∂B
= 2(Λ + µµ

T − ΛBB
T

Λ
−1

)B. (17)

We performed the optimization by growing B incrementally, starting with the maximally

informative 1-dimensional basis and adding columns so that KL divergence is maximized

for each dimensionality. The optimal k-dimensional basis spans the k−1 dimensional basis

provided by the previous step of the algorithm, so it is possible to think of the optimal basis

as consisting of the first k vectors from a fixed, ordered set (as shown in Figs. 5, 6 and

8). To ensure that the optimization converges to the true global optimum at each step, we

use several initialization points, selected from a set of the significant eigenvectors of Λ and

(Λ + µµ
T
).
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To determine the number of significant subspace dimensions, we performed a nested boot-

strap test, analogous to that described for STC analysis in (Schwartz et al., 2002; Simoncelli

et al., 2004; Rust et al., 2005). The test at step k examines whether the incremental in-

formation that arises from increasing dimensionality from k − 1 to k is significantly above

that expected from random sampling. To quantify the latter, we performed 1000 bootstrap

resamplings of the STE by randomly time-shifting the spike train relative to the stimulus

(removing stimulus dependence of the response, but preserving spike train statistics), and

computed the STA and STC of the shifted samples. We then computed the KL divergence

of the most-informative k-dimensional subspace, while setting the mean and covariance in

the first k − 1 dimensions to be that given by the true STA and STC. We use these 1000

estimates to generate an empirical distribution of the incremental information provided by

the kth dimension, and compute a 95% confidence level (gray line plotted in figures 5and 6).

If the incremental information computed from the actual data fails to surpass this signifi-

cance level, we conclude that the neural response is captured by the first k − 1 dimensions.

Otherwise, we proceed by repeating the whole test for k + 1 dimensions.

B Relationship to Maximum Likelihood

It is interesting to note that maximizing KL divergence between Q and P is asymptotically

equivalent to finding the ROG model parameters that maximize the likelihood of the spike

train given the stimuli. We assume spikes are generated according to an inhomogeneous

Poisson process, and thus the likelihood of observing k spikes for a stimulus x is given by

p(k|x) = 1
k!

r(x)ke−r(x), (18)

where r(x) is the instantaneous firing rate. The average log-likelihood of set of spike data

{ki, xi}, for i ∈ [1, N ] is given by

L({ki, xi}) =
1

N

∑
i

[ki log r(xi) − r(xi)] + c, (19)

where c is a constant that does not depend on r(x).

We assume that the spike rate is determined by the ratio of Gaussians:

r(x) = α
Q(x)

P (x)
. (20)

We substitute this into eq. (19), and take the limit as the amount of data goes to infinity:

LN −→
∫

Q(x) log
Q(x)

P (x)
dx −

∫
P (x)

Q(x)

P (x)
dx (21)

= D(Q, P ) − 1 (22)
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Therefore, any parameter of Q and P that maximizes KL divergence will also (in the limit

of large data) maximize the Poisson likelihood of the data under the model.

One corollary of this result is that STC analysis is asymptotically optimal (i.e. equivalent to

ML) when the response function r(x) is a ratio of two zero-mean Gaussians. This follows

from the conjunction of the second point in the previous section (equivalence of STC and

iSTAC when the expected mean of the STE is zero), and the optimality of iSTAC under

a ratio-of-Gaussians model. The corollary that the STA is asymptotically optimal when

r(x) is exponential has been shown previously (Paninski, 2004), but can be derived similarly

from the fact that the ratio of two Gaussians with identical covariance but shifted means is

exponential.

Although it is not optimal for other nonlinearities, iSTAC analysis is both unbiased and

consistent whenever the raw stimulus distribution is Gaussian, and the nonlinearity affects

the mean and/or variance of the STE. This follows directly from the unbiasedness and con-

sistency of the STA and STC eigenvectors under the same conditions, which has been shown

previously (Bussgang, 1952; Paninski, 2003; Bialek & de Ruyter van Steveninck, 2005). If

we have an LNP neuron with a set of linearly independent filters, and a nonlinearity that

affects mean and/or variance along each axis of the subspace spanned by these filters, then

the expected STA and STC eigenvectors span the same space (unbiasedness) and converge

asymptotically to this subspace (consistency). Unbiasedness and consistency of iSTAC anal-

ysis results from the fact that the expected and asymptotic KL divergence along axes outside

this subspace is zero, meaning that the expected and asymptotic maximizer of equation (8)

is indeed the correct subspace.
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