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Abstract

White noise analysis methods for characterizing neurons typically ignore the dynamics
of neural spike generation, assuming that spikes arise from an inhomogeneous Poisson
process. We show that when spikes arise from a leaky integrate-and fire mechanism, a
classical white-noise estimate of a neuron’s temporal receptive field is significantly bi-
ased. We develop a modified estimator for linear characterization of such neurons, and
demonstrate its effectiveness in simulation. Finally, we apply it to physiological data
and show that spiking dynamics may account for changes observed in the receptive
fields measured at different contrasts.

White noise analysis has become a widely used technique for characterizing response
properties of spiking neurons in sensory systems. A sequence of stimuli are drawn ran-
domly from an ensemble and presented in rapid succession, and one examines the stimuli
that elicit action potentials. In the most widely used form of this analysis, one estimates a
linear approximation to the receptive field (i.e. first-order Wiener kernel) by computing the
spike-triggered average (STA); that is, the average stimulus preceding a spike [e.g. 1, 2].
Under the assumption that spikes are generated by a Poisson process with instantaneous
rate determined by linear projection onto a kernel followed by a static nonlinearity, the
STA provides an unbiased estimate of the underlying kernel [3].

The white noise approach is considered to have several advantages over traditional charac-
terization approaches, including the the ability to explore a large portion of the input space
and receptive field estimation that is robust to drift or fluctuation in the responsiveness of
a neuron. Despite these advantages, it has also become clear that there are drawbacks to
the characterizations obtained with white noise methods. One such shortcoming is the
well-known phenomenon that the shape of the STA varies with the amplitude (e.g. con-
trast) of the white noise stimuli. [e.g. 4, 5, 6] . This type of change cannot be explained by
a linear model followed by a static nonlinearity and Poisson spike generation (the ‘Linear-
Nonlinear-Poisson’, or L-N-P model), since it implies a change in the linear front end. We
have previously shown that nonlinear suppressive interactions such as those found in cor-
tical neurons can explain biases in the STA, that a spike-triggered covariance analysis can
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be used to characterize these suppressive interactions, and that the resulting corrected
model can account for the changes of STA with contrast [7].

Here, we explore another potential source of failure in white noise characterization: the
assumption of Poisson spike generation. The significance of temporal dynamic (i.e. non-
Poisson) properties of biological spike generation for white noise characterization of neu-
rons has not been thoroughly analyzed.1 However, we show that in simulated white noise
experiments, a linear model which drives an integrate-and-fire spiking mechanism is in-
accurately characterized by the STA. Furthermore, we show that the integrative behavior
of this model can account for some of the changes in STA estimated at different stimulus
amplitudes in real neurons. Finally, we propose a new method for recovering the linear
temporal filter governing neural response. We demonstrate through simulation that this
approach can correctly estimate the linear kernel of a model neuron, and we also apply our
method to real neural data, demonstrating that the recovered linear kernel is fairly stable
with changes in stimulus contrast. We thus conclude that the recovered linear kernel may
provide a more fundamental functional description of neural behavior, and might well be
more directly related to the mechanisms underlying neural response.

Leaky integrate-and-fire model

Our analysis is based on a leaky integrate-and-fire (LIF) model. The input is convolved
with a linear filter K, and this response drives a leaky integrator. When the level of this
integrator reaches a threshold value, the neuron fires a spike and the integrator is reset
to zero. The time evolution of the model membrane potential V (t) is characterized by a
single differential equation:

dV

dt
= −

1

τ
V (t) + I(t), (1)

where τ is the time constant governing decay of the membrane potential, and I(t) is the
input current, generated by convolving the input signal S(t) with the fixed kernel K:

I(t) = K ∗ S(t) =

∫ 0

−∞

K(u)S(t − u)du. (2)

This model has an analytical solution relative to the time of the most recent spike:

V (t) =

∫ t

t−
I(u)e(u−t)/τdu, (3)

where t− is the time of occurrence of the last spike before t. This dependence on the time of
the previous spike (and past input to the integrator) represents a fundamental departure
from L-N-P model described earlier, where the probability of firing a spike is an instanta-
neous function of the projection of the stimulus onto K.

Simulation results and comparison

We simulated a white noise analysis experiment with the model described above. In our
simulations, the kernel K was chosen to be a 32-sample function whose shape loosely

1However, that Arcas et al. have recently examined the behavior of a Hodgkin-Huxley model under white
noise stimulation, and have made a number of interesting observations regarding the spike-triggered stimulus
ensemble [8].
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Figure 1: Simulation of integrate-and-fire neuron. Left: STA kernels retrieved for three dif-
ferent contrast levels (solid lines), plotted along with the true model kernel (dashed curve).
Right: Kernels recovered using our algorithm.

resembles temporal kernels measured in retinal ganglion cells. As in classical white noise
experiments, we generated a random discrete stimulus S(t) that was temporally white,
drawing the stimulus intensity as an independent Gaussian random variable in each time
step. We computed the STA as the average stimulus in the 32 time bins preceding each
spike.

Figure 1 (left) shows a plot of the actual kernel K superimposed on the STA for three
different values of the membrane time constant τ . First, note that in all three cases, the
STA differs significantly from K. This bias reflects the integrative spiking mechanism of
the LIF model, as the STA is quite close to K if the same input were given to an L-N-P
model [3]. Furthermore, the discrepancy between K and the STA depends on τ . For small
τ (i.e. rapid decay of V ), the STA is more closely resembles K, whereas larger τ (slower
decay) gives rise to an STA which is smoother and more biased away from the true K.
Note that although this basic effect is unsurprising, it is not the case that the STA shape
arises simply from a low-pass filtering of K with an exponential filter. Specifically, the
STA measured for a stand-alone LIF spike generator is decidedly non-exponential.

Physiological evidence indicates that at higher firing rates, the membrane conductance of
neurons increases, which corresponds to a decrease in membrane time constant τ [9, 10,
11]. Moreover, STAs measured in real neurons at high contrast tend to be narrower than
those measured at low contrasts. This suggests that an integrative spiking mechanism with
time constant that depends on firing rate is at least consistent with contrast-dependent
changes in the STA of real neurons.

Recovering the linear kernel

Assuming that the input to an integrate-and-fire spiking model is determined by projection
onto a linear kernel, how can the kernel be recovered from the response to white noise
stimuli? Equation (3) provides a deterministic expression for the voltage at any time since
the most recent spike. The voltage at any spike time is therefore given by:

V (t+) = Vth =

∫ t+

t−

[

K ∗ S(t)
]

e(t−t+)/τdt, (4)
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where Vth is threshold, t− is the time index of the previous spike and t+ that of the current
spike. Using equation 2, we can rewrite this (by switching the order of integration):

Vth =

∫ 0

−∞

K(u)

[

∫ t+

t−
S(t − u)e(t−t+)/τdt

]

du. (5)

Note that, for fixed τ , this equation provides a linear constraint on K, since it expresses Vth

as the inner product of K with the exponentially weighted S (back to the time of the previ-
ous spike). Every spike in the spike train provides one such constraint, so a discretized K

can be overconstrained so long as its dimensionality is smaller than the number of spikes
collected. K can easily be estimated by finding the least squares solution to this overcon-
strained linear system.

In practice, one would like to estimate both τ and K simultaneously, since both are un-
known for data collected in real neurons. This can be achieved simply using a nested
optimization (a line search algorithm) to find the τ which minimizes the squared error in
the least squares solution for K. This algorithm is guaranteed to converge, and although
the solution may not be only a local minimum, in simulations it was well-behaved for a
wide variety of kernel shapes and a large range of τ values. Figure 1 (right) shows the ker-
nels estimated for simulations conducted with three different values of τ . (Close estimates
of the true values of τ were also obtained.) For both graphs in this figure, the stimulus
contained 40,000 time samples and approximately 2,000 spikes were collected for each τ .

It should be noted, finally, that this estimator for K and τ ignores a huge set of additional
constraints– namely, that V (t) be less than threshold at all other times. However, because
the problem is already overconstrained by the constraint on V (t) at spike times, and be-
cause the additional constraints are much harder to implement, they can be ignored. A
significant improvement to the estimator may nevertheless be obtained by considering ad-
ditional constraints only on the time steps immediately preceding a spike. (This can be
implemented by allowing a contribution to the squared error for any pre-spike time bin
where V exceeds threshold). Montecarlo simulations exhibit rapid convergence to the true
values of K and τ for this revised estimator.

Recovering a kernel from neural data

Our procedure for linear kernel estimation is based on an overly simplistic integrate-and-
fire model for neural spike generation. We thus cannot be sure it will be applicable to
real neural data. But we note that STA techniques have been used for decades to estimate
linear kernels under the assumption of a Poisson spike generator. The integrate-and-fire
model incorporates a dependence on the time of the previous spike and is likely to provide
a more accurate description of spiking in real neurons.

We have applied our procedure directly to data drawn from a monkey retinal ganglion
cell [5]. The data were recorded in vitro, using a stimulus consisting of 80,000 time samples
of full-field 120 Hz flickering binary white noise The stimulus vectors ~s of this sequence
are defined over a 25-segment (0.21 sec) time window. Two data sets were recorded, at
contrasts of 32% and 64%.

Figure 2 (left) shows example STA estimates for both contrast levels. The kernels are quite
4
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Figure 2: Analysis of in vitro ganglion cell data in monkey retina. Left: STA estimates based
on responses recorded at two different input contrast levels. Right: Kernels recovered using
our procedure. The associated time constant estimates are 19.1 and 6.5 msec.

different; the low-contrast STA is smoother and its peak that is shifted earlier in time than
the high contrast STA. Figure 2 (right) shows the kernels resulting from our estimation
procedure. Note that the estimated kernel is now quite stable across different contrasts,
a desirable property for a functional description of neural behavior. The recovered time
constants of 19.1 msec and 6.5 msec are within ranges considered biologically plausible,
although their ratio indicates a greater change with amplitude than is commonly reported
for cortical neurons [e.g. 9, 10, 11].

Discussion

Our results show that spike generation mechanisms can affect the interpretation of results
obtained with white noise analysis. In particular, we have shown that even for a sim-
ple integrate-and-fire model, the temporal STA does not accurately recover the temporal
linear input kernel. For this model, the magnitude of bias in the STA is influenced by the
membrane conductance, which is believed to vary with stimulus strength. This amplitude-
dependence of the STA mirrors changes in the STA of real neurons measured at different
contrasts, and cannot be captured by an L-N-P model.

Based on this simple LIF model, we have developed a new method for the recovery of
the linear kernel integration time constant from responses to white noise stimluli. To our
surprise, this kernel estimation procedure recovers a stable linear kernel when applied to
data recorded from monkey retinal ganglion cells, and the associated estimates of mem-
brane conductance are within a biologically plausible range. Finally, while not discussed
here, our technique also appears to be quite robust to the presence of noise in the mem-
brane potential

We are currently exploring the generalization of these results to more realistic models. In
particular, we have have found that the incorporation of a voltage floor in the model (cor-
responding to an ionic reversal potential) produces an STA which is sharper and closer
to the true input kernel at high contrast, independent of any changes in membrane con-
ductance. The significance of this phenomenon, along with that of other nonlinearities
associated with spike generation, remains to to be analyzed.

Our results suggest a mechanistic explanation of the behaviors captured by current func-
tional models of retinal ganglion cells [e.g. 12], in which a nonlinear feedback signal is
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used to adjust the gain of the neuron. We have also previously shown that nonlinear gain
control operations might account for a variety of apparent changes in receptive field prop-
erties at different contrast levels [13]. The results presented in this paper suggest that some
such changes might be due to intracellular mechanisms of spike generation. It would be
interesting to test such hypotheses against intracellular measurements.
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