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Prediction and Decoding of Retinal Ganglion Cell Responses
with a Probabilistic Spiking Model
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Sensory encoding in spiking neurons depends on both the integration of sensory inputs and the intrinsic dynamics and variability of spike
generation. We show that the stimulus selectivity, reliability, and timing precision of primate retinal ganglion cell (RGC) light responses
can be reproduced accurately with a simple model consisting of a leaky integrate-and-fire spike generator driven by a linearly filtered
stimulus, a postspike current, and a Gaussian noise current. We fit model parameters for individual RGCs by maximizing the likelihood
of observed spike responses to a stochastic visual stimulus. Although compact, the fitted model predicts the detailed time structure of
responses to novel stimuli, accurately capturing the interaction between the spiking history and sensory stimulus selectivity. The model
also accounts for the variability in responses to repeated stimuli, even when fit to data from a single (nonrepeating) stimulus sequence.
Finally, the model can be used to derive an explicit, maximum-likelihood decoding rule for neural spike trains, thus providing a tool for
assessing the limitations that spiking variability imposes on sensory performance.
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Introduction
Sensory experience depends on the encoding of external events in
the spiking activity of neurons. Understanding this encoding
process and its effects on sensory experience requires quantitative
models that can capture the relationship between stimuli and
neural spike responses. To provide clear insight into neural func-
tion, such a model should be simple, approximating or leaving
out many biophysical details. However, to be useful, the model
must accurately describe the mapping from stimuli to spikes.
Specifically, the elements of the model should capture the spatio-
temporal integration of sensory inputs and should provide in-
sight into the statistical features governing the fidelity of neural
signals. Finally, the model should be “invertible,” providing an
optimal rule for decoding the information contained in spike
trains.

The most common approach to describing neural stimulus
selectivity is the “receptive field,” which captures the stimulus
features that best drive spiking responses (Kuffler, 1953; Hubel
and Wiesel, 1968). The receptive field is often interpreted as a
quasilinear model that maps stimuli to firing rates, with an im-
plicit assumption that spikes are then generated from a Poisson

process. However, recent studies have shown that this model fails
to account for key statistical features of neural spike responses
(Troy and Lee, 1994; Berry et al., 1997; Reich et al., 1997; Fellous
et al., 2004). In particular, neurons in the early visual pathway are
capable of spiking with high temporal precision, which can be
important for conveying visual information (Mainen and
Sejnowski, 1995; Berry et al., 1997; Liu et al., 2001). It is therefore
important to develop models that can account for both the stim-
ulus selectivity and the statistical features of neural spike trains.

Integrate-and-fire (IF) models provide a well known and
more realistic alternative to Poisson models of spike generation.
Recent studies have suggested that IF models are capable of ex-
hibiting some of the important statistical behaviors of real neu-
rons (Troyer and Miller, 1997; Reich et al., 1998; Shadlen and
Newsome, 1998; Keat et al., 2001; Jolivet et al., 2003). However,
spike dynamics can cause significant distortions in the receptive
field properties estimated using standard methods such as reverse
correlation (Aguera y Arcas and Fairhall, 2003; Pillow and Si-
moncelli, 2003) and, thus, the estimation of such models is an
important open problem.

In this paper, we show that a generalized IF model provides a
detailed functional description of the light responses of retinal
ganglion cells (RGCs) in the macaque monkey. We use a recently
developed technique (Paninski et al., 2004; Pillow et al., 2004a) to
fit the model to spike responses elicited by a white noise stimulus.
The fitting procedure simultaneously estimates parameters that
govern stimulus selectivity, history dependence, and stochasticity
(noisiness). We show that the fitted model accurately predicts
spike responses to novel stimuli, accounting for both the stimulus
dependence and detailed statistical structure of spike trains. Sur-
prisingly, the model also predicts the variability and precision of
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responses to repeated stimuli, even when fit with a single (non-
repeating) stimulus. The model also supports a simple explana-
tion for the origins of spike timing precision, in terms of voltage
slope at threshold.

Finally, the model provides a novel tool for assessing the in-
formation content of RGC spike responses. The computed prob-
ability of spike responses can be used to derive an optimal
(maximum-likelihood) decoding rule for extracting stimulus in-
formation from spike trains. Our results demonstrate that this
method is capable of extracting information from spike trains
more faithfully than a generic linear–nonlinear encoding model.

Parts of this paper have been published previously (Pillow et
al., 2004b).

Materials and Methods
Experimental measurements and stimuli. The data presented in this paper
are a subset of the data of Uzzell and Chichilnisky (2004); experimental
methods are described in detail there. Briefly, multielectrode extracellu-
lar recordings were obtained in vitro from small pieces of retina from four
macaque monkeys, with retinal pigment epithelium attached, main-
tained at 32–36°C, pH 7.4. Analysis was restricted to two physiologically
defined classes of cells that very likely correspond to ON and OFF parasol
cells based on several lines of evidence (Chichilnisky and Kalmar, 2002).

The retina was stimulated with a photopic, achromatic, spatially uni-
form, optically reduced image of a cathode ray tube display refreshing at
120 Hz. The stimulus was a temporal sequence consisting of two intensity
values pseudorandomly selected on every refresh. In the first three exper-
iments (24 cells), the contrast (SD/mean) of this stimulus was 96%, and
model validation was performed on a novel stimulus sequence (7–30 s)
repeated 37–176 times. In the fourth experiment (nine cells), binary
white noise stimuli of 12 and 48% contrast were used for fitting the model
parameters. Validation was then performed using responses to brief (25
ms) positive and negative flashes with contrasts of 12, 24, 48, and 96%
(flash amplitude divided by background luminance).

Generalized IF model. We fit neural responses using a generalized
integrate-and-fire (IF) model. This model, which is closely related to the
“spike response model” (Gerstner, 2001; Jolivet et al., 2003), consists a
standard leaky integrate-and-fire compartment driven by three time-
varying input currents: (1) a stimulus-dependent current, Istim; (2) a
spike history-dependent current, Isp; and (3) a noise current, Inse. A
schematic diagram of the model is shown in Figure 1a.

The model dynamics are specified by a differential equation governing
voltage of the integrator:

dV

dt
� �

1

�
�V�t� � Vl� � Istim�t� � Isp�t� � Inse�t� , (1)

and whenever V(t) � 1, a spike occurs, and V(t) is reset instantaneously
to zero. The input current Istim is the linear convolution of the stimulus
with input filter k�, which represents the spatiotemporal receptive field of
the neuron. We can therefore write the stimulus-dependent current as
follows:

Istim�t� � k� � s��t� , (2)

where s� (t) is a vector consisting of the (discretized) space–time stimulus
vector just preceding time t. For a full-field stimulus (as considered
here), s� (t) is an n vector of the monitor intensities for the n frames
preceding time t, and k� is simply the temporal receptive field of the
neuron.

The spike history-dependent current Isp results from the injection of a
fixed current waveform h� following each spike and accounts for spike
history effects such as refractoriness, burstiness and adaptation (Paninski
et al., 2004). Mathematically, this is equivalent to considering h� as a linear
filter that is convolved with the recent spike train history:

Isp�t� � h� � r��t� , (3)

where r� (t) is a vector of (discretized) spiking activity preceding time t,
matched to the size of h�.

Finally, the noise current Inse consists of Gaussian white noise with SD
� and represents the net contribution of all noise sources to the mem-
brane potential:

Inse�t� � �Ni��t��
1

2, (4)

where �t is the time step of the simulation, and �i is a standard Gaussian
random variable. The last two parameters of the model are �, the mem-
brane time constant, and Vl, the reversal potential of the leak current.

IF model fitting. The generalized IF model is specified by the parame-
ters {k�, h�, �, �, Vl}, where k� and h� are both multidimensional vectors.
Characterizing the response of a neuron requires the estimation of these
parameters from a sequence of stimuli and the (extracellularly recorded)
times of elicited spikes. In previous work (Paninski et al., 2004; Pillow et
al., 2004a), we developed an efficient and computationally tractable al-
gorithm for computing the IF model likelihood function, P(spikes�stim,
{k�, h�, �, �, Vl}), which is the probability of observing a set of spike times
given a set of stimuli and a fixed setting of the model parameters. The
likelihood function, described in detail by Paninski et al. (2004), can be
computed by numerically solving the Fokker–Plank equation for sub-
threshold voltage probability during each interspike interval. This
amounts to finding the probability (under the Gaussian noise model)
that voltage crossed the threshold at precisely the observed spike times.

We fit model parameters {k�, h�, �, �, Vl} by maximizing the likelihood
of the observed responses. This involved searching for the model param-
eters (in the high-dimensional parameter space) that maximized the
probability of the observed spike times for the given stimulus. In per-
forming this search, we relied on a result from Paninski et al. (2004): that
the likelihood function for the IF model is log-concave, meaning that the
likelihood is mathematically guaranteed to be free from local maxima,
for any stimulus and spike train data. This result ensures that gradient
ascent of the likelihood function will converge to its global maximum
and guarantees that the IF model (unlike more complicated nonlinear
models such as Hodgkin–Huxley) can be fit reliably and tractably using
simple gradient ascent techniques. We performed parameter optimiza-
tion for the IF model using 50 s of data: a nonrepeating binary white noise
stimulus and the associated spike times for each neuron. The stimulus
selectivity (receptive field) parameter k� and spike history parameters h�

were taken to be 15 and 10 dimensional vectors, respectively. These were
fit in a vector space spanned by a basis of raised cosines with log scaling of
the time axis. Basis vectors were given by the following:

B i�t� �
cos�log�t � �� � �i� � 1

2
, (5)

for t such that log(t 	 �) � [�i � �, �i 	 �] and 0 elsewhere (so each
basis vector looks like a single raised “bump”). The bump positions �i

were selected so that the basis vectors “tile,” or sum to 1, allowing for
phase-invariant (on a log-time axis) representation of k� and h�. The re-
sulting basis [similar to that used by Keat et al. (2001)] has the ability to
represent fine temporal structure near the time of a spike but is con-
strained to be smooth at longer time scales. This allows k� and h� to be
represented with relatively few parameters.

The basis for k� had a temporal extent of 40 stimulus frames (333 ms),
meaning that k� effectively operates on a 40-dimensional stimulus space.
The 15-dimensional space used for fitting k� (i.e., the space spanned by the
basis vectors {Bi}) allowed for faster fitting of k� but did not qualitatively
affect the results; sample comparisons with k� fit in the full 40-
dimensional space achieved similar performance. The basis was also ob-
served to accurately represent the spike-triggered average. The basis for h�

had a temporal extent of 200 ms, although (as shown in Fig. 2a,b) the
actual fits of h� were essentially zero outside the first 25– 40 ms after a
spike).

Finally, a robust version of maximum likelihood was used to obtain
parameter estimates that were less sensitive to statistical outliers. The
lowest-likelihood 5% of the interspike intervals were treated as statistical
outliers and were ignored when optimizing the parameters. Empirically,
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this resulted in reduced estimates of the noise parameter �, in keeping
with the intuition that the model compensates for exceedingly low-
probability spikes by artificially increasing the noise parameter (see Dis-
cussion). The robust estimate of � provided an improved match to the
first-spike time precision of spike trains.

Linear–nonlinear–Poisson model. To provide a baseline for compari-
son with the IF model performance, we also fit data with the simplest and
most widely used model of visual responses: a linear-nonlinear-Poisson
(LNP) model, which is illustrated schematically in Figure 1b. This model
consists of a single linear filter (i.e., a linear receptive field), followed by
an instantaneous nonlinear function, which accounts for response non-
linearities such as rectification and saturation, followed by Poisson spike
generation. This model is widely used because of its computational sim-
plicity and the ease with which its parameters can be estimated (Chich-
ilnisky, 2001). LNP is the implicit model underlying most reverse corre-
lation style methods for estimating receptive fields.

The LNP model is specified by the parameters k� and n�, where k� denotes
the linear stimulus filter (as in the IF model), and n� is a parametric
description of the nonlinear function converting filter output to instan-
taneous spike rate. In this case, k� was taken to be a 15-dimensional vector
(as used above for the IF model), and n� was taken to be a linear spline with
15 knots (hence 15 fitted parameters). We initialized our estimate of
these parameters using reverse correlation to compute the spike-
triggered average, as described by Chichilnisky (2001). However, reverse
correlation can provide biased estimates of k� if the stimulus distribution
is nonspherical (Simoncelli et al., 2004), as it is here (i.e., binary). We
therefore performed gradient ascent of the LNP model likelihood func-
tion to find the maximum likelihood estimate of k� and n�. Although not
necessarily guaranteed to converge to the global maximum, this proce-
dure can correct biases in the estimates of the k� and h� arising from the use
of nonspherical stimuli and performs quite well in simulations.

A robust fitting procedure similar to that used for the IF model (i.e.,
ignoring the likelihood of the lowest 5% of interspike intervals) was used
to put likelihood comparisons with the IF model on equal footing. Nearly
identical performance was obtained when the LNP model was fit using
reverse correlation (i.e., without additional ascent of the likelihood func-
tion) and the result was robust to the number of parameters used in the
representation of the nonlinearity n� over a wide range (8 –25).

Quantifying model performance. To compare IF and LNP model per-
formance at predicting responses to novel stimuli, we calculated the per-
centage error in the peristimulus time history (PSTH) and peristimulus
time variance (PSTV) predicted for responses to repeated stimuli, as well
as a single-trial measure of distance between spike trains. Figure 5b shows
the percentage of the variance in the PSTH accounted for by each model:

100 	 �1 � 
�PSTHRGC � PSTHmodel�
2/�PSTHRGC � 
PSTHRGC��2�� ,

(6)

where 
�� indicates an average over time. PSTHs were computed by bin-
ning each response, summing, and filtering with a Gaussian with an SD of
1 ms. Figure 5c shows the percentage error in the PSTV for each model,
which is given by the following:

100 	 
PSTVRGC � PSTVmodel�/
PSTVRGC� . (7)

PSTV was computed by sliding a 10 ms window
across the response raster and calculating the
variance (across trials) of the number of spikes
in that window.

Figure 5d–f examines the similarity between
pairs of spike trains to repeated presentations of
a single stimulus, using a specific spike train
distance measure (Victor and Purpura, 1997).
The measure relies on a time scale parameter 

and is defined as the minimum cost for bringing
one spike train into alignment with another by
shifting and adding or deleting spikes, in which
adding or deleting has a cost of 1, and shifting a
spike by t ms entails a cost of t/
. For any two
spike trains, this distance measure is bounded
above by the sum of the number spikes in both

spike trains (
 � 0) and bounded below by their spike count difference
(
 � �). Software for computing the spike time distance measure was
obtained from Victor and Purpura (1997).

Calculation of likelihoods for the discrimination task. We examined the
decoding performance of the two models by using them to perform
discrimination in a simple ideal observer task. We suppose that an ob-
server is given spike trains {sA, sB} in response to presentation of stimulus
sequences {A, B} and must decide which of the two stimuli is associated
with which spike train. The optimal decision rule comes from comparing
the likelihood of each stimulus under each observed spike train (Green
and Swets, 1966):

R� A, B� �
P�sA�A� � P�sB�B�

P�sA�B� � P�sB�A�
. (8)

If R(A, B) is greater than unity, the correct choice is made; otherwise, the
stimuli are paired with the wrong spike trains. The conditional probabil-
ities in this expression may be determined directly from any stochastic
model of neural response, such as the IF and LNP models.

Results
Figure 1a illustrates the components of the generalized IF model,
which consists of a leaky integrate-and-fire model driven by a
stimulus-dependent current, a spike history-dependent current,
and a Gaussian noise current. The stimulus-dependent current
arises from the linear receptive field of the neuron, whereas the
spike history current arises from the injection of a “postspike
current” h� after every spike (for details, see Materials and Meth-
ods). Note that h� can assume an arbitrary shape, which allows the
model to generate a diverse array of behaviors observed in real
neurons, including refractoriness, spike rate adaptation, spike
rate facilitation, bursting, and bistability (Jolivet et al., 2004; Pan-
inski et al., 2004). This flexibility endows the model with the
ability to mimic a wider array of biologically realistic dynamical
behaviors than the classic integrate-and-fire model or Poisson
spiking models.

We fit the model using responses of parasol (magnocellular-
projecting) RGCs to a spatially uniform, achromatic binary tem-
poral white noise sequences (random flicker; see Materials and
Methods). For these stimuli, k� represents the temporal receptive
field, although in general k� can represent the spatiotemporal–
chromatic receptive field of the neuron. The IF model parameters
were fit to spike responses from a single (nonrepeating) stimulus
train. Subsequently, RGC responses to multiple repeats of a novel
stimulus were recorded, and predictions generated by the IF
model were assessed using several quantitative measures.

Figure 2a– c shows model parameters fit to data from a collec-
tion of ON and OFF RGCs recorded simultaneously. Note that
the filters, k�, are consistent in waveform and time scale within
each cell type. The same is true of the spike current waveforms, h�,

Figure 1. Schematic diagrams of the generalized IF model (left) and the standard LNP model (right).
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which operate on a faster timescale. The
biphasic shape of the h� currents allows the
model to reproduce burstiness in RGC re-
sponses; the initial positive component
drives voltage up close to threshold after
voltage reset, and the later negative com-
ponent (possibly accumulated over several
spikes) exerts a hyperpolarizing effect to
end a burst. The larger amplitude h� in ON
cells matches the burstier responses ob-
served in ON compared with OFF cells
(Figs. 3, 4). Figure 2c also shows histo-
grams of the three scalar parameters {�, �,
Vl} for all cells.

To provide a baseline for comparison,
the same data were fit using the simplest
and most widely used model of visual re-
sponses: an LNP model, shown schemati-
cally in Figure 1. The model consists of a
cascade of linear and nonlinear stages, fol-
lowed by Poisson spike generation (for de-
tails, see Materials and Methods). Al-
though Poisson processes cannot exhibit
refractoriness, bursting, or other known
statistical features of spike trains, the LNP
model is widely used because of its compu-
tational simplicity and the ease with which
its parameters can be estimated using re-
verse correlation (Chichilnisky, 2001).

Figure 2d shows linear filters obtained
for both the LNP model and the IF model
for one ON cell and one OFF cell. Note
that the linear filter recovered for the LNP
model (i.e., the spike-triggered average) is
noticeably different from that obtained for
the IF model (Fig. 2d). Given that the IF
model incorporates more realistic spike
generation and provides more accurate
predictions of real spike trains (see below),
this suggests that the LNP model provides
an inaccurate description of how neurons
integrate visual inputs over time (Berry
and Meister, 1998; Aguera y Arcas and
Fairhall, 2003; Pillow and Simoncelli,
2003). Also, note that the nonlinear func-
tion of the LNP model (Fig. 2e) has no
direct counterpart in the IF model, whose
firing rate is determined implicitly by the
dynamics of the leaky integrator and spike
thresholding.

Predicting responses to novel stimuli
Once both models were fit using a set of
training data (a 50 s white noise stimulus
sequence), we sought to compare their
performance at predicting responses to
novel stimuli. For a first comparison, we
examined RGC responses to repeated pre-
sentations of a binary white noise stimulus. This allowed us to
assess model accuracy in predicting not only the average response
but response variability over repeated trials.

Note that this type of analysis, commonly known as “cross-
validation,” provides a much more stringent test of the capabili-

ties of a model than a simple goodness-of-fit evaluation. Rather
than examining how well the model fits the training data, we
evaluate its ability to generalize and predict responses to novel,
randomly generated patterns that were not presented during
training. An important implication of this procedure is that we

Figure 2. Parameters obtained from fits to RGC data for the IF model (a– c) and the LNP model (d, e). a, Filters k� and
spike–response currents h� obtained for five ON cells in one retina. b, Corresponding filters for four OFF cells. c, Histograms of model
scalar parameters and for all 24 cells in three retinas. d, Comparison of linear filters for the IF model (gray) and LNP model (black)
for one ON cell (top) and one OFF cell (bottom). e, Measured LNP point nonlinearities for converting filter output to instantaneous
spike rate.

Figure 3. Responses of an ON cell to a repeated stimulus. a, Recorded responses to repeated stimulus (top), simulated LNP
model (middle), and IF model (bottom) spike trains. Each row corresponds to the response during a single stimulus repeat; 167
repeats are shown. b, PSTH, or mean spike rate, for the RGC, LNP model, and IF model. For this cell, the IF model accounts for 91%
of the variance of the PSTH, whereas the LNP model accounts for 75%. c, Spike count variance computed in a sliding 10 ms window.
d, Magnified sections of rasters, with rows sorted in order of first spike time within the window. The four sections shown are
indicated by blue brackets in a.
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can ignore the fact that the models differ slightly in their number
of parameters; fitting a model with too many parameters leads
necessarily to a decrease in generalization performance (a prob-
lem known as “overfitting”). For example, using too many pa-
rameters to represent the postspike current h� in the IF model (or
the nonlinearity n� in the LNP model) yields an irregular (non-
smooth) function that overfits detailed random fluctuations in
the training data and therefore performs poorly at predicting
novel responses.

Figures 3 and 4 show recorded responses and predictions of
the IF model and the LNP model for an ON and an OFF cell,
respectively. Rasters of RGC responses and corresponding simu-
lated responses from both models illustrate that the IF model
(bottom rows) captures the structure of the RGC spike trains (top
rows) more faithfully than the LNP model (middle rows).

The PSTH (Figs. 3b, 4b) summarizes the time-varying firing
rate exhibited by the data and both models. The IF model (black
trace) matches the sharp peaks in the PSTH more accurately than
the LNP model (red trace). Trial-to-trial variability of the re-
sponses is reflected by the PSTV (Figs. 3c, 4c), computed by slid-
ing a 10 ms window along the response raster and computing the
variance across trials of the number of spikes in that window.
Because RGC spike trains have history dependence, which makes
them much less variable than a Poisson process (Uzzell and
Chichilnisky, 2004), it is unsurprising that the LNP model fails to
match the PSTV of the data. The IF model provides a more accu-
rate prediction. Although integrate-and-fire models have been
shown previously to be capable of reproducing realistic spike
count statistics in simulation (Reich et al., 1998), it is notable that
the generalized IF model does so despite the fact that the objective
function (likelihood of the spike train) does not include a mea-
sure of variability and does not require (or use) repeated stimuli.

A more detailed view of spike train structure and model per-
formance was obtained by sorting the rows of a response raster in

order of the first spike time in a given win-
dow (Figs. 3d, 4d). Sorting reveals consid-
erable structure in RGC interspike inter-
vals, which is mostly captured in the sorted
responses of the IF model (bottom) but is
completely absent in the sorted responses
of the LNP model (middle).

Summary statistics of IF model perfor-
mance and comparison with the LNP
model are shown in Figure 5 for all RGCs
examined. Figure 5a shows a comparison
of the likelihood of responses to novel
stimuli for the IF and LNP models ob-
tained by using the fitted parameters for
each model to compute the probability of
the observed responses. Using this metric,
the IF model provided a significantly
higher likelihood per spike for all cells, in
many cases nearly twofold. Figure 5, b and
c, shows comparisons of the similarity of
PSTH and PSTV obtained from RGC spike
trains and model simulations. In both
cases, the IF model outperforms the LNP
model for all cells.

To compare the accuracy of model pre-
dictions with the intrinsic variability in
RGC spike trains, we also applied a previ-
ously used summary measure of distances
between spike trains (Victor and Purpura,

1997). This distance is the minimum cost of transforming one
spike train into another using the elementary operations of add-
ing, deleting, and shifting spikes. A time scale parameter ex-
presses the cost of shifting per unit time relative to that of adding
or deleting. Although this is an imperfect measure of model per-
formance because it neglects any effect of stimulus or spike train
history on the probabilistic cost of shifting spikes (e.g., it would
not penalize a model for ignoring the refractory period), it is easy
to compute and provides a direct benchmark for comparing the
performance of present and future models.

Figure 5d–f, solid curves, shows the average distance between
pairs of RGC responses to repeated presentations of the same
stimulus. This provides a measure of intrinsic variability in spike
trains. The distance falls monotonically as a function of time scale
of analysis (Fig. 5d,e). Dashed and gray curves indicate distances
between simulated IF and LNP model spike trains and recorded
RGC spike trains. This provides a measure of the discrepancy
between model predictions and data. The IF model distances
were systematically higher than the intrinsic variability, indicat-
ing that IF model responses differ noticeably from RGC spike
trains. However, across a wide range of time scales (1–100 ms)
and in all cells, IF model distances were smaller than LNP model
distances. Figure 5f shows a summary of the IF and LNP model
distances expressed as a fraction of the intrinsic variability aver-
aged over all cells. IF model error exceeds intrinsic variability by
up to 
20%; LNP model error is approximately threefold higher
for most time scales.

We also sought to examine IF model performance at predict-
ing responses to stimuli not drawn from the class of fixed-
contrast white noise stimuli. Figure 6 shows repeated responses of
an ON and an OFF retinal ganglion cell to brief flashes of differing
contrast. In this case, the IF model parameters were fit using 1
min of response to binary white noise stimuli of two different
contrasts (12 and 48%). Despite the fact that the flash stimuli are

Figure 4. Responses of an OFF cell to a repeated stimulus. Details are identical to those of Figure 3.
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nonstationary and span a wide range of
contrasts (12–96%, positive and negative),
the rasters of the simulated IF model re-
semble those of the ON and OFF RGCs
and provide an accurate prediction of both
mean and variance of the RGC responses.
Across nine cells (five OFF and four ON),
the IF model accounts for between 73 and
96% (mean, 84%) of the variance in the
PSTH of RGC responses. This compares
with a range of 36 – 81% (mean, 68%) for
the predictions of the LNP model (data not
shown).

Spike timing precision
The accurate descriptions of RGC spike
trains provided by the IF model present an
opportunity to examine the origins of
spike timing precision, which has been
widely discussed in recent studies. RGCs
are capable of firing spikes precisely time-
locked to the onset of a stimulus (Berry
and Meister, 1998; Reich et al., 1998; Keat
et al., 2001; van Rossum et al., 2003; Uzzell
and Chichilnisky, 2004). In some cases, the
variation in the onset time of spiking
across repeated stimulus presentations is
as low as 
1 ms. Although precise timing
during periods of rapid firing may be ex-
plained by action potential refractoriness
(Berry and Meister, 1998; Liu et al., 2001;
Uzzell and Chichilnisky, 2004), the origin
and significance of the precision in firing
remain difficult to assess, particularly in
the case of extracellularly recorded spike
data.

A simple hypothesis about the origin of such precision (Bryant
and Segundo, 1976) is that it is determined by the slope of the
membrane voltage as it crosses the threshold. If voltage crosses
the threshold with a steep slope, then the noise current exerts
little influence on the time of the spike; if voltage crosses the
threshold with a shallow slope, noise has a greater influence. Fig-
ure 7 illustrates this intuition graphically with an example from
an RGC response raster. The raster shows two adjacent periods of
rapid firing. The histograms below show the distributions of the
time of the first spike in each period of firing and indicate that the
first period of firing exhibited more precise timing. The trace
below shows the (noiseless) voltage response of the IF model
obtained using the stimulus and the parameters fit for this cell.
The slope of V at the threshold crossing is indicated by thick gray
lines. The period of firing that begins with a steeper voltage slope
exhibits much more precise timing. Qualitatively, this example
supports the simple hypothesis.

Although this idea about the origin of spike timing precision
has been explored in both intracellular experiments and detailed
modeling studies (Mainen and Sejnowski, 1995; Reich et al.,
1997; Banerjee, 2001; Gutkin and Rudolph, 2003; van Rossum et
al., 2003), it has not to our knowledge been connected with recent
extracellular measurements and information–theoretic analyses
focusing on the phenomenology and coding significance of pre-
cision (Berry et al., 1997; Berry and Meister, 1998; Koch et al.,
2004; Uzzell and Chichilnisky, 2004). The IF model, which makes
a prediction about the underlying voltage path for any extracel-

lularly recorded spike train, allows us to examine this connection
quantitatively. We performed an analysis of the firing precision
obtained for each cell in all identified firing onsets during a 7–30
s response raster. Firing onsets were defined as periods after a
silence of at least 8 ms long across all trials, followed by a spike on
at least 80% of trials within a window of 40 ms (Uzzell and Chich-
ilnisky, 2004). The SD of the first spike time during each onset
was computed and compared with the average current produced
by the IF model at those times. Figure 7c shows a scatterplot of
precision (inverse of SD) as a function of model input current
(which is proportional to the slope dV/dt crossing threshold)
across 70 such firing onsets for the cell shown in Figure 7a. The
model accounted for 89% of the variability in precision for this
cell.

Figure 7d shows a similar analysis across all cells in the data set,
plotting correlation coefficients between the predicted voltage
slope and first-spike precision for all cells tested. A significant
fraction of the variability in precision was clearly explained by the
voltage slope at firing onset. Note that the IF model captures
more of the variability in precision for ON cells (open circles)
than for OFF cells (filled circles). However, for both ON and OFF
cells, spike timing precision is not an intrinsic property of the cell;
it varies substantially as a function of the stimulus history and in
a manner predicted by elicited currents and the intrinsic noise in
the IF model.

The measure described above provides a useful means of
quantifying precision but is limited by its reliance on a somewhat
arbitrary criterion for identifying firing onsets, assumes a univar-

Figure 5. Performance comparison across cells. Open and filled circles represent ON and OFF cells, respectively. a, Likelihood
per spike of novel RGC responses under the fitted IF model and LNP model. The value plotted is the geometric mean of the
likelihood of overall spikes under each model. Gray dashed lines represent a factor of 2 above and below identity. Data from 24 cells
(3 retinas) are shown. b, Percentage variance (var) in the PSTH accounted for by both models for each cell. Points above the
diagonal represent superior performance by the IF model. c, Percentage error (err) in the peristimulus time variance for the IF and
LNP models across cells. d, Average pair-wise distance between spike trains as a function of time scale of analysis (see Results).
Black trace, Median distance between responses of an ON RGC to repeated presentations of the same stimulus; dashed trace,
median distance between IF model response and data; gray trace, median distance between LNP model response and data. e,
Same as d for an OFF RGC. f, Fractional increase in spike–time distance for the IF and LNP models averaged over all cells. Dashed
curve, Ratio of IF model distance to the average pair-wise distance between RGC responses, normalized by the number of spikes
from each cell and averaged across cells; gray curve, same for LNP model.
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iate measure of precision (SD), and ignores all spikes beyond the
first. One indication that this approach is incomplete is that sub-
sequent spikes sometimes exhibit more precise timing than the
first spike. Figure 8a shows a period of firing in which the second
spike is more precise than the first, a behavior seen in more than
one-third of the firing onsets recorded from this cell. Figure 8b
shows a more unusual example in which the last spike is more
precise than the first. Thus, restricting the analysis to the first
spike fails to capture important aspects of spike train precision.
Furthermore, measures of spike precision are bound up inextri-
cably with the notion of spiking reliability. Attempts to separate
precision (jitter in spike time) from reliability (probability of
spike occurrence in a particular interval) require the use of ad hoc
criteria for defining firing events: the length of silence preceding
an event and the fraction of repeats containing a spike necessary

to constitute an event. Changes in these
criteria will result in the identification of
different numbers of firing onsets.

Given these difficulties, it is natural to
ask whether the IF model can provide a
more complete explanation for the preci-
sion and reliability of all recorded spikes.
Such an account emerges naturally from
the likelihood function used in fitting the
IF model. The machinery for computing
the likelihood of spike trains can be used to
compute the probability density for a par-
ticular spike time, conditional on the stim-
ulus and spike train history, as shown in
Figure 8, c and d. Using the linear kernel k�
and after-current waveform h�, we can
compute the predicted intracellular cur-
rent (Istim 	 Isp) during the interval. This
input, combined with the noise current
Inse, determines a probability density over
subthreshold voltage P(V) as a function of
time and can be used to compute the prob-
ability density of the next spike P(next
spike) as a function of time.

Of course, the probability density of the
next spike time depends on the particular
spike history for that trial and therefore
differs slightly on each trial. Recent studies
indicate that this type of history depen-
dence can give rise to distinct patterns of
response on different trials, which could
be significant for the encoding of visual
information across neurons (Fellous et al.,
2004; Tiesinga and Toups, 2005). Figure 8e
shows an example in which the distribu-
tion of the next spike time after a period of
silence is bimodal, a condition in which stan-
dard measures of spike time precision are
problematic. The bimodality observed here
is accurately reflected in the (average) den-
sity of the next spike time, computed using
the IF model. This indicates that the next-
spike time density encompasses summary
measures of reliability as well as precision.

Decoding of spike responses
Perhaps the most important role for a model
of RGC responses is to provide a precise de-

scription of the visual information transmitted to the brain. The
generalized IF model makes it possible to assess the degree to which
variability in spike trains imposes limitations on the fidelity of infor-
mation transmission. Specifically, the model can be used to compute
the probability that an observed spike train was elicited by any given
stimulus. This provides a powerful method for decoding the infor-
mation contained in neural spike responses.

One method to illustrate decoding would be to simply use the
model to perform stimulus reconstruction from measured spike
responses. Given a particular spike response x, we can obtain the
probability that it was elicited by a stimulus y via Bayes’ rule:

P� y�x� � P� x�y� P� y�/P� x� , (9)

where P(x�y) is obtained from the model likelihood calculation,
P( y) is the prior over the stimulus, and P(x) is a normalizing

Figure 6. IF model prediction of responses to brief flashes. a, b, ON cell responses and IF model predictions. c, d, OFF cell
responses and IF model predictions. The flash stimuli (shown above each raster) consisted of a gray screen followed by a brief (25
ms) flash. Flash contrasts were	12, 	24, 	48, and	 96% (pos. flashes; a, c) and�12, �24, �48, and�96% (neg. flashes;
b, d). Below each stimulus is a raster showing 25 responses of the RGC (black), below which is a raster showing 25 simulated
responses of the IF model (red). Below each pair of rasters is a plot of the PSTH of the RGC and IF model on the same axes. For these
two cells, the IF model accounted for 76 and 90% of the PSTH variance for the ON and OFF cells, respectively.
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term, the marginal probability of observ-
ing response x. We can perform stimulus
reconstruction by choosing the y that is the
maximum or the mean of P( y�x). The
maximum provides the maximum a pos-
teriori estimate for the stimulus, whereas
the mean provides the Bayes’ estimate
under a squared loss function.

Rather than performing a full stimulus
reconstruction, which requires choosing a
previous P( y) and a search for the y that
achieves the maximum or mean of Equa-
tion 6, we performed a simple illustration
of decoding by using the model to discrim-
inate stimuli in a two-alternative forced
choice (2AFC) experiment. This experi-
ment represents a much simpler demon-
stration of decoding: we use the model
likelihood to distinguish which of two
stimuli was most likely given an observed
neural response, whereas reconstruction
would require selecting the most likely
stimulus among all possible stimuli.

In the 2AFC experiment, illustrated
schematically in Figure 9a, an observer is
presented with two spike trains and two
different stimuli and must decide on the
correct pairing of stimuli with elicited
responses. The optimal decision rule
given a particular model of the response
is to use the pairing with the higher like-
lihood under that model (Green and
Swets, 1966). We used the likelihood of
spike responses under the IF model to
discriminate pairs of stimuli, and, by
applying this decision rule to each pair of
responses obtained over multiple repeats
of the stimulus, we obtained a percentage
correct for the performance of the model at
discriminating the pair of stimuli. As a
benchmark, we compared this procedure
against one in which likelihood was com-
puted (and discrimination was performed)
using the LNP model. Figure 9b shows a
comparison of the performance of the two
procedures. The predominance of data
above the diagonal indicates that, on aver-
age, the IF model provided significantly
more accurate discrimination than the LNP
model. Thus, stimulus decoding based on
the IF model exploits information in tempo-
ral patterns of spikes that is not captured by
decoding based only on firing rate.

Discussion
An integrate-and-fire model, general-
ized to include a linear receptive field, a
spike aftercurrent, and a noise source,
provides an accurate description of the detailed structure of
RGC spike trains elicited by visual stimuli. The model relies
only on measurements of (extracellularly recorded) spike
times but provides a full description of the hypothesized un-
derlying currents along with detailed, accurate predictions of

spiking behavior. The model can be fit reliably to responses
from arbitrary stimuli using a straightforward procedure and
does not require long measurements of responses to repeated
or specialized stimuli. Most importantly, the model provides
approximate mechanistic intuition about the origins of spike

Figure 8. Generalized analysis of timing precision. a, RGC response raster sorted in order of first spike time. Below is a
histogram of first spike (gray) and second spike (black) in the event, illustrating higher precision in the time of the second spike
than the first. b, Sorted RGC response raster, with histograms below showing the distribution of the first (gray) and last (black)
spikes in this event. Precision of the last spike is higher than the first. c– e, Use of the IF model formalism to analyze RGC spike
timing precision and reliability. c, One hundred seventy millisecond stimulus fragment and corresponding RGC spike response
during one trial. d, Probability distribution over subthreshold voltage for a central interspike interval on a single trial. The
likelihood of the next spike time (below) is given by the probability mass crossing the threshold at each moment in time. Note that
the probability distribution of the next spike time is bimodal. e, Raster of repeated RGC responses to this stimulus fragment, with
rows sorted in order of first spike time. Below is the probability density of the next spike, averaged across 25 trials. Black trace,
Model prediction; gray bars, actual distribution.

Figure 7. Precision of firing onset times. a, Two hundred millisecond portion of stimulus and a response raster showing
two periods of firing onset. Below are histograms of the time of the first spike in each event. SDs, 1.3 ms (left); 4.7 ms
(right). b, Simulated voltage response from the fitted IF model with noise set to zero. Tangent at time of firing onset is
shown in gray. c, Precision of first spike times (inverse of SD) as a function of the mean current at the time of the first spike
over 70 isolated firing onsets. Correlation coefficient, 0.89. d, Correlation coefficient (corr coeff) between precision and IF
model current prediction as a function of the inverse of the average SD of the first spike time. Open circles denote ON cells,
and filled circles denote OFF cells.
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timing precision, as well as an optimal decoding procedure
that exploits temporal patterns in spike trains.

Variability, structure, and fidelity of retinal signals
In previous work, the timing precision of firing onsets and the
large gaps between periods of firing have been suggested as the
basis for a novel interpretation of retinal coding (Berry et al.,
1997; Keat et al., 2001). In this view, the retina encodes visual
information in discrete firing events whose timing and spike
count encode the timing and features of the stimulus, respec-
tively. The IF model provides a more mechanistic explanation of
spike train structure. Precisely timed spikes result primarily from
stimulation that causes the membrane potential to cross the
threshold rapidly, leaving little opportunity for voltage noise to
influence the time of the spike (Fig. 7) (Bryant and Segundo,
1976; Banerjee, 2001; Liu et al., 2001). Similarly, long gaps be-
tween periods of firing result from stimuli that effectively sup-
press spiking by providing strong currents of opposite polarity.
Periods of more gradual firing rate modulation arise from stimuli
poorly matched to the linear filter or after periods of maintained
firing. Thus, the encoding process is fundamentally linear, and
the precision and structure of spike trains simply reflect the in-
teraction of the stimulus with intrinsic filtering, noise, and spike
generation.

In the model, a single noise parameter accounts for all the
variability in neural response and thus summarizes the effects of
noise in transduction, synaptic transfer, and cellular integration.
This summary measure of response variability may serve as a
parsimonious replacement for more phenomenological mea-
sures of variability, such as reliability and firing onset precision
(Berry et al., 1997; Reinagel and Reid, 2000; Keat et al., 2001;
Uzzell and Chichilnisky, 2004). These latter measures require ad
hoc criteria for defining firing events and exclude many spikes
from analysis (e.g., those that do not occur during an event).
Additionally, these measures cannot easily be applied in stimulus
regimens in which the neural response does not cleanly parse into

discrete events (e.g., RGC responses to low-contrast flashes) (Fig.
6). In contrast, the noise parameter of the IF model explains
many different measures of response variability (Fig. 8), has a
rough physiological interpretation in terms of membrane cur-
rent, and can be used to predict the variability of responses to
novel stimuli, in both event and nonevent response regimens.

The IF model also provides a potentially significant technique
for assessing the fidelity of sensory signals (Fig. 9). Because the
probability of an observed spike train given any stimulus can be
computed directly, the optimal stimulus discrimination proce-
dure is provided explicitly. Such an optimal procedure is essential
for a meaningful investigation of the factors that limit sensory
performance. Stimulus discrimination based on the IF model was
significantly more accurate than discrimination based on the
LNP model, indicating that temporal patterns of spikes convey
information not captured in the time-varying firing rate. Stimu-
lus decoding based on the IF model also provides a bound on the
accuracy with which the brain could decode stimulus informa-
tion from RGCs. This approach to describing the fidelity of neu-
ral coding in the context of a mechanistic model could provide a
valuable complement to approaches based on information the-
ory (Bialek et al., 1991).

Limitations of the IF model
Although the IF model offers many practical and theoretical ad-
vantages, it has some shortcomings. First, although it clearly out-
performs the LNP model by a variety of measures, the IF model
still fails to account for 
10 –25% of the variance in the PSTH of
RGCs (Fig. 5b), and deviations from the observed data exceed the
variability of repeated responses by up to 
20% (Fig. 5). One
likely source of error is the existence of nonlinear stimulus de-
pendencies (Hochstein and Shapley, 1976; Benardete et al., 1992;
Victor and Purpura, 1997) not captured by the linear front end.
Nonlinearities may be incorporated into the model without com-
promising its stable fitting properties by expanding the filter k� to
operate on nonlinear functions of the input. In preliminary stud-
ies, the inclusion of terms with quadratic dependence on the
input led to a 5–10% increase in the percentage of explained
variance. A drawback is that the elaborated model has more pa-
rameters to describe the nonlinear stimulus dependence and thus
requires more data for estimation of those parameters.

Second, the fitting procedure tends to set the noise parameter
somewhat higher than is necessary to account for the timing
variability observed during periods of rapid firing. This is evident
in the sorted rasters of Figure 3, in which the repeated interval
structure of the RGC response is more regular than that of IF
model responses. The discrepancy may result from the fact that
the noise parameter accounts for both true variability in neural
responses and any approximation errors of the model. Specifi-
cally, nonlinear mechanisms not captured by the model require
an increase in the noise parameter to keep the observed spike
train likelihood from becoming prohibitively small. This short-
coming could be addressed by separately optimizing the noise
parameter using an objective function that isolates the stochastic
behaviors of the neural response, such as the repeat interval struc-
ture (Fig. 3) or the spike–time distance (Fig. 5). A complete solu-
tion, however, requires the incorporation of nonlinear stimulus
selectivity in the model (see above). This may be particularly
important for applying the IF characterization to neurons in
cortex.

Third, although the IF model is clearly more realistic than
models with Poisson firing, it provides only a simplified descrip-
tion of known mechanisms underlying neural responses. This IF

Figure 9. Decoding responses using model-derived likelihoods. a, Two stimulus (Stim) frag-
ments and corresponding fragments of the RGC response (Resp) raster. Gray boxes highlight a
50 ms interval of the first row of each response raster. A 2AFC discrimination task was performed
on these response fragments, in which the task was to determine which stimulus gave rise to
each response. The IF and LNP models were used to compute the likelihood of these responses
given the “correct” and “incorrect” pairing of stimuli and responses, and the pairing with the
higher likelihood was selected. This discrimination procedure was applied to each row of the
response raster and used to obtain the percentage correct for the discrimination performance of
each model. b, Discrimination performance of the IF and LNP models. Each point corresponds to
the percentage correct of a 2AFC discrimination task using two randomly selected 50 ms win-
dows of the response. Although both models obtain perfect performance (100%) for a majority
of such randomly selected response windows, the scatter of points above the diagonal shows
that when discrimination performance is imperfect, the IF model is far better at decoding the
neural spike responses.
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model is based on current rather than conductance inputs and
has linear subthreshold dynamics. Although conductance-based
IF and nonlinear Hodgkin–Huxley-style models provide much
more biophysically realistic descriptions of intracellular dynam-
ics, it is unfortunately the case that fitting these models to extra-
cellular data is relatively intractable. In particular, the likelihood
in such models is much more difficult to compute and generally
might contain many local maxima. Another oversimplification of
the IF model is the use of a single Gaussian white noise source to
summarize all real noise sources (e.g., photon noise, synaptic
failure, and channel noise); this assumption makes fitting tracta-
ble but does not allow us to make detailed inferences about the
sources of noise.

Extensions
The present findings suggest a variety of extensions. First, the
front-end linear filter can be extended to incorporate spatial de-
pendence of model neural responses on spatially (in addition to
temporally) varying stimuli. Higher stimulus dimensionality
means that the model will require more data for fitting, but the
problem remains tractable. In pilot studies, we have obtained
reasonable fits of spatiotemporal stimulus filters using 10 –15
min of data (compared with 50 s in the current experiment). The
spatial components of these stimulus filters does not differ re-
markably from that of the spike-triggered average, suggesting
that the important differences between the IF and LNP models
are restricted to their temporal properties.

Second, several studies (Smirnakis et al., 1997; Chander and
Chichilnisky, 2001; Kim and Rieke, 2001; Baccus and Meister,
2002) have revealed slow contrast adaptation in RGCs, and
integrate-and-fire models can likewise exhibit a form of spike rate
adaptation to stimulus variance (Rudd and Brown, 1997). Al-
though a full study of the adaptive properties of the IF model is
beyond the scope of this paper, the ability of the model to predict
responses to multicontrast flashes indicates that it can account
for some forms of adaptation. The shape of the h� current also
gives rise to one simple form of adaptation: the delayed negative
lobe of h� (Fig. 2b) means that several rapidly occurring spikes will
give rise to a significant buildup of negative current, which pro-
duces adaptation in the response to a DC step current.

Third, the IF model can be extended to describe neural re-
sponses in sensory areas beyond the retina. We have conducted
preliminary analyses that suggest that the IF model provides a
reasonably accurate description of the responses of simple V1
cells to flickering bars. Additionally, in cases in which responses
are driven by nonlinear stimulus transformations of a known
form, the model can be augmented by fitting to the nonlinearly
transformed stimulus. For example, fitting the model using a set
of quadratic functions of the stimulus as input to the linear filter
k� allows the model to exhibit second-order stimulus dependence,
such as that observed in complex V1 cells.

Fourth, the model can be extended to the modeling of multi-
cell responses by introducing postspike currents between pairs of
cells. These currents can be reliably fit to multicell data (again, by
maximizing likelihood), and preliminary exploration indicates
that the model can reproduce observed correlations in firing be-
tween cells (Pillow et al., 2005).

Finally, the fitting method is based on gradient ascent of the
likelihood function and so can be applied to data collected with
any sufficiently rich set of stimuli. Thus, unlike reverse correla-
tion approaches to estimating LNP model parameters, IF model
characterization does not require white noise stimuli. This raises
the possibility of characterizing light responses using stimuli that

drive cortical neurons more strongly than white noise or that
more closely approximate the environment in which the visual
system normally operates (Reinagel, 2001).
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